IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 16, 2019, accepted February 21, 2019, date of publication February 25, 2019, date of current version March 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901347

A Parallel Community Detection in Multi-Modal
Social Network With Apache Spark

YOON-SIK CHO ", (Member, IEEE)

Department of Data Science, Sejong University, Seoul 05006, South Korea

e-mail: yscho@sejong.ac.kr

This work was supported in part by the National Research Foundation of Korea through the Korea Government (MSIP) under grant

2018R1C1B5045931 and in part by the Sejong University.

ABSTRACT A constrained latent space model (CLSM) infers community membership based on two
modalities in multi-modal social network data: network topology and node attributes. In this paper, we extend
our previous model, CLSM in two ways. First, we introduce the Spark implementation of CLSM for parallel
computation by fitting the inference algorithm into the map-reduce framework. Second, we consider user
reputation besides the network homophily, which also affects social interactions between users. We test
CLSM and its extension on two real-world problems: understanding link and user attributes in the location-
based social network, and a review-trust network. Our proposed models in Spark can be easily deployed
on commercial cloud services, such as Google cloud or Amazon web service and find latent community
membership in large-scale datasets. We perform extensive experiments on real-world datasets and show
how CLSM extension improves our previous model. We also share meaningful insights we discovered with
the datasets.

INDEX TERMS Apache Spark, community detection, latent Dirichelet allocation, mixed-membership

stochastic blockmodels.

I. INTRODUCTION

Many real-world phenomena can be interpreted as complex
networks, and researchers from various fields have been
studying diverse real-world systems through graphs. Often
the relational data can be represented as a collection of
edges in a graph, where the edge reflects the relationship
between the vertices. In social network analysis, for instance,
social network users can be represented as vertices and the
friendship between the users can be represented as edges.
Many applications, such as recommendation systems [1]-[4],
personalized systems [5]—[7], targeted advertising [8], [9] is
based on the studies in social graphs.

One of the most active topics in this field is finding
the communities [10]-[15] among the nodes in a network
graph, where the nodes within the same community probably
share common properties leading the links between the nodes
densely connected. Identifying the communities in a network
graph is crucial not only because it well summarizes the
whole graph, but also because it allows useful applications
in machine learning literature such as classifications, recom-
mendation or ranking systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Lin.

Until recently, researchers paid less attention to finding
out what the inferred communities represent. This could
be mainly due to the limitation of datasets, where often
only network structures were available. For clustering pur-
poses, or for predictive tasks such as link predictions
[16]-[20], identifying and understanding the inferred com-
munity is unnecessary. Instead, the focus of previous studies
are finding network features, compute the feature scores of
the pairs and predict how likely the nodes within a given
pair are to establish a link. While this can build practical
applications, it might be limited when correlating the results
to other studies or other information.

The recent proliferation of multi-modal social network
datasets allows a better understanding of the communities
inferred from network structures. The user attributes such as
tweeted words, selected tags, or the checked-in places can be
collected within a given cluster, and help interpretation of
the communities. Moreover, combining the two modalities
of network topology and node attributes leads to a more
powerful model. It significantly achieves better predictions
by fully using the information from multiple sources, unlike
the conventional predictive models. It can also perform pre-
dictions without any information from the same source but
solely using the information from the other source.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

27465

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9110-7414

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

Motivated by the abundance of large-scale multi-modal
social network data, and the popularity of cloud computing,
we develop an algorithm that detects communities combining
network structure and additional information of nodes in a
distributed fashion. Specifically, we rely on Apache Spark
cloud platform that is suitable for iterative machine learn-
ing and parallel computation. Apache Spark overcomes the
limitations of Hadoop which lacks cyclic data flow and con-
sequently loses efficiency for iterative processing. As Spark
accesses data from RAM instead of disk, it significantly
improves the execution time of iterative algorithms. Another
advantage of using Apache Spark for distributed compu-
tation comes from its own data abstraction called resilient
distributed dataset, RDD, which is a collection of data items
that can be easily distributed over the nodes of the clusters.

In this paper, we introduce Spark implementation of
Constrained Latent Space Model (CLSM) and its extension.
CLSM has been introduced in our previous work [21]. CLSM
augments the generative process by introducing a set of
constraints that allows to account for stronger correlations
between user attributes and social networks, which avoids
the fragmentation of the joint latent space. Overall, CLSM
achieves significant improvement in performance over the
others in various learning scenarios as shown in our previous
work. Comparing CLSM to other previous baselines is not the
focus of this work; instead, we mainly focus on redesigning
the implementation of CLSM for parallel, distributed com-
puting. We also extend our previous model CLSM as we
test CLSM on large-scale datasets. Our proposed extension
introduced in this work further achieves superior results on
prediction tasks. Our primary contributions can be summa-
rized as follows:

o We design a general framework called Constrained
Latent Space Model (CLSM) in a distributed fashion
with Apache Spark for cloud computing.

o We perform experiments on large-scale datasets that
augment social network information with various data
modalities including texts, purchase reviews, and check-
in data.

« We extend our previous model, CLSM, and show it
achieves better performance in both prediction tasks.

o We conduct a case study on the location-based social
network discussing the unique insights Spark-based
CLSM and its extension yields.

The paper is organized as follows: The following section
summarizes the related literature. Section III introduces the
background on latent space models followed by Section IV
which presents our model. A rigorous experimental evalu-
ation of our model is provided in Section V with a case
study using large-scale datasets on Apache Spark. Finally,
Section VI summarizes our contribution and future plans.

Il. RELATED WORK

With the increasing popularity of social network ser-
vices, community detection for large-scale social net-
work data has gained a lot of attention in recent years.

27466

Moreover, the availability of abundant data including user
attributes and behaviors enables various applications based
on the studies. However, few researchers have studied the
two modalities simultaneously through a unified framework.
Most previous community detection methods focused on
finding communities based on network topology.

Mixed Membership Stochastic BlockmodelMMSB) [22]
is one of the successful community detection algorithms that
performs soft clustering of the nodes based on the observed
network. MMSB is a probabilistic model that allows each
node of a network to exhibit a mixture of communities cap-
turing the overlapping communities, which is the main signif-
icance over other models. As shown in Fig. 1, MMSB infers
the communities for each node based on the edge list. In this
example, nodes in a network graph correspond to movie
actors from IMDb, and an edge is generated when two actors
in a pair appear in a same movie. For visualization, each node
has been colored in RGB based on their membership vectors
of size 3. Some nodes such as Jackie Chan and Jean Reno
exhibits multiple communities with mixed colors.

FIGURE 1. Three main inferred communities of co-starring movie actors.
Colors represent the inferred communities through MMSB. Based on the
name of the actors, community with red color, green color, and blue color
corresponds to Hollywood, Europe, and Asia respectively.

Another line of work related to our’s is the user behavior
modeling, where probabilistic topic models such as LDA [23]
have been applied to infer users’ preferences. LDA has been
initially proposed in text mining to discover the mixture of
topics in a document by inferring the hidden topic structure
from the observed documents using the posterior distribution.
LDA can be easily adapted to other kinds of observations not
limited to words. It can be adapted to many different types
of data, including survey data, user preferences, audio, and
social networks [24].

Since its introduction, LDA has been extended in many
ways. One of the fields is the joint modeling of text and
citations in the topic modeling framework. The Pairwise-
Link-LDA [25] model combines the ideas of LDA and

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

Mixed Membership Block Stochastic Models and allows
modeling the link structure between the documents. Unfortu-
nately, Pairwise-Link-LDA often fails to exploit the synergies
between different modalities, as it tends to fragment the latent
space into non-overlapping (or weakly overlapping) regions
corresponding exclusively to either words or to links. This
fragmentation is due to the loose dependency between the
words and links which are connected only through a com-
mon latent topic distribution. To address this shortcoming,
the Relational Topic Model (RTM) [26] was designed to
impose additional constraints on the generative model that
would require stronger correlations between links and words.

Relational topic model (RTM) extends the idea of LDA
by incorporating the links between the documents. RTM
assumes that each document is modeled as in LDA and that
the links between documents depend on the distance between
their topic distributions. This model can also be adapted to
other fields such as social network modeling, and perhaps
RTM is the closest to our model that projects the users’ mixed
membership distribution on latent topic space fully using the
two modalities. For instance, when used on social network
analysis, RTM can infer user interest based on its attributes
and interactions. However, the generative process for link
generation in RTM is simplified, and lacks the flexibility to
capture the multi-faceted interactions.

1ll. BACKGROUND

Let y(n1, ny) € {0, 1} be an indicator of a link from node n;
to node ny, where ny, ny are from a set of N nodes. As many
social networks based on friendship are undirected, we will
focus on undirected networks where y(n1, ny) = y(na, ny).
This relational data forms a graph G = (V, &), where V is
a set of vertices (or nodes), and £ is a set of edges (or
links). In addition to the network information, we also have
the information of node attributes. These attributes can be
the collection of the node behaviors or node characteristics.
For instance, the node attribute we consider in the location-
based social network is the places the users visited, and the
node attribute in the review-trust network is the collection of
selected interests in product categories.

Our proposed model in this paper extends the work of
our previous research [21] in two ways. First and foremost,
we propose a parallel community detection algorithm for
multi-modal social network data, where the iterative update
equations are implemented in the Spark framework. Further-
more, we extend our previous model by considering the repu-
tation of each user that can affect social interactions. We defer
the details of the model extension to the section IV-B.

A. CONSTRAINED LATENT SPACE MODEL

In this section, we review the Constrained Latent Space
Model (CLSM) [21], which simultaneously describes social
network information and user attribute data using a latent
space representation. CLSM relies on variational method [27]
and approximates the posterior in tractable structure. The
update equations from variational inference are provided

VOLUME 7, 2019

TABLE 1. Summary of notations.

Notation Description
N total number of nodes
dimension K total number of communities (topics)
|4 total number of attributes
observed y(n1,mn2) link indicator from node n1 to no
Wi set of attributes of node n
latent On community (topic) distribution

in Appendix. Following the same update equations, we re-
design the implementation of CLSM for parallel processing
in Apache Spark framework.

1) GENERATIVE PROCESS OF CLSM

The generative process of CLSM consists of two modules:
network generation and attribute generation, where the net-
work topology is generated based on MMSB framework,
and the attributes are generated by reusing the membership
indicator vectors. To elaborate, the topic indicator is sam-
pled from the set of sampled membership indicator that has
been used when forming links. Namely, when generating
attributes for the given user, we reuse the indicator variables
that were used to generate links for the same user. This
sampling method differentiates the CSLM from the earlier
work which samples the topic indicator from the topic dis-
tribution (or membership distribution). Chang et al. believe
that the generative process of Pairwise-Link-LDA model ends
to fragment the latent space into non-overlapping (or weakly
overlapping) regions corresponding exclusively to either user
attributes or to the social network. Below we summarize the
generative process of CLSM.

« Network Generation:

1) For each community k, let B; be the community
strength, which is the probability of two nodes
from community & forming a link.

2) For each node n, sample the K x 1 membership
vector
0,, ~ Dirichlet(e).

3) For each node n, initialize an empty multiset of
indicator variables, Z,, = (.

4) For each pair (n1, nz)

a) Draw membership indicator vectors
Zn—ny ~ Mult(6;,)
Zn, <ny ~ Mult(8,,).

b) Sample the pair interaction
y(n1,n3) ~ Bernoulli(z,) _, . Bz, <),
where B = diag(8y, B2, ..., Bx) + e — 1),
and € is a small regularization parameter for
off-diagonal components.

¢) Augment the corresponding indicator multisets
(allowing repetitions)
an - Zm u {Zn1—>n2}
an - an) {Zn1<—n2}-

27467

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

« Behavior Generation:
Let M, be the total number of selections! of user n from
a (attributes) set V = {1, ..., V}.
1) For each topic k, sample the attribute distribution
wy ~ Dirichlet(k), where k is a hyperparameter.
2) For each selection Wy, , of user n, where m €

{1,...,M,},

a) Sample an index ¢! ~ Unif({1, ..., size(Z,)}),
and let Z be the topic indicator vector corre-
sponding to ¢.

b) Sample a selection W, ,, ~ Mult(w;), where i
is the index of z’s non-zero component.

IV. PARALLEL CLSM

One of the main advantages of using Apache Spark is the
parallel computation of large-scale datasets. Spark has its own
data abstraction called Resilient Distributed Dataset (RDD).
Data can be easily loaded into RDD, which is later partitioned
and distributed over the nodes of a cluster. Implementing
the CLSM, and its extension in Spark requires extensive
use of RDDs. Fig. 2 shows an overview of the RDDs used
throughout the process. It shows how the RDD is created from
the raw data, transformed into other forms.

network
RDD for ¢, key: node

grouped network

(n1, (n2,n4,..)
(n2, [n4,n9,..)

RDD for A joined on key (node)

Algorithm 1 CLSM Parallel Updates Using Spark
Data: edge list, attribute list
Result: community distribution for each user
data loading and preprocessing;
create RDDegge ;
create RDDguribute’
join RDDegge, RDDatribute int0 RDDyii;
while not converged do
update {¢} in RDDyyyi;
update {y} in RDDp,,1 and broadcast;
update {1} in RDDpyy;
update model parameters with reduce;
end
obtain community distribution in {y} in RDDpyi;

immutability. Hence, every iterative step requires construct-
ing a new RDD from a previous one.

1) DATA LOADING AND PREPROCESSING

The provided code below assumes the dataset to follow the
similar format from Gowalla dataset which can be obtained
from [28]. For inference and learning, we only use user id
and venue id as node id and attribute id; other information
which is unique to the dataset such as time, the location with
geo-coordinates has been ignored.

grouped attribute

(n1, [25,37,..])
(n6, [26,39,...)

RDD for A, key: node

(n81, [all,..])
(n96, [a81,..)

FIGURE 2. RDD concept diagram of CLSM.

Our variational inference updates will be using the final
form of RDD (shown in the most right). Our update equa-
tions in Spark implementation follows the update equations
in Appendix, and has been specifically redesigned in RDD
format. The overall step is summarized in Algorithm 1.

A. PARALLEL PROCESS FOR VARIATIONAL INFERENCE

Spark provides map, filter join functions, and existing RDDs
can be easily transformed to other form. Our snippet code
provided in this section is written in PySpark?. Specifically,
we introduce how to create RDD from data loading, to handle
RDDs in an efficient manner, and to construct a new RDD
from a previous one. One key factor that differentiates RDDs
in Spark from other variables in conventional languages is the

IFor the purposes of data generation M, can be sampled from, say,
a Poisson distribution. This is not relevant for inference, however, where M),
is specified in the data.

2PySpark is the Python API for Spark

27468

schema_attribute = StructType ([
StructField ("node", IntegerType(), True),
StructField ("att_id", StringType (), True)])

df_attribute = sqlContext.read.csv(file_path ,sep='\t',schema=schema_attribute)

schema_network = StructType ([

StructField ("nodefrom”, IntegerType (), True),

StructField ("nodeto”, IntegerType (), True)])
df_network = sqlContext.read.csv(file_path ,sep='\t',schema=schema_network)
groupedDF _attribute = df_attribute.groupby("node").agg(F.collect_list("att_id"))
groupedDF_network = df_network.groupby ("nodefrom").agg(F.collect_list("nodeto"))

Spark also provides SQL and DataFrames as built-in
libraries, and we rely on these libraries for data reading and
pre-processings. Afterward, we aggregate all the selected
attributes (or visited places for Gowalla dataset) per each
node to form grouped DataFrame for user attributes and
aggregate all the linked nodes per each node to form grouped
DataFrame for edge list. Each row consists of a node and its
selected attributes in a list format and a list of its friends.
When a certain attribute is selected multiple times by the
user, the attribute id will appear multiple times in the list
accordingly. This aggregation respect to each node is required
for creating an RDD,where the key (in key-value PairRdd)
becomes the id of each node.

2) TRANSFERRING DATA INTO RDD AND CREATING RDDs
FOR VARIATIONAL PARAMETERS

The DataFrame can be easily converted to RDD using the rdd
and map function.

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

networkRdd = groupedDf_network .rdd \
.map(lambda x:((x['nodefrom '], x['collect_list(nodeto)']))) \
.repartition (partitionSize)
phiRdd = networkRdd \
_mapValues (lambda x: dict(zip(x.np.random.dirichlet(np.ones(K)«10,len(x)))))

The networkRDD is an RDD of tuples consisting of key
and value, where the key corresponds to the node, and the
value corresponds to a list of friends of a given node. The
phiRDD will be handling the update formula in Equation 7,
and can be created from networkRDD using the mapValue
function. mapValues is preferred over map function because
it operates on the value only instead of the entire record.
Besides, map Values preserves any partitioner set on the RDD.
The last line initializes the phiRDD and keeps it in a dic-
tionary form, where the key of a dictionary is the id of
its friend and value is the corresponding @, _,,,. In other
words, nj and np in @, _, ,, ; are key from the RDD and key
from the dictionary in corresponding value respectively. This
phiRDD will be used both for CLSM following the updates
in Equation 7.

from pyspark.ml. feature import CountVectorizer

attributeSize = df_attribute.select('att_id ').distinct().count()
cv = CountVectorizer (inputCol="collect_list(att_id)", \
outputCol="features", vocabSize=attributeSize)
cv_model = cv.fit(groupedDF_attribute)
co_occurrence = cv_model.transform (groupedDF_attribute)
attributeRdd = co_occurrence.rdd .map(lambda x: ((x['node'], x['features']))) \
.repartition (partitionSize)

For CLSM, we create an RDD for user attributes besides
the RDD that contains {¢}. As previously stated, in this exam-
ple, we consider users ‘“‘check-ins” in Gowalla as attributes.
We rely on PySpark library for using CountVectorizer which
converts a collection of unique location ID to a matrix of
token counts. By using CountVectorizer, we obtain a sparse
representation of the counts of check-ins, which is effective
for computation efficiency. The co-occurrence matrix is then
converted to RDD using the rdd.map function. The RddAt-
tribute will be handling various kinds of attributes.

3) HANDLING VARIATIONAL LOCAL PARAMETERS
Previously, we introduced how to create an RDD that handles
variational parameter ¢. Besides ¢, variational parameter A
needs to be taken care of. Each node has its own set of
variational parameters {¢,_,.}, and {A"}. we collect these
parameters and join over the key which is the node index, and
form a new key-value pair RDD where the value is a tuple of
a collection of {¢,_, .}, and {L"}. Instead of simply collecting
{$,_..} and {L"} as a set per a given node n, we collect them
as a dictionary, which allows efficient computation. When
updating the variational variables for each neighbor of given
node n, it’s efficient to use the dictionary as each variational
parameters for the linked node can be easily looked up.

totalRdd = phiRdd \
.join(attributeRdd , partitionSize) \
.map(lambda x: (x[0], (x[1][0], \
diet(zip (zip(x[1]1[1].indices ,x[1][1].values), \
[(dict(zip(x[1]1[0].keys() ,np.ones(len(x[11[0].keys ()))/K)),0)]\
slen(x[1][1].indices))) ,x[0]))\
.repartition (partitionSize)

VOLUME 7, 2019

4) UPDATING VARIATIONAL LOCAL PARAMETERS

Two sets of variational parameters {¢,_, .}, {A"} are combined
into an RDD as a tuple shown previously. These two vari-
ational parameters are handled in single RDD. Due to the
dependence between {¢,,_, .}, {A"} as shown in Equation 5, 6,
and 11, it is efficient to group a set of variational parameters
under the same user id. This allows each user id to keep its
variational parameters in single element reducing unneces-
sary lookups. Our update equations implemented in Spark are
based on this approach.

For CLSM on an undirected network, the update of
variational multinomial parameters can be expressed as
Equation 7. Equation 7 shows that the update equation also
depends on the set of variational parameters of np. Our
proposed implementation uses collectAsMap() function to
create dictionary in master node. This dictionary is later
broadcasted to worker nodes and variational parameters
of ny can be easily referenced when updating the varia-
tional parameters of n;. The attribute [0], and attribute [1]
below keeps the index of attributes and number of repeats
respectively.

temp = totalRdd.mapValues(lambda x: transformMap(x, roleAttribute , K))
phiAttributeMap = sc.broadcast(temp.collectAsMap ())

def transformMap (total , RM,K):

nl = total[2]

neighbors = total [0]

attributes = total[1]

value_dict = {}

for n2 in neighbors.keys ():
suml = 0
for attribute ,val in attributes.items ():

suml+=val [0]. get(n2)+attribute [1]+np.log (RM. value [:, attribute [0]])

value_dict[n2] = suml

return value_dict

5) UPDATING VARIATIONAL GLOBAL PARAMETERS

Once all the local parameters are updated, global parame-
ters need to be updated. In Equation 4, {y} are updated by
summing up the corresponding {¢}. We adopt an approx-
imation technique [29] by assuming that the parameters
¢,,_,. for non-links of a given node n can be replaced by
a single mean-field parameter. These mean-filed parameters
for every network node can be computed using the lambda
function below. The global parameters {y} are being used in
the variational local parameter updates in Equation 7 when
computing [E,[log p(#)]. We found that by broadcasting the
global parameters to worker nodes can significantly reduce
the computation time.

phiMeanRdd = totalRdd \
.mapValues (lambda x: (sum(x[0].values ())/sum(sum(x[0].values ()))))

phiMeanMap = sc.broadcast (phiMeanRdd. collectAsMap ())

6) UPDATING VARIATIONAL MODEL PARAMETERS

Each variational global parameter is updated after the local
updates. This update requires the summation of every value
from the RDD. In this section, we present the updates of 7,
and t(, where the local variational parameters are summed
over all pairs of interest.

27469

IEEE Access Y.

S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

(t_1,t_0) = updateBlock(totalRdd , phiMeanRdd)
tau_one = sc.broadcast(t_Il+eta_one)
tau_zero = sc.broadcast(t_O+eta_zero)

omega= updateRoleVenue (phiAttriRdd ,K,V, smoothing_ratio ,pop_BC)
roleAttribute = sc.broadcast(omega)

def updateBlock (totalRdd , phiMeanRdd):
t_1 = totalRdd.mapValues(lambda x: (sum(x[0].values ()))). values ().sum()
phimeansquresum = phiMeanRdd . mapValues (lambda x: pow(x,2)). values ().sum()
phimeansumsqure = pow(phiMeanRdd. values ().sum(),2)
t_0 = (phimeansumsqure — phimeansquresum)/2 — t_1
return (t_1, t_0)

def updateRoleAttribute (phiAttriRdd ,K,V,smoothing_ratio ,pop):
omegaSum = phiAttriRdd.mapValues(lambda x: toRoleAtt(x,K,V)). values ().sum()
omegaNormalized = normalize (omegaSum, axis=1, norm="'11")
updatedOmega = (omegaNormalized+(1—smoothing_ratio) +
np.array([np.array(pop.value)]*K)=(smoothing_ratio))
return updatedOmega

The variational model parameter 7, T requires summa-
tion of {¢} for existing links and summation of {¢} for all the
pairs with no links respectively. Since most of the graphs are
sparse, obtaining 7 is relatively expensive in computation
compared to obtaining t1. Following the similar approach
from [30], we can efficiently obtain summation for non-links
without accessing all of the non-link pairs, which is reflected
on the code above.

B. CLSM WITH USER REPUTATION

In this section, we first elaborate on the intuition of user
reputation and propose an approach that can capture user
reputation by adding a generative process for link genera-
tion. Links in social networks can be generated by various
factors. One of the element widely considered is the network
homophily, which generative process of link generation in
CLSM is based on. Another strong element that affects the
creation of a link is the user reputation, which has been
omitted in CLSM. Users with high social reputation usually
attract more users and establish relationships accordingly. For
instance, celebrities tend to have more followers on Twitter,
Yelp elite users attracts more followers or readers than aver-
age reviewers. To this end, we incorporate the user reputation
into our model.

Whenever a link exists between two users, our previous
model, CLSM enforces the sampled membership vector to
be the same between two users. This approach is limited
when we consider the exogenous effects such as user repu-
tations. By incorporating the parameters that measure how
the given user attracts other users out of network homophily,
we can capture the links generated from user reputation.
Throughout this study, we name this model Reputation
CLSM or RECLSM. The generative process for the network
is formulated below:

« Network Generation:

1) For a given node n, sample the 2 x 1 vector
i, ~ Beta(a;).
2) For all the possible pairs with node n, draw the pair
interaction triggered by node reputation
r(m, n) ~ Bernoulli(x, 1),
a) If r(m,n) = 1, then y(m, n) = 1.
b) When r(m,n) = 0, generate edge based on
membership vectors from MMSB.

27470

The rest of the generative process follows the generative
process of CLSM. In a way, RECLSM is 2-staged model,
where the first stage considers user reputation and the second
stage only focuses on the community membership if no
exogenous effect exists.

V. EXPERIMENTS

We evaluate our model from various angles. First, we exam-
ine the scalability of our model implemented in Spark.
Second, we evaluate the predictive performances of CLSM
and its extension; We compare the performances between
CLSM and RECLSM in this study as we have already shown
how CLSM outperforms previous models in our previous
work [21]. Third, we perform a case study by visualizing our
results and share meaningful insights we discovered from a
selected dataset.

In the following, we present our real-world datasets used
in the experiments. Two different types of multi-modal social
network data have been used, where each dataset contains a
social graph and the attributes of social actors. In one dataset
from Gowalla we take the attributes as off-line user behav-
iors; in the other dataset, which is from Epinions, we take
the attributes as user’s selected skills (or interests). Another
difference between the attributes in the two datasets is the
repetition of attributes. Users in Gowalla can check-in to the
same places multiple times, while users in Epinions can select
different skills for their skillsets. The details of the datasets
are presented in section V-A. We use these datasets, and
evaluate our models.

A. DESCRIPTION OF THE DATASETS

We use two different types of multi-modal social network
datasets obtained from two platforms: Gowalla and Epinions.
Gowalla is a Location-Based Social Network (LBSN), where
users can check-in to places sharing with online friends. Users
can also make friendships with other users online. Epinions
is a review website, where users can leave reviews on various
consumer items. Epinions also allows users to establish a link
with other users by expressing trust or distrust. The summary
of each dataset is provided in Table 2.

TABLE 2. Summary of datasets.

Gowalla Epinions
Number of nodes (V) 196, 591 31,322
Number of total attributes (V) 1,280,969 587
Number of total links 950, 327 174,928 (positive)
Number of total selection 6,442,892 135,226

a: GOWALLA DATASET

One of the distinctive features of Gowalla dataset is the
check-in functionality. While most social network services
focus on online activities, LBSN allows users to share
off-line activities. This significant feature attracted a lot
of researchers from various domains. Gowalla dataset is

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

a multi-modal social network data consisting of two com-
ponents: friendship and check-ins. Friendship data is a con-
ventional social graph provided in the form of edge list that
describes the friendship between the pairs. Check-in data
contains detailed information of each check-in with the user
id, location id, timestamp, and the GPS-coordinate. As we
intend to illustrate the flexibility of CLSM and RECLSM
that adapt well within various multi-modal social network
datasets, we ignore the timestamp and the coordinate?.

b: EPINIONS DATASET

Epinions was one of the most active consumer review
site, which ended their service in 2014. Epinions dataset
has been widely used in various areas including trust-
network [31], [32] and recommender system [2], [33]-[35].
Users in Epinions can share their experiences on various
consumer items, and can also trust /distrust other users. Users
can also announce their skills in their profiles. The selected
skills for each user become binary representations over the
attributes, which capture their presence (0 or 1). Dataset
from [36] contains these features, which can be incorporated
in CLSM and RECLSM. We take the trust relationship as the
link information and the skills for each user for the attributes.

B. EXPERIMENTAL RESULTS AND ANALYSIS

Throughout our experiments, nl-highmem-8 with 8 vCPUs
and 52GB of memory Google Cloud platform instance is
used as a worker node. The instance is configured with
Spark 2.3.1. Our Spark implementation reads the edge list
and the attribute list directly from Google Cloud Storage into
RDD following the PySpark code in Section IV-A1l. In our
experiments, we evaluate the scalability of our model and its
predictive performances using the two datasets. Specifically,
when evaluating the scalability, we examine the execution
time of each iteration with respect to the number of communi-
ties, the number of worker nodes in a cluster, and the size of V
(number of total attributes). For evaluating the performance
of our model, we show the performance of prediction tasks
and also visualize the communities we found from the two
datasets.

1) MODEL SCALABILITY

In this section, we examine the model scalability respect to
various factors. We found the execution time of CLSM and
RECLSM is similar each other, and present the results from
CLSM; RECLSM is the extension of CLSM, which achieves
better performance in prediction tasks.

a: NUMBER OF COMMUNITIES

We first examine the model scalability respect to the com-
munity size K. The experiments with real-world datasets
have been performed on Spark cluster consisting of 5-nodes
(1 master - 4 workers) with varying K. We measure the
execution time in each iteration when updating the model

3coordinates will be used only for visualizing purposes.

VOLUME 7, 2019

until it converges. The average execution time is computed
for each case when K is set to 4, 16, 32, 64, and 100.
As shown in Figure 3, we observe the execution time for each
iteration grows as the dimension K grows. This is expected
considering the model complexity which is linear to the size
of K. However, the growth rate is faster than linear. This
can be mainly due to the computational overhead such as
communication between the workers or the broadcasting of
variables. We further investigate the overload issue in the
following section.

w
S
3

N
&
3
L]

~
S
S

,_.
°
3

I
3

#- Gowalla
—4— Epinions

Execution Time for Single Iteration (sec.)
G
3

[20 40 60 80 100 120
Community Size K

FIGURE 3. Execution time respect to the size of the community K.
A cluster consists of 4 workers each with 8vCPUs (n1-highmem-8).

b: COMPUTATIONAL BOTTLENECK

To further study the computational overhead, we examine
the case with the longest execution time in the previous
experiment (Gowalla dataset with K = 100). We break-down
the execution time into each process in a single iteration.
Figure 4 shows that the ‘model parameter update of @’ step
is the bottleneck for overall update equations within an iter-
ation. We believe this is due to the summation of the high
dimensional matrices (K x V) of the attributes, where the
size V corresponds to the total number of unique places in
Gowalla dataset.

= ~
& >
3 3

H
S
3

Execution Time (sec.)

Overall Model Local ~Compute Others Model
Parameter Update ~Perplexity Parameter
w T

FIGURE 4. Break-down of average execution time of each iteration on
Gowalla dataset with K fixed to 100.

To better understand the issue, we generate a set
of synthetic datasets with various V selecting from
100, 500, 1000, 5000, 10000, and 50000 for 10000 nodes
with K fixed to 100. The set of synthetic datasets allows
a fair comparison with varying V, as the number of edges
and the number of selected attributes can be controlled to
be kept under the level throughout the experiment. Further

27471

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

inspection revealed that when the dimension V increases,
the required computation time grows faster than linear. Note
that the x-axis in Figure 5 is in logarithmic scale. We
believe the high growth-rate is mainly due to the commu-
nication overhead between workers when summing the high
dimensional matrices. The current implementation of model
parameter @ update requires the summation of the full RDDs
which contains selected attributes from all the nodes. One can
achieve higher efficiency by only focusing on top-k attributes
considering the dimension is unnecessary enormous with
attributes seldom selected. Another approach to consider can
be the stochastic variational inference [37], which we leave
for future work.

~N
G

N
S

=
)

«

Execution Time for Single Iteration (sec.)
G
u

o

100

500
1000 4

5000
10000 4
500000 4

Attribute Size V

FIGURE 5. Average execution time for a single iteration with various
size V. Synthetic datasets with N = 10000, and K = 100 have been used
for the given experiments.

¢: FAULT TOLERANCE

Many machine learning algorithms including our’s requires
iterative updates. As shown in Algorithm 1, each RDD
depends on previous RDDs repeatedly until the model con-
verges. In Spark, when a node fails, the involved RDD
requires recomputing from the beginning by tracing all the
previous RDDs. When dealing with iterative processes, this
dramatically slows down the whole process. We can avoid this
risk by caching the intermediate results in each iterative step
using the cache function, where cache function allows RDD
to be saved in memory. Figure 6 summarizes how we achieve
a fault-tolerant system by caching RDDs in each iterative
step. If the RDDs are not cached regularly, the execution time
within a given step will grow as it proceeds. The execution

~
=3
<3

H
S
&

-
o
S

-®— with cache
—&— without cache

H
o
&

H
o
S

~
&

o
S

Execution Time for Single Iteration (sec.)

0 5 10 15 20 25
Iteration Index

FIGURE 6. Average execution time comparison for two cases: with and
without caching. The execution time is measured within each iterative
step, which is not the cumulatively time from the start. Synthetic data
with N = 10000, V = 50000, and K = 100 has been used on a cluster
with 1 master and 4 workers.

27472

time in Figure 6 is measured within each iterative steps up
to 25 comparing two approaches: one with caching and the
other without caching. Synthetic data has been used on a
Spark cluster configured with 1 master and 4 worker nodes.
Considering the execution time is measured within each step,
the cumulative time will grow quadratic as the model pro-
ceeds. By caching RDDs regularly, the execution time can be
remained stable across every step.

d: NUMBER OF WORKERS

Figure 7 illustrates how the execution time can be reduced by
increasing the number of worker nodes in a cluster. We only
increase the number of workers while keeping the same hard-
ware settings for each worker node(n1-highmem-8). We mea-
sure the execution time for two datasets by increasing the
workers from 4 to 8, 16, and 32. As expected, more workers
permit higher parallelism. However, the execution time is
reduced slowly when the number of workers gets large. This
can be due to the communications between workers, where
more workers lead to higher network traffic.

#- Gowalla
—4— Epinions

N
o
S

N
S
s

=
S
s

w
S

Execution Time for Single Iteration (sec.)
&
s
o

—

5 10 15 20 25 30 35
Number of Worker Nodes

FIGURE 7. Execution time respect to the number of workers in a cluster
when K is fixed to 100 on both datasets.

e: LOAD BALANCING

Our Spark implementation has been optimized by utilizing
the partition and repartition function. When dealing with
a skewed dataset, RDD should be partitioned well over
executors through shuffling. Our implementation distributes
the data well among the worker nodes following random
partitioning. In another effort to achieve higher efficiency,
we favor map Value function over map function on PairRDDs.
The mapValue function only transforms the value, whereas
map function transforms both key and value.

2) QUANTITATIVE EVALUATION ON REAL-WORLD DATASETS
Following the similar approaches from the previous studies,
we perform prediction tasks for evaluating the performance
of our model. In our previous work, we showed how CLSM
can perform challenging prediction on the given test user
solely based on other domain information. Link prediction
was performed solely based on the attributes; Attribute pre-
diction was performed solely based on the link information.
In this paper, we perform similar prediction tasks but based
on a different setting. For performing link prediction, we hide
10% of existing links and train the model with 90% of
link information and all the information about the attributes.

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

Similarly, for attribute prediction, we hide 10% of the selected
attributes, and train the model with 90% of attribute informa-
tion and all the link information. For both tasks, we perform
10-fold cross-validation approach.

a: LINK PREDICTION

The link prediction problem can be posed as a binary classi-
fication problem, where the label y(ny, np) € {0, 1} reflects
the existence of an edge between the given nodes within a
pair. AUC-ROC (Area Under Curve - Receiver Operating
Characteristic) which is widely used in various classification
problems have been used for evaluation. As shown in Fig 8§,
AUC-ROC measures the area under the curve of ROC which
plots the true positive rate against the false positive rate by
adjusting the threshold to various value. For all the pairs in the
test set, the existence of a link is hidden, and the probability of
a link is computed using E,[p(y(n1, n2)|0,,)]. By controlling
the threshold, the true positive rate and the false positive rate
can be computed with the pairs whose probability is above
the threshold. For quantitative measure, we use AUC-ROC
prediction tasks.

1.0

o
®

0.8

o
o

o
=

True Positive Rate
True Positive Rate

o
o

0.2

CLSM, AUC=0.91
—— RECLSM, AUC=0.925 0.0

CLSM, AUC=0.765
—— RECLSM, AUC=0.826

o
°

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

(@ (b)

FIGURE 8. Figures show the ROC, and the AUC-ROC for two datasets,
where K is set to 16. (a) Link prediction ROC for Gowalla. (b) Link
prediction ROC for Epinions.

For each dataset, we perform link prediction with two
models: CLSM and its extension: RECLSM. Each model
repeats the same prediction task only changing the number
of communities. The total number of communities (K) has
been set to 4, 16, 32, 64, and 100. The AUC-ROC for all
the experiments on the two datasets are presented in Table 3
which well summarizes the overall results.

TABLE 3. Link prediction performance.

AUC-ROC for each K

Dataset Model 16 32 64 100
Gowall CLSM 0.91 0.93 0.94 0942
OWald RECLSM 0925 0937 0943 0.946
.. CLSM 0.765 0.824 0.871 0.869
Epinions

RECLSM 0.826 094 0.928 0.938

Comparing the results of CLSM between the two datasets,
we observe Gowalla dataset always tend to have higher
AUC-ROC than Epinions’. We believe this is due to the
unique characteristic of LBSN that allows users to check-in
to their places and share it with their friends. The loca-
tion information is often considered as personal information

VOLUME 7, 2019

raising privacy concerns. To share their private informa-
tion, users at LBSN make friends more carefully than other
social platforms. Hence, the AUC-ROC is remarkably higher
for Gowalla dataset. On the other hand, Epinions users
make friends (or trust reviewers) more casually compared
to Gowalla users. Predicting links in Epinions should be
more challenging by nature, and this is exhibited in lower
AUC-ROC compared to that of Gowalla’s. RECLSM always
performs better than CLSM for all across K on both datasets.
The prediction tasks on Epinions show remarkable improve-
ment with RECLSM. In the review-trust network, the trust
relationship is usually established with reputable users.
RECLSM considers this phenomenon in the generative pro-
cess in the link generation, whereas CLSM always considers
the similarity of the sampled communities. However, we want
to stress that less significant improvement for Gowalla dataset
doesn’t mean RECLSM isn’t suitable for LBSN. The AUC-
ROC for Gowalla from CLSM was already too high allowing
less room for improvement.

b: ATTRIBUTE PREDICTION

We follow the same setup for attribute prediction on the two
datasets and evaluate our two models. Again, K has been set
to 4, 16, 32, 64, and 100. We predict the 10% of the hidden
attributes with all available information. Following the same
logic in link prediction, the predictive probability can be
computed using E,[p(W;,;|0,)], where the membership dis-
tribution can be estimated through the network information
and observed attributes. With the membership vectors and the
model parameters obtained from the training set, we perform
predictions on the places that will be visited or the skills that
will be selected. The overall results for these predictions are
provided in Table 4.

TABLE 4. Attribute prediction performance.

AUC-ROC for each K

Dataset Model 16 32 64 100
Gowalla CLSM 0925 0934 0935 0935
RECLSM 0929 0934 0936 0.937
.. CLSM 0.886 0.891 0.882 0.878
Epinions

RECLSM 0.905 0900 0.893 0.881

RECLSM always achieves higher AUC-ROC, except for
one case when the two models exhibit the same performance.
Compared to the link prediction, the attribute prediction has
high AUC scores. The base model, CLSM already achieves
high scores on both datasets; 0.925, 0.934, 0.935, and
0.935 AUCs are obtained for Gowalla; 0.886, 0.891, 0.882,
0.878 AUCs are obtained for Epinions. Considering these
high scores from CLSM, the improvement from RECLSM is
meaningful even the increase in number is smaller than that
of the link prediction. The overall increase of AUC-ROC on
attribute prediction using RECSLM reveal the effectiveness
of modeling the user reputation. This is interesting as the orig-
inal model has been extended in link generation specifically.

27473

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

RECSLM differentiates the links between the link generated
by reputation and the link generated by community structure.
By only focusing on the links generated by the community
structure and connecting them to the user attributes, the model
can discover more refined community structure that directly
reflects user attributes than CLSM.

3) QUALITATIVE EVALUATION ON REAL-WORLD DATASET
For this particular evaluation, as location information is easy
to visualize on the map, we focus on Gowalla dataset. Each
node can be assigned to its community through the inference
algorithm in RECLSM, and the frequent places for each
community (or topic) can be learned. These places will be
plotted on the map based on their geo-coordinates, which
has never been used throughout the inference and learning
process. Specifically, we set K to 64, where K is the total
number of communities (or topics) of our interest. The topic
size should be large enough considering the worldwide users,
but it shouldn’t be too large for manual inspection. We also
control K to smaller values for other insights in the later part
of the experiment.

a: VISUALIZING GOWALLA DATASET

We apply our model on Gowalla dataset with K fixed to 64,
infer the communities for each node, and find the favored
places for each community (or topic). 3 topics from 64 are
selected for visualization. Only 3 topics out of 64 are con-
sidered here as we can easily assign RGB values based on
the membership vector of size 3. From the results, we would
like to find: 1. whether RECLSM assigns membership vec-
tors according to network topology. 2. where frequent places
for each topic is located at. To find where the places are,
we use Google Maps API with each place’s latitude and lon-
gitude coordinate. The mixed-membership assumption which
is incorporated in our model allows the node to be assigned to
multiple memberships. Hence, we find the set of nodes that
belong to each community of three by comparing the highest
weight and the community of our interest. From Fig. 9a,
we observe that nodes with the same color are densely con-
nected while nodes of different colors are not. Fig. 9b shows
that the top favored 500 places from the three communities
form a city-level cluster, which indicates that the friendship
at Gowalla rarely goes above the city level with the given
community size of 64.

Another interesting observation we have in Fig. 9a is
that the clusters of nodes under the same community color
are not necessarily connected. For instance, three small
red clusters in the left top area in Fig. 9a are discon-
nected, yet have the same color. In the conventional MMSB,
when the size of the community is fixed small, the clusters
of nodes are randomly assigned to the same community.
However, RECLSM or CLSM examines the similarity in
attributes even when the nodes are not connected, and it
assigns the nodes under the same community when necessary.
The colored regions in Fig. 9b supports our expectancy;
If the assignments were random as in the conventional

27474

(b)

FIGURE 9. Randomly selected 3 communities from 64 for visualization.
Top (a) shows their network topology and bottom (b) shows their
corresponding frequent places.

MMSB, these regions could have been scattered forming
multiple clusters with the same color. This also shows how
RECLSM or CLSM fully uses the two modalities simultane-
ously and finds the shared latent topics.

b: MIXED MEMBERSHIP

In Figure 9a, we see majority of nodes exhibit pure RGB
color except some nodes. Some nodes have well-mixed mem-
bership vectors, and this has been reflected in colors. The
node in the center from the enlarged window has well-mixed
memberships of R and G. The value for RGB has been renor-
malized to a value between 0 and 255, where O is the darkest
and 255 is the brightest. RGB color value of the focused
node is [89.5, 110.1, 0]. This node happens to belong to other
community out of the 3 of our interest, so the sum of the
values is smaller than 255. In fact, all the nodes in dark color
are affiliated to other communities besides the three. In most
cases, non-pure colored nodes have high-degree, where the
size of the node represents the degree. However, high-degree
does not necessarily imply well-mixed membership.

We further inspect each community by examining the
purity of nodes. Each node can be assigned to its major
community by examining the index of the highest value in the
membership vector, where the K has been set to 64. For every
64 community, we also count the number of nodes of which
the membership vector value for the assigned community is

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

higher than 90%. These nodes above 90% are defined as pure
nodes. We can compare these numbers with the total number
of nodes that belong to the given community. Fig. 10a shows
the ratio of pure nodes to the total nodes for each community.
The users from the community with pure the most, tend
to visit certain places in Saudi Arabia, and Kuala Lumpur
in Malaysia. The users from these areas are less open to
other users from different communities; 85.30% of the users
only interact with themselves and their behavior is restricted
compared to others’. On the other hand, community 58 has
the least pure nodes, where the ratio is as low as 18.57%. As
shown in Fig. 10c, the frequent places are scattered across
major cities in the US and cities in Europe including London,
Gothenburg, and Stockholm. Based on the scattered places,
we believe nodes in this community have loose ties with the
geography. Other factors could have strongly affected the
community formation, such as location popularity.

0.8 A

0.7 |

0.6 1

0.5 A

0.4 A

0.3

0.2 1

0.1+

0.0

mmmmmmmmm RS 22

(a)

(®)

()

FIGURE 10. Proportion of pure nodes for each community and frequent
places of communities of our interest. Note that the community index
number itself does not have any meaning. Figure (a) shows community 57
is has the highest ratio of pure, and community 58 the lowest. Figure (b)
shows the frequent places of community 57, and (c) shows the frequent
places of community 58.

VOLUME 7, 2019

¢: NUMBER OF COMMUNITIES IN GOWALLA

The previous two analyses were conducted when the number
of topics K was fixed to 64. We control the number of topics
to 4,16, and 64. Note that we are not trying to find the
optimal number of communities; instead, we are interested in
analyzing the results from various granularity. Based on this
approach, we can find frequent places from the communities
for each granularity. Besides, we can track how the commu-
nities get split when moving to fine-scale inference.

We begin the analysis by setting the K = 4, which is
the smallest of the three. Compared to the previous infer-
ence when K was 64, we expect the high-lighted places in
the heat map to be broader as users are taking membership
from the smaller set. Fig. 11 shows the frequent places from
each community when K was set to 4. We can find that
the users from Gowalla have been well separated into four
groups. Fig. 11a shows that the users from one of the commu-
nity mostly visited Stockholm, the San Francisco Bay Area,
Orlando in Florida. Interestingly, with K set to 4, RECLSM
merged communities from different places far apart through
nodes that bridge two communities. From Fig. 11b, we can
infer the second community from the four is based in Austin.
In fact, Austin was one of the most active city in terms of
check-in, where the company Gowalla is based. Fig. 1lc
shows a community of which the users are mostly from
Gothenburg, multiple cities from Germany, and cities from
the US. The last community from the four frequented Malmo,
Oslo-Norway, London, Dallas, Oklahoma City, New York,
Washington as shown in Fig. 11d. We find that the cities from
Sweden form different communities as in Fig. 11a,11c,11d,
which is opposite from the case of Germany in Fig. 11c. This
is mainly because Sweden has the second highest number
of users follwed by the US [38], and RECLSM or CLSM
avoids any community to be skewed in the size of nodes.
Hence, users from Sweden starts to form a new community
across cities with enough amount of seeds rather than being
absorbed into the other community.

() (b)

(©) d)

FIGURE 11. Heat map of frequent places on Google Map when topic size
(or community size) is set to 4.

We further investigate the communities when the size
of communities (or topics) gets increased. Specifically,
we are interested to see how more fine-grained communities
are formed. The size of communities has been increased

27475

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

to 16 from 4, and the membership vectors of each node are
inferred based on the size 16 without any information from
the previous results when K was set to 4. In other words,
the inferred 16 communities are not 4 sub-communities from
the four previously found. Due to the space limit, we do not
present all the 16 communities, but present visualizations of
4 selected communities that are highly related to the commu-
nities found previously when K was set to 4. Based on two
series of inferences, each node has two main communities
for two cases: when K was set to 4, and when K was set to
16. For each case in Fig. 11 we tie with the most relevant
one from the sixteen. To find the most relevant community,
we collect nodes from each 4 case and see how those nodes
are assigned to its main clusters from 16 cases. Taking the
first community from the four as an example, most nodes are
assigned to community 15, we therefore choose community
15 for visualization (Fig. 12a). By examining the first and sec-
ond largest communities from our histogram, we were able to
confirm that two communities are based in San Francisco and
Stockholm which were previously together in Fig. 11a.

(2) (b)

(©) (d)

FIGURE 12. Heat map of frequent places on Google Map when topic size
(or community size) is set to 16. Four majority matching communities
from Fig. 11 are selected for visualization.

Following the same step, four communities obtained pre-
viously can be compared to its most matching communities
from the sixteen respectively. Here the most match merely
means the majority matching, and some can be split into mul-
tiple communities close to even. Fig. 12 has been arragned in
order for comparison with Fig. 11. Community in Fig. 12b is
now focused on Austin only removing smaller multiple clus-
ters in Fig. 11b. Fig. 12c is more highlighted in Gothenburg
and in Germany compared to the Fig. 11c. However, it still
has multiple areas with high weights, which is expected to
be reduced when the size of community gets larger. The
community in Fig. 12d is mostly based in London with some
users from Tokyo, where the users from two cities have been
connected online in Gowalla. Tokyo wasn’t visible when K
was set to 4 because these minority users have been outnum-
bered by other users in the heat map.

VI. CONCLUSIONS AND FUTURE WORK
In our previous study [21], we showed how CLSM effectively
predict links in social network and node attributes along

27476

multiple dimensions by fully using two modalities. This paper
extends CLSM in two ways: (i) we introduce Spark imple-
mentation of CLSM and performs parallel community detec-
tion on multi-modal social dataset on a cloud; (ii) we extend
CLSM by incorporating user reputation and describe links
that have been missed in network homophily framework. The
appealing feature of CLSM and RECLSM is that the infer-
ence algorithm can be easily fitted to Map-Reduce framework
for distributed computation. Specifically, we present our code
in Apache Spark, a widely used open-source for distributed
computing. We deploy our models on a commercial cloud for
evaluations on two predictive tasks using large-scale multi-
modal social dataset. Our results show RECLSM improves
our previous model both on link prediction and attribute
prediction. We plan to apply our model to other types of
multi-modal social dataset, where the dimension of modality
is higher than two.

APPENDIX
VARIATIONAL INFERENCE
Given the observation of the interaction network Y and user
behaviors wi.y = {wk}jlyzl, we are interested in inferring
the posterior distributions of the model’s latent variables,
pO1.n,Zy.n,ClY, wi.y) (where C is the collection of all
¢, of all nodes), as well as estimating the hyperparame-
ters n, &, k. A number of approximate inference algorithms
have been proposed in literature. We rely on variational
method [27] that approximates the posterior by a compu-
tationally tractable variational distribution with some free
variational parameters.

A factorized variational distribution over the latent vari-
ables q(01.n, Z1.n, C) is suggested as below:

q01.n,Z1.N, C)

N My
= 1_[Qdir(onDIn) l_[quI(c},’:llkl’q”)

n=1 m=1
N

X l—[Qmul(znl—mz |¢n1—>n2)Qmul(an <~y |¢n1 <—n2)9 (€))

ny,ny

where {y}, {A}, and {¢} are the variational parameters.
Similarly, for the distributions over the model’s parameters,
we also use factorized ¢(-) distributions, which are

Gveta(Br|Tk1, ko) and gair(@il p;).

Given the factorized variational distribution g(-), we next
bound the log likelihood of the observed data using Jensen’s
inequality. Specifically, we consider the so called evidence
lower bound (ELBO) defined as follows:

10gp(Y7 wl:N|ﬂ9 aa K) 2 E(¢s yv A')
£ Eyllogp(Y, Wwiv, 01:v, Zi:v, B, C, QIn, &, k)]

where we defined 2 as a collection of .

VOLUME 7, 2019

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

IEEE Access

The ELBO in Equation 2 is expanded as follows:
L= Z Eq[logp(y(nl , n2)|znl—>n27 Zni<ny, B]

ni,ny
+ > Eyl1og pZn, -y 0n,) + 10 Pz, <y 101,)]
ni,ny
+Y Y Egllogp(wamley), Q]
n m=1:M,

+ Z Z Eqy[log p(c)|Zy—., 2.)]

n m=1:M,
+) Eyllogp(@,la)]

+ > Eyllogp(Belm] + Y Eqyllog p(wy [K)]
k k

- Z Eyllog ¢(zy, —n, |¢n1%nz)

ny,n

+ log CI(an <~np |¢n1 <Ny)]

=3 " Eqllogq(ean)]

n m=1:M,

— D Eqllogq@aly,)]- 3)

The lower bound can be maximized using the coordinate
ascent algorithm. Toward that goal, we take the (partial)
derivatives of L(¢, y,A) with respect to the variational
parameters and set them to zero.

For y,,, the update equations are as follows:

Yok < 0+ Z Snow it Z D “)
n'#n n'#n
Similar reasoning leads to update equations for the param-
eters {¢} and {A}, with additional constraints that each com-
ponent of those vectors sum to 1. The corresponding update
equations are as follows:

¢n—>n’,k X CXp(Eq [log p(0,,,1)]
M’l

+ Eq4[log p(y(n, n")]+Ey[log l_[p(Wn’m)cnm,n/])’
m=1
&)
Ay o exp(Egllog p(Wy mlc), = D]), (6)

where the term n’ appearing in cﬁw, and X’;ﬂ, denotes
the index of ¢,_,, in Z, As with the indicator
vector z,_,,, €, should have only one component equal
to 1 setting all others to 0.

Note that the number of the parameters ¢,,_, ,/, and thus the
computational complexity of the update equations for Eq. 5,
is quadratic in the number of nodes, even when the network
is sparse. This is because the parameters are defined both for
links and non-links. To avoid this computational bottleneck,
we adopt an approximation technique [29], by assuming that
the parameters ¢,,_, . for non-links can be replaced by a single
mean-field parameter. Namely, let {¢,,_,.}" and {¢,_, .}~ be
the set of parameters for links and non-links, respectively,
and let (}5”_, be the average over the set {¢,_, }™. Within the
above mean field approximation, each element of {¢,_, .}~

VOLUME 7, 2019

is replaced by @,_, . Thus, the time complexity of algorithm
becomes linear in the number of existing links in the network.

Further gains in computational efficiency is achieved by
limiting the number of components in set Z,, to the number of
edges incident on node n, rather than having all the relations
in the set. This corresponds to reusing indicator variables
only when they have generated a link. Note also that now
Equation 4 does not require all the parameters {¢}, as the
parameters correspodning to non-links are replaced by J&,H,.

Finally, the update Equation 5 can be further simplified by
making the best use of the assortative property in aMMSB,
where only diagonal components of the block matrix are
being considered. Instead of updating K x K combinations
of ¢, _,,, and @,,_,, for alink between node n; and ny,
we can update only K parameters of by disregarding the inter-
community links. By incorporating the assortative property
for CLSM, we use the following update equation:

Oy —ny,k X exp(Eyllog p(0,, k) + log p(04, 1) + Br]

Mlll an
ny ny
+ Eq[log l_[p(vvnl,m)cm'n2 +10g 1_[p(an,m)cm’nl D,
m=1 m=1
@)
where we further use Eyllogp0,)] = ¥(Yur) —

VO, vur)s BglB]l = ¥(mk,1) — ¥(k,2) employing the
exponential family distribution property. As for the last terms
in Equation 7, we use the following equation:

My,
)11
Eqllog [| p(Waym)2]

m=1
My,
=Y hmm QAW = Do) =¥ pri)). (8)

m=1 r

The last terms in Eauation 7 show how the user attributes
are infused in the update equation. Compared to the updates
of {¢} in CLSM, the updates of {¢} in MMSB is more simple
by omitting the last two terms.

¢11|—>n2,k X eXp(EqUOgP(@n],k) + 10gp(9n2,k) +Bl. (9)

Let us now focus on variational distributions over the
model parameters By and wi, k = 1, .., K. We had previously
defined a Beta distribution gpeta(Bx | T1%, Tox) With variational
parameter T, To, and a Dirichlet distribution ggir(®;|p;)
with variational parameter p;. Here we omit the derivation
details and only present the final update equations for these
parameters:

Tk <M+ Y Bumk (10)

(ny,np)€link

Tok < 70+ Z

(n1,n2)€non-link

N M,
Pij < Kj+ Z Z l(Wn,m =J) Z ¢nn’,ixm,n" (1D

n’€link

¢nlﬁn2,k¢n2%n1,k,

n=1m=1

27477

IEEE Access

Y.-S. Cho: Parallel Community Detection in Multi-Modal Social Network With Apache Spark

Once the variational parameters are found, we can use them
to estimate the model parameters themselves. We note that as
an alternative approach, one can also derive explicit update
equations for the parameter w; directly, without using the
variational parameter p; in Equation 11. w; can be optimized
by introducing a Lagrange multiplier where we have the
update equation as follows:

N M,
Wjj X Z Z l(wn,m :]) Z ¢nn’,ixm,n“ (12)
n=1 m=1 n’ €link

However, for this case, extra caution is needed that guarantees
non-zero entities in any w;. This can be easily achieved
by using smoothing techniques such as Laplace smooth-
ing or pseudo-count smoothing [39].

REFERENCES

[1] H. Kautz, B. Selman, and M. Shah, “ReferralWeb: Combining social
networks and collaborative filtering,” Commun. ACM, vol. 40, no. 3,
pp. 63-66, Mar. 1997.

[2] H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: Social recommendation
using probabilistic matrix factorization,” in Proc. 17th ACM Conf. Inf.
Knowl. Manage., Oct. 2008, pp. 931-940.

[3] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy, “Make new friends,
but keep the old: Recommending people on social networking sites,” in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst., Apr. 2009, pp. 201-210.

[4] H.Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems
with social regularization,” in Proc. 4th ACM Int. Conf. Web Search Data
Mining, Feb. 2011, pp. 287-296.

[5] M. E. Hull, E. R. Farmer, and E. S. Perelman, ‘“Method and system for
customizing views of information associated with a social network user,”
US 7269590 B2, Sep. 11, 2007.

[6] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, “Personalized
recommendation in social tagging systems using hierarchical clustering,”
in Proc. ACM Conf. Recommender Syst., Oct. 2008, pp. 259-266.

[7] D. Carmel et al., “Personalized social search based on the user’s social
Network,” in Proc. 18th ACM Conf. Inf. Knowl. Manage., Nov. 2009,
pp. 1227-1236.

[8] D. G. Taylor, J. E. Lewin, and D. Strutton, ‘““Friends, fans, and followers:
Do Ads work on social Networks? How gender and age shape receptivity,”
J. Advertising Res., vol. 51, no. 1, pp. 258-275, Mar. 2011.

[9] C. E. Tucker, “Social networks, personalized advertising, and privacy
controls,” J. Marketing Res., vol. 51, no. 5, pp. 546-562, Oct. 2014.

[10] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Nat. Acad. Sci. United States Amer., vol. 99, no. 12,
pp. 7821-7826, Apr. 2002.

[11] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3-5, pp. 75-174, 2010.

[12] M. E. J. Newman, ‘“Modularity and community structure in networks,”
Nat. Acad. Sci. United States Amer., vol. 103, no. 23, pp. 8577-8582, 2006.

[13] J.Duch and A. Arenas, “Community detection in complex networks using
extremal optimization,” Phys. Rev. E, vol. 72, p. 027104, Aug. 2005.

[14] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining
and identifying communities in networks,” Nat. Acad. Sci. USA, vol. 101,
no. 9, pp. 2658-2663, 2004.

[15] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal mul-
tiscale complexity in networks,” Nature, vol. 466, no. 7307, pp. 761-764,
Jun. 2010.

[16] D.Liben-Nowell and J. Kleinberg, ““The link-prediction problem for social
networks,” J. Amer. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019-1031,
2007.

[17] L. Lu and T. Zhou, “Link prediction in complex networks: A survey,”
Phys. A, Stat. Mech. Appl., vol. 390, no. 6, pp. 1150-1170, Mar. 2011.

[18] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” in Proc. SDM06 Workshop Link Anal., Counter-
Terrorism Secur., Apr. 2006.

[19] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller, “Link prediction in rela-
tional data,” in Proc. Adv. Neural Inf. Process. Syst., 2004, pp. 659—666.

27478

(20]

(21]

[22]

[23]
[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]
(37]

(38]

(391

R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives

and methods in link prediction,” in Proc. 16th ACM SIGKDD Int. Conf.

Knowl. Discovery Data Mining, Jul. 2010, pp. 243-252.

Y.-S. Cho, G. Ver Steeg, E. Ferrara, and A. Galstyan, “Latent space

model for multi-modal social data,” in Proc. 25th Int. Conf. World

Wide Web. Geneva, Switzerland: Committee, Apr. 2016, pp. 447-458.

doi: 10.1145/2872427.2883031.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed member-

ship stochastic blockmodels,” J. Mach. Learn. Res., vol. 9, pp. 1981-2014,

Sep. 2008.

D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent Dirichlet allocation,”

J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003.

D. M. Blei, “Probabilistic topic models,” Commun. ACM, vol. 55, no. 4,

pp. 77-84, Apr. 2012.

R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen, “Joint latent

topic models for text and citations,” in Proc. 14th ACM SIGKDD Int. Conf.

Knowl. Discovery Data Mining, Aug. 2008, pp. 542-550.

J. Chang and D. M. Blei, “Relational topic models for document net-

works,” in Proc. 12th Int. Conf. Artif. Intell. Statist., Aug. 2009, pp. 81-88.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, ““An introduction to

variational methods for graphical models,” Mach. Learn., vol. 37, no. 2,

pp. 183-233, Nov. 1999.

E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:

User movement in location-based social networks,” in Proc. 17th

ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2011,

pp. 1082-1090.

P. Gopalan, D. M. Mimno, S. Gerrish, M. J. Freedman, and D. M. Blei,

“Scalable inference of overlapping communities,” in Proc. Adv. Neural

Inf. Process. Syst., 2012, pp. 2249-2257.

P. K. Gopalan and D. M. Blei, “Efficient discovery of overlapping

communities in massive networks,” Nat. Acad. Sci., vol. 110, no. 36,

pp. 14534-14539, Jul. 2013.

M. Richardson, R. Agrawal, and P. Domingos, ““Trust management for the

semantic web,” in Proc. Int. Semantic Web Conf., 2003, pp. 351-368.

J. Tang and H. Liu, Trust in Social Media, 1st ed. San Rafael, CA, USA:

Morgan Claypool Publishers, 2015.

M. Jamali and M. Ester, “Trustwalker: A random walk model for com-

bining trust-based and item-based recommendation,” in Proc. 15th ACM

SIGKDD Int. Conf. Knowl. Discovery Data Mining. New York, NY, USA:

ACM, Jun. 2009, pp. 397—406. doi: 10.1145/1557019.1557067.

J. Jamali and E. Martin, ““A matrix factorization technique with trust prop-

agation for recommendation in social networks,” in Proc. 4th ACM Conf.

Recommender Syst. New York, NY, USA: ACM, Sep. 2010, pp. 135-142.

doi: 10.1145/1864708.1864736.

S. Meyffret, E. Guillot, and L. Médini, and F. Laforest. (2012). RED:

A Rich Epinions Dataset for Recommender Systems. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-01010246

M. Zerva. Epinions Dataset. Accessed: Nov. 1, 2018. [Online]. Available:

http://cs.uoi.gr/~mzerva

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, ““Stochastic varia-

tional inference,” J. Mach. Learn. Res., vol. 14, pp. 1303—1347, 2013.

F. Comunello, Networked Sociability and Individualism: Technology for

Personal and Professional Relationships. Hershey, PA, USA: IGI Global,

2012.

D. Jurafsky and J. H. Martin, Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics

and Speech Recognition: United State (Prentice Hall Series in Artificial

Intelligence), 1st ed. Upper Saddle River, NJ, USA: Prentice Hall, 2000.
YOON-SIK CHO received the B.S. degree in
electrical engineering from Seoul National Univer-
sity, South Korea, in 2003, and the Ph.D. degree
in electrical engineering from the University of
Southern California, USA, in 2014. He was an
Academic Mentor for RIPS program with the
Institute for Pure and Applied Mathematics, Uni-
versity of California Los Angeles, and a Post-
doctoral Scholar with the Information Sciences
Institute, University of Southern California, before

he joined Sejong University. He is currently an Assistant Professor with the
Department of Data Science, Sejong University, South Korea. His research
interests include large-scale data science, social network analysis, and cloud
computing.

VOLUME 7, 2019

http://dx.doi.org/10.1145/2872427.2883031
http://dx.doi.org/10.1145/1557019.1557067
http://dx.doi.org/10.1145/1864708.1864736

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	CONSTRAINED LATENT SPACE MODEL
	GENERATIVE PROCESS OF CLSM

	PARALLEL CLSM
	PARALLEL PROCESS FOR VARIATIONAL INFERENCE
	DATA LOADING AND PREPROCESSING
	TRANSFERRING DATA INTO RDD AND CREATING RDDs FOR VARIATIONAL PARAMETERS
	HANDLING VARIATIONAL LOCAL PARAMETERS
	UPDATING VARIATIONAL LOCAL PARAMETERS
	UPDATING VARIATIONAL GLOBAL PARAMETERS
	UPDATING VARIATIONAL MODEL PARAMETERS

	CLSM WITH USER REPUTATION

	EXPERIMENTS
	DESCRIPTION OF THE DATASETS
	EXPERIMENTAL RESULTS AND ANALYSIS
	MODEL SCALABILITY
	QUANTITATIVE EVALUATION ON REAL-WORLD DATASETS
	QUALITATIVE EVALUATION ON REAL-WORLD DATASET

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YOON-SIK CHO

