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a b s t r a c t

Community structure is a common and important property of complex networks. The detection of
communities has great significance for understanding the function and organization of networks.
Generally, community detection can be formulated as a modularity optimization problem. However,
traditional modularity optimization based algorithms have the resolution limit that they may fail to find
communities which are smaller than a certain size. In this paper, we propose a cellular learning
automata based algorithm for detecting communities in complex networks. Our algorithm models the
whole network as an irregular cellular learning automata (ICLA) and reveals the optimal community
structure through the evolution of the cellular learning automata. By interacting with both the global
and local environments, our algorithm effectively solves the resolution limit problem of modularity
optimization. The experiments on both synthetic and real-world networks demonstrate that our
algorithm is effective and efficient at detecting community structure in complex networks.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world systems can be represented by complex net-
works, such as social networks, information networks, and biolo-
gical networks [1,2]. Community structure is considered to be a
common and important property of complex networks. A com-
munity can be generally described as a group of nodes with dense
internal connections and relatively sparse connections to other
groups [3–5]. Since communities in complex networks correspond
to the functional entities or units of the underlying systems,
detection of community structure can provide useful information
and important insights to understand the organization and func-
tion of complex systems [6].

Modularity is an important measure function used for evaluat-
ing the significance of community structure in the network, which
was introduced by Newman and Girvan [7]. On the basis of
modularity, community detection can be modeled as a modularity
optimization problem, which has been proven to be NP-hard. In
recent years, numerous optimization methods have been proposed
to solve the problem of community detection in complex net-
works, including FN [8], CNM [9], extremal optimization [10],
group search optimization [11] and genetic algorithm [12].

However, the researches by Fortunato and Barthélemy [13]
have shown that the optimization of modularity may fail to find
communities which are smaller than a certain size. This is
famously known as the resolution limit of modularity optimiza-
tion. To overcome the resolution limit, many other quality metrics
[14–17] have been proposed to discover community structure at
different scales. Most of these metrics need a tunable parameter to
determine the resolution level of community structure. Another
approach to solve the resolution limit is to formulate the commu-
nity detection as a multi-objective optimization problem. The
multi-objective optimization based algorithms [18–21] achieve
the Pareto optimal solutions by simultaneously optimizing multi-
ple objective functions that evaluate the community structure
from different perspectives.

Cellular learning automata (CLA) is a powerful mathematical
model for many decentralized problems and dynamic phenomena
by combining cellular automata (CA) and learning automata (LA)
[22]. Cellular learning automata can be defined as a class of
cellular automata where each cell is assigned with a learning
automaton. The basic idea of cellular learning automata is to adjust
the state transition probabilities of stochastic cellular automata
using learning automata. Cellular learning automata is superior to
cellular automata because the learning automata residing in the
cells provides the ability to learn. It is also superior to single
learning automaton because the learning automata residing in
different cells can interact with each other to produce complicated
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patterns [23]. Cellular learning automata has been successfully
applied in many fields, such as image processing [24,25], sensor
networks [26–28], numerical optimization [29–31] and sociologi-
cal analysis [32,33].

In this paper, we propose a cellular learning automata based
algorithm called CLA-net for detecting community structure in
complex networks. In our algorithm, the whole network is
modeled as an irregular cellular learning automata (ICLA), where
each node is equipped with a cell of cellular learning automata and
each cell is assigned with a learning automaton. Through the
interactions with both the global and local environments, the
cellular learning automata evolves and gradually reveals the
optimal community structure in the network. Our main contribu-
tions are summarized as follows:

1. We successfully introduce the cellular learning automata
to solve the problem of community detection in complex
networks.

2. Our algorithm solves the resolution limit of modularity opti-
mization through the interactions with both global and local
environments.

3. The tests on both synthetic and real-world networks demon-
strate the effectiveness and efficiency of our algorithm.

The rest of the paper is organized as follows. In Section 2, we
introduce the related background of community detection in
complex networks. Section 3 gives a brief review of the theory
of cellular learning automata. A detailed description of our pro-
posed cellular learning automata based algorithm is presented in
Section 4. The experimental results and discussions are reported in
Section 5. Finally, Section 6 gives the conclusion of this paper.

2. Related background

2.1. Definition of community structure

Community structure is a common and important property of
complex networks. Generally, a community can be defined as a
group of nodes with dense internal connections and relatively
sparse connections to the rest of the network. This notion is a kind
of ambiguous. A more explicit definition of community structure is
required when tackling the problem of community detection.
Here, we introduce several quantitative definitions of community
structure which are widely adopted in the community detection
literature.

Generally, a network can be represented by a simple graph
G¼ ðV ; EÞ, where V is the set of nodes and E¼ fði; jÞji; jAVg is the set
of edges between the nodes. The topology of the network is fully
specified by the adjacency matrix A, where Aij ¼ 1 if node i and
node j are directly connected and Aij ¼ 0 otherwise.

Radicchi et al. [34] proposed two local definitions of commu-
nity in a strong sense and a weak sense. Considering a subnetwork
C � G, to which node i belongs, the total degree of node i is split
into two contributions: ki ¼ kini ðCÞþkouti ðCÞ, where kini ðCÞ ¼∑jACAij

is the number of edges connecting node i to the nodes belonging
to subnetwork C and kouti ðCÞ ¼∑j=2CAij is clearly the number of
edges connecting node i towards the rest of the network. The
strong community is a subnetwork that satisfies the constraint:

kini ðCÞ4kouti ðCÞ; 8 iAC ð1Þ

In a strong community, each node has more connections within
the community than with the rest of the network. Compared with

strong community, weak community is under a relaxed constraint:

∑
iAC

kini ðCÞ4 ∑
iAC

kouti ðCÞ ð2Þ

Weak community requires that the sum of node degrees within
the community is larger than the sum of node degrees toward the
rest of the network. According to the definitions, a strong
community is also a weak community, whereas the converse is
not true.

Another definition of community structure was proposed by
Raghavan et al. [35]. This definition has been shown to be highly
accordant with the community structure in real-world networks
and it is also adopted in our proposed algorithm. Let Ω be the set
of existing communities in the network and jΩj denote the
number of communities. The total degree of any node i is split
into jΩj contributions: ki ¼∑CAΩkiðCÞ, where kiðCÞ ¼∑jACAij is the
number of edges between node i and the nodes belonging to
community C. Given a community C, the Raghavan definition can
be written as

kiðCÞZkiðC 0Þ; 8 iAC; 8C0AΩ ð3Þ
It is required that each node has no fewer connections within the
community it belongs to than it has with each of the other
communities. When there are only two communities in the net-
work, the Raghavan definition is approximately equivalent to the
definition of strong community. When the network contains more
than two communities, the constraint of Raghavan definition is
weaker than that of strong community.

2.2. Community detection

The goal of community detection is to find a partition that
could divide the network into the most significant communities.
Hence, community detection in complex network can be naturally
formulated as an optimization problem. For this purpose, Newman
and Girvan [7] proposed the concept of modularity, which has
become a widely used criterion for identifying community struc-
ture. The foundation of modularity is inspired by the idea that no
community structure is expected to be found in a random net-
work. By comparing the fraction of edges within the given
communities and the expected value of such fraction in a random
network, the modularity measures the significance of the com-
munity structure in the network. Formally, modularity can be
written as

Q ¼ 1
2m

∑
i;jAV

Aij�
kikj
2m

� �
δði; jÞ ð4Þ

where m is the number of edges in the network, Aij is the element
of the adjacency matrix for the network, ki is the degree of node i,
and δð�Þ is the extended Kronecker delta function, i.e., δði; jÞ ¼ 1 if
nodes i and j are in the same community; otherwise, δði; jÞ ¼ 0. The
term kikj=2m indicates the expected number of edges connecting
node i and node j in a random network of the same size and node
degree distribution. If the number of edges within communities is
greater than the expected number in a random network, the
modularity value Q would be greater than 0. Larger value of
modularity indicates more significant community structure in
the network.

On the basis of modularity, the community detection can be
equivalent to a modularity optimization problem. The search for
the optimal modularity has been proven to be an NP-hard problem
due to the fact that the number of possible partitions grows faster
than any power of the network size. Large numbers of optimiza-
tion methods have been proposed to solve the problem of
community detection in the network. Newman [8] proposed a
greedy algorithm FN that starts from a partition in which each
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node is a unique group and then repeatedly merges a pair of
groups with the largest gain of modularity. Clauset et al. [9]
utilized a sophisticated data structure to reduce the calculation
complexity of modularity and made the FN algorithm applicable to
large-scale networks. Duch and Arenas [10] presented a divisive
algorithm that optimizes the modularity using a heuristic search
based on the extremal optimization. Kumar and Jayaraman [11]
used the technique of group search optimization to reveal the
optimal community structure in real-world networks. Shang et al.
[12] proposed an improved genetic algorithm called MIGA to make
an approach to the largest modularity.

However, Fortunato and Barthélemy [13] have found that the
modularity optimization based algorithms may fail to find the
communities smaller than a certain size, which is determined by
the total size of the network and the degree of interconnectedness
between the communities. This is famously known as the resolu-
tion limit of modularity optimization. To overcome the resolution
limit, many other quality metrics have been proposed to evaluate
the community structure at different scales. Arenas et al. [14]
introduced a scale parameter into the modularity to tune the
resolution level. Li et al. [15] proposed a variant of modularity
called the Modularity Density to measure the significance of
community structure. Pizzuti [16] put forward the Community
Score (CS) criterion to guarantee highly intra-connected and
sparsely inter-connected communities. Lancichinetti et al. [17]
proposed the Community Fitness (CF) to determine the community
scales.

Another approach to solve the resolution limit is to formulate
the community detection as a multi-objective optimization pro-
blem. The multi-objective optimization based algorithms achieve
the Pareto optimal solutions by simultaneously optimizing multi-
ple objective functions that evaluate the community structure
from different perspectives. Shi et al. [18] decomposed Modularity
into two conflicting objective functions and optimize them using
the evolutionary algorithm PESA-II. Pizzuti [19] adopted Commu-
nity Score and Community Fitness as two objectives and used the
genetic algorithm NSGA-II to achieve optimal partitions. Gong
et al. [20] presented the algorithm MOEA/D-Net which optimizes
two conflicting objective functions decomposed from Modularity
Density. Gong et al. [21] also proposed several improvements of
the objective functions derived from Modularity Density.

3. Theory of cellular learning automata

In this section, cellular automata (CA) and learning automata
(LA) are briefly described first. Then, we introduce the theory of
cellular learning automata (CLA), which is the combination of
cellular automata and learning automata. Finally, a description of
irregular cellular learning automata (ICLA) is presented as an
extension of basic cellular learning automata.

3.1. Cellular automata

Cellular automata (CA) is a mathematical idealization of com-
plex systems constructed from large numbers of simple identical
components with local interactions [36]. Cellular automata is a
non-linear dynamic model characterized by discrete space and
time. A cellular automata consists of a regular lattice of identical
cells, each of which takes on a finite set of states. The local
environment of a cell is usually composed of the cell itself and
its neighboring cells. In each discrete time step, the cells of the
cellular automata update their states synchronously by interacting
with the local environments according to a local rule. The evolu-
tion of cellular automata is completely specified by the initial
states of the cells and the updating rule. Cellular automata can

produce complex patterns with simple structure, displaying the
potential to simulate different sophisticated natural systems.

3.2. Learning automata

Learning automaton is an adaptive decision-making model,
which attempts to learn the optimal action from a finite set of
allowable actions through a series of interactions with unknown
random environments [37].

The functionality of a learning automaton can be described in
terms of a sequence of repetitive feedback cycles in which the
learning automaton interacts with the environment. During a
cycle, the learning automaton chooses an action from its available
actions according to the probability distribution kept over the
action set. Then, the environment gives a response to the chosen
action, which can be either a reward or a penalty. At last, the
learning automaton updates the action probability distribution
depending on this response and the knowledge acquired in the
past cycles. The repetitions of the feedback cycles constitute the
learning process of learning automaton. This learning process
finally converges to the optimal action that maximizes the prob-
ability of being rewarded.

Learning automata can be classified into two categories: fixed
structure stochastic automata (FSSA) and variable structure sto-
chastic automata (VSSA). In the definition of VSSA, a learning
automaton can be completely defined by a quadruple ðα;β;p; TÞ,
where

� α¼ fα1;α2;…;αrg is the action set of learning automaton.
� β¼ fβ1;β2;…;βmg is the value set of the response from the
environment.

� p¼ ðp1; p2;…; prÞ is the action probability vector, where pi is the
probability of choosing action αi and satisfies ∑r

i ¼ 1pi ¼ 1.
� T is the learning algorithm that modifies the action probability
vector according to the response from the environment. The
update obeys pðtþ1Þ ¼ TðpðtÞ;αðtÞ;βðtÞÞ, where αðtÞ, βðtÞ and
pðtÞ are respectively the chosen action, the environment's
response and the action probability vector at cycle t.

The core factor of learning automata is the choice of the
learning algorithm T. The basic learning algorithm is the Linear
Reward Penalty Algorithm LRP. Let αi be the action chosen and β be
the response from the environment at cycle t. The action prob-
ability vector is updated according to Eq. (5) if the chosen action is
rewarded by the environment (β¼ 0), and it is updated according
to Eq. (6) if the chosen action is penalized ðβ¼ 1Þ:

pjðtþ1Þ ¼
pjðtÞþað1�pjðtÞÞ if j¼ i

ð1�aÞpjðtÞ if ja i

(
ð5Þ

pjðtþ1Þ ¼
ð1�bÞpjðtÞ if j¼ i

b
r�1

þð1�bÞpjðtÞ if ja i

8><
>: ð6Þ

where r is the cardinality of the action set, a and b are respectively
the reward and penalty parameters.

In order to increase the speed of convergence, Thathachar and
Sastry [33] introduced the concept of estimator by presenting a
Pursuit Algorithm denoted by CPRP. The CPRP pursues the action
that is currently estimated to be the optimal action. The current
optimal action is determined according to the estimate vector D̂,
which can be calculated as

D̂i ðtÞ ¼
WiðtÞ
ZiðtÞ

for i¼ 1;2;…; r ð7Þ

where Zi(t) is the number of times the action αi has been chosen
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up to cycle t, and Wi(t) is the number of times the action αi has
been rewarded up to cycle t. The action with the largest value of
D̂i ðtÞ is estimated to be the current optimal action for cycle t.
During each cycle, the CPRP firstly chooses an action from its
available actions according to the action probability vector. Then, if
the chosen action is either rewarded or penalized, the CPRP only
increases the probability of the current optimal action αm accord-
ing to the following equations:

pjðtþ1Þ ¼
pjðtÞþað1�pjðtÞÞ if j¼m

ð1�aÞpjðtÞ if jam

(
ð8Þ

where a is the reward parameter.
The CPRP algorithm is similar in design to the LRP algorithm, in the

sense that both algorithms modify the action probability vector
through interactions with the environment. The main difference lies
on the way they approach to the solution. The LRP moves the action
probability vector pðtÞ in the direction of the most recently rewarded
action, while the CPRP moves pðtÞ in the direction of the actionwhich
has the highest reward estimate [38]. More improvements in the
field of learning automata can be seen in [39–41].

3.3. Cellular learning automata

Cellular learning automata (CLA) is a powerful mathematical
model for many decentralized problems and dynamic phenomena
by combining cellular automata (CA) and learning automata (LA).
The basic idea of cellular learning automata is to adjust the state
transition probability of stochastic cellular automata using learn-
ing automata. Cellular learning automata can be simply defined as
a class of cellular automata where each cell is assigned with a
learning automaton. The learning automaton residing in a parti-
cular cell determines its state on the basis of its action probability
vector. The local environment of a learning automaton is com-
posed of the learning automata in the neighboring cells. Each
learning automaton attempts to learn the optimal action by
interacting with its local environment. With a lattice of such
learning automata, cellular learning automata is capable of produ-
cing complicated behavior patterns.

The mechanism of cellular learning automata can be described
as follows. At first, the internal states of every cell are specified.
The action probability vector of each learning automaton residing
in the cells is initialized on the basis of past experiences or at
random. Then, the learning automaton in each cell determines its
state according to the action probability vector and receives an
response from the local environment. Finally, the action probabil-
ity vector of every learning automaton is updated depending on
the environment's response. This process is repeated until the
optimal state of any cell is achieved.

Formally, d-dimensional cellular learning automata can be
represented by a structure A¼ ðZd;Φ; L;N; f Þ [23] where

� Zd is a lattice of cells. Each cell in the lattice is represented by a
d-tuple of integer numbers.

� Φ is the state set for the cellular learning automata.
� L is the set of learning automata each of which is assigned to a
cell of the cellular learning automata.

� N¼ fx1 ; x1 ;…; xm g is a finite set of integer numbers called
neighborhood vector, which determines the relative position
of the cells. The neighboring cells of a particular cell u are the
set of cells fuþxiji¼ 1;2;…;mg.

� f : Φm
-β is the local rule of the cellular learning automata,

where Φm is the states of the learning automata in the neighbor-
ing cells and β is the value set of the response. It computes the
response for each learning automaton according to the current
states of the learning automata in the neighboring cells.

Cellular learning automata can be classified into two categories:
synchronous cellular learning automata and asynchronous cellular
learning automata. In synchronous cellular learning automata, the
learning automata residing in the entire lattice of cells are activated
at the same time in parallel. For asynchronous cellular learning
automata, only some of the learning automata are activated inde-
pendently from each other at a given time.

In some practical applications, the interactions between cellu-
lar learning automata and external environments are also taken
into account. Such cellular learning automata is referred to as open
synchronous cellular learning automata (OSCLA) [42], in which the
evolution of cellular learning automata depends on not only local
environments (neighboring cells) but also external environments.
In [42], Beigy and Meybodi have found many important behavioral
properties of open synchronous cellular learning automata. Since
open synchronous cellular learning automata interacts with dif-
ferent kinds of environments, it can produce more complicated
patterns and behaviors.

3.4. Irregular cellular learning automata

Irregular cellular learning automata (ICLA) [43] is an extension
of basic cellular learning automata, in which the restriction of
rectangular lattice structure in basic cellular learning automata is
removed. This extension is due to the fact that many applications,
such as graph processing and network analysis, cannot be ade-
quately modeled in the form of rectangular lattice.

Irregular cellular learning automata can be described as an
undirected graph, where each node represents a cell which is
equipped with a learning automaton. The operations of irregular
cellular learning automata are approximately the same as those of
basic cellular learning automata. The main difference is that for
irregular cellular learning automata, the environment of a learning
automaton is constituted by the learning automata residing in the
neighbor nodes in the graph. Generally, irregular cellular learning
automata can be represented by a structure A¼ ðG;Φ; L; f Þ, where

� G¼ ðV ; EÞ is an undirected graph, where V is the set of nodes
and E is the set of edges. The graph determines the relative
position of the cells of irregular cellular learning automata.

� Φ is the state set for the irregular cellular learning automata.
� L is the set of learning automata each of which is assigned to a
cell of the irregular cellular learning automata.

� f : ΦNðiÞ
-β is the local rule of the irregular cellular learning

automata for each node i, where N(i) is the set of the neighbor
nodes of node i in graph G, ΦNðiÞ is the states of learning
automata in the neighbor nodes and β is the value set of the
response. It computes the response for each learning automa-
ton based on the current states of the learning automata
residing in the neighbor nodes.

4. Our proposed algorithm

In this section, we propose a cellular learning automata based
algorithm called CLA-net for detecting the community structure in
complex networks. In our proposed algorithm, the whole network
is modeled as an irregular cellular learning automata and the
optimal community structure is identified through the evolution
of the cellular learning automata. The details of our algorithm are
presented below. First, the solution representation for the problem
of community detection is introduced. Next, we describe the
construction of the cellular learning automata. Then, a detailed
description of the framework of the proposed CLA-net algorithm is
presented. At last, we make an analysis of the time complexity of
the proposed algorithm.
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4.1. Solution representation

Given a complex network G¼ ðV ; EÞ, the community struct-
ure can be generally represented by a membership vector C¼
ðc1; c2;…; cnÞ, where ci indicates the index of the community that
node i belongs to. However, the main drawback of membership
representation is that it requires prior knowledge of the number of
communities in the network.

In the CLA-net algorithm, we adopt the locus-based adjacency
representation proposed in [44] and employed by Pizzuti [16] for
community detection. In locus-based adjacency representation,
the solution is represented by a solution vector S¼ ðs1; s2;…; snÞ,
where si indicates that node i and node si are in the same
community. The solution vector only describes the edges rather
than the communities. A decoding process is necessary to fully
reveal the community structure in the network, which can be
done through a breadth-first search or a depth-first search in
linear time. After decoding, the solution vector is transferred into
the membership vector representing the community structure.
Fig. 1(a) shows a sample network with 14 nodes, which are divided
into three communities. A solution vector in locus-based adja-
cency representation and the corresponding membership vector
are respectively shown in Fig. 1(b) and (c).

The main advantage of locus-based adjacency representation is
that it can represent community structure with dynamic number
of communities. The number of communities is automatically
determined in the decoding process.

4.2. Solution construction

In the CLA-net, the whole network is modeled as an irregular
cellular learning automata. To construct such an irregular cellular
learning automata, each node in the network is equipped with a
cell of cellular learning automata, and then a learning automaton
is assigned to each cell. The state of each cell depends on the

current action chosen by the learning automaton residing in it. The
structure of a learning automata Li residing in node i can be
described by a 3-tuple ðα;β;pÞ, where

� αi ¼ fαi1;αi2;…;αirg ¼NðiÞ is the action set, where N(i) is the set
of the neighbor nodes of node i in the network.

� βi ¼ f0;1g is the value set of the response from the environ-
ment, where 0 and 1 respectively correspond to reward and
penalty.

� pi ¼ ðpi1; pi2;…; pirÞ is the action probability vector, where pij is
the probability of choosing action αij for learning automaton Li.

The solution vector is constituted by the states of the cells in
the entire network, namely the current actions chosen by all the
learning automata. Hence, at each cycle t, the solution vector can
be written as

SðtÞ ¼ ðα1ðtÞ;α2ðtÞ;…;αnðtÞÞ ð9Þ

where αiðtÞ is the action chosen by learning automata Li at cycle t.
The solution vector is updated along with the evolution of the
cellular learning automata.

4.3. Framework of the proposed algorithm

The CLA-net algorithm employs open synchronous cellular
learning automata (OSCLA) due to its powerful capability of
producing complicated patterns. The learning automata in the
entire network are activated simultaneously and each learning
automaton is influenced by both its local environment and the
global environment. The local environment of any learning auto-
maton is constituted by the learning automata in the neighbor
nodes and the global environment contains all the learning
automata in the network. The action probability vector of the
learning automaton is updated according to the response from the
environments using the CPRP algorithm. The interactions between
the learning automaton and the environments are shown in Fig. 2.

The procedure of the CLA-net algorithm is described as follows.
At each cycle t, each learning automaton chooses an action
according to its action probability vector. The actions of the
learning automata in the entire network constitute the solution
vector SðtÞ ¼ ðα1ðtÞ;α2ðtÞ;…;αnðtÞÞ. Through the decoding process,
the solution vector SðtÞ is transferred into the membership vector
CðtÞ ¼ ðc1ðtÞ; c2ðtÞ;…; cnðtÞÞ to represent the obtained community
structure. The global environment calculates the modularity Q(t)
for the current community structure in the network. The local
environment of each learning automaton records the communities
of the neighbor nodes in the network. For the learning automaton
in each node, it would receive a reward response when it
simultaneously satisfies the following conditions:

Fig. 1. (a) A sample network with three communities. Different communities are
rendered in different shapes; (b) a solution vector in locus-based adjacency
representation for the community structure; (c) the membership vector corre-
sponding to the community structure. Fig. 2. The interactions between the learning automaton and the environments.
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1. The modularity Q(t) of the current community structure is not
smaller than the best modularity Qbest in the past cycle.

2. The node satisfies the constraint of Raghavan definition of
community structure in Eq. (3), which requires the node to
have no fewer connections within its community than it has
with each of the other communities.

Otherwise, the learning automaton would receive a penalty
response. Then, for each learning automaton, the current opti-
mal action is determined according to Eq. (7) and the action
probability vector is updated according to Eq. (8). This process is
repeated until the obtained community structure remains fixed
in some consecutive cycles.

The interactions with the global environment guarantee that
the CLA-net algorithm makes an approach to the optimal mod-
ularity of the community structure. The interactions with the local
environment constrain the obtained community structure by
Raghavan definition. By interacting with these two different kinds
of environments, the CLA-net algorithm can effectively solve the
resolution limit problem of modularity optimization.

The main framework of the proposed CLA-net algorithm for
community detection in complex network is given below.

Algorithm. CLA-net.

Input
An�n: the adjacency matrix of the network G¼ ðV ; EÞ, where V is

the set of the nodes, E is the set of the edges connecting the
nodes and n¼ jV j is the number of nodes in the network.
Aij ¼ 1 if node i and node j are directly connected; otherwise,
Aij ¼ 0.

Parameters
a : the reward parameter for the update of the action

probability vector, where 0oao1.
Variables
ri: the number of the actions for learning automaton Li, which

is equal to the degree of node i in the network.
WijðtÞ: the number of times the jth action of learning

automaton Li has been rewarded up to cycle t , with 1r irn
and 1r jrri.

ZijðtÞ: the number of times the jth action of learning automaton
Li has been chosen up to cycle t , with 1r irn and 1r jrri.

Qbest: The largest modularity obtained in the past cycles.
Method
Initialization
Step 1: pij ¼ 1=ri, for 1r irn and 1r jrri.
Step 2: Initialize WijðtÞ, ZijðtÞ and Qbest by randomly choosing

the action for each learning automaton Li a small number of
times, with 1r irn and 1r jrri.

repeat
Step 3: Each learning automaton Li chooses an action αiðtÞ
according to its action probability vector piðtÞ, for 1r irn.
Step 4: The solution vector SðtÞ ¼ ðα1ðtÞ;α2ðtÞ;…;αnðtÞÞ is
transferred into the membership vector
CðtÞ ¼ ðc1ðtÞ; c2ðtÞ;…; cnðtÞÞ to represent the obtained
community structure through the decoding process.
Step 5: The global environment calculates the modularity
Q ðtÞ of the community structure represented by the
membership vector CðtÞ.
Step 6:
for each learning automaton Lið1r irnÞ do
if Q ðtÞZQbest and kiðciðtÞÞZkiðc0Þ; 8c0aciðtÞ then
The response from the environments βiðtÞ ¼ 0

else
The response from the environments βiðtÞ ¼ 1

end if

end for
Step 7: update Qbest ¼maxðQ ðtÞ;QbestÞ.
Step 8: For each learning automaton Lið1r irnÞ, given the
chosen action αiðtÞ ¼ αiq, update WiqðtÞ and ZiqðtÞ according
to the following equations:

WiqðtÞ ¼Wiqðt�1Þþð1�βiðtÞÞ
ZiqðtÞ ¼ Ziqðt�1Þþ1

8><
>:

Step 9: The current optimal action of each learning
automaton Li is estimated according to Eq. (7), for 1r irn.
Step 10: Update the action probability vector pi of each
learning automaton Li according to Eq. (8), for 1r irn.

until The obtained community structure remains fixed in some
consecutive cycles.

Output
The solution vector SðtÞ, the membership vector CðtÞ and the

corresponding community structure in the network.

4.4. Complexity analysis

We also make an analysis of the time complexity of the proposed
CLA-net algorithm. Let n and m respectively denote the number of
nodes and edges in the network. The average node degree is
therefore OðkÞ ¼ Oðm=nÞ. The main time complexity of the CLA-net
algorithm lies in Step 3, Step 5 and Step 6, since the other steps can
be accomplished in linear time O(n). Since the number of the actions
for each learning automaton is equal to the degree of the node in
the network, Step 3 needs OðkÞ � OðnÞ ¼ OðmÞ time to choose the
actions for all the learning automata. The calculation of modularity in
Step 5 costs O(m) time. It takes OðkÞ time to verify the constraint of
the Raghavan definition for each node, so that Step 6 needs OðkÞ �
OðnÞ ¼ OðmÞ time. According to the above analysis, the total time
complexity of the proposed CLA-net algorithm is O(Tm), where T is
the number of the cycles.

5. Experimental results and discussion

We have tested the proposed CLA-net algorithm on both
synthetic benchmark networks and real-world networks. The
performances of the CLA-net algorithm are compared with several
other community detection algorithms including CNM [9], MIGA
[12], Meme-net [45], GA-net [16], MOCD [18], MOGA-net [19] and
MOEA/D-net [20]. The experiments are implemented by MATLAB
2009b running on a PC with a 2.4 GHz processor and 3GB memory.

To evaluate the performances of different community detection
algorithms, we adopt Modularity [7] and Normalized Mutual
Information (NMI) [17] as the basic measures for the experiments
reported in this paper. Modularity Q evaluates the significance of
community structure in the network. The larger value of Q
indicates more internal connections within the communities than
would be expected by pure chance. Normalized Mutual Information
(NMI) is specially for the networks with known community
structure. It evaluates the similarity between real communities
and the communities obtained by the algorithms. The value of NMI
is between [0, 1] and the larger value indicates that the obtained
communities are more accordant with the real situation.

5.1. Synthetic networks

5.1.1. Evaluation on GN benchmark networks
We first do the experiments on GN benchmark networks

introduced by Girvan and Newman [46] to evaluate the accuracy
of the proposed algorithm. The GN benchmark network contains
128 nodes, which are divided into four communities with 32

Y. Zhao et al. / Neurocomputing 151 (2015) 1216–1226 1221



nodes each. The average degree of the nodes in the network is 16.
A critical mixing parameter λ is used to control the community
structure in the network. Each node shares a fraction 1�λ of
connections with the nodes in its community, and λ of connections
with the other nodes of the network. Smaller value of λ indicates
that the community structure in the network is more significant.
When λo0:5, the network has relatively strong communities; on
the contrary, the communities are rather indistinct. We vary the
mixing parameter λ from 0 to 0.5 with a span of 0.05 and test the
CLA-net algorithm on GN benchmark networks in comparison
with other algorithms. Since the built-in communities in bench-
mark networks are already known, we use the Normalized Mutual
Information (NMI) to evaluate the performances of different
community detection algorithms. Fig. 3 shows the performances
of different algorithms on GN benchmark networks, where each
data point is an average over 100 runs.

As shown in Fig. 3, when the mixing parameter λo0:3, almost
all the algorithms, except GA-net and MOGA-net, can find the
community structure corresponding to the correct partitions
(NMI� 1). When λ40:3, the community structure in the network
becomes indistinct, resulting in that the NMI of all the algorithms
begins to decrease. Our algorithm slightly outperforms the MIGA
and MOEA/D-net, and shows obvious advantages over the other
algorithms. Moreover, it can be seen that our algorithm CLA-net
always gives excellent results until the mixing parameter λ reaches
0.4, beyond which its performance deteriorates sharply. This
phenomenon is mainly due to the fact that some nodes in the
network no longer satisfy the constraint of the Raghavan defini-
tion for community structure when λ40:4, which would mislead
the evolution of the cellular learning automata in our algorithm.
From the results, we can see that the proposed CLA-net algorithm
has great performances on GN benchmark networks in most
situations.

5.1.2. Evaluation on LFR benchmark networks
The GN benchmark networks do not reflect some important

properties of real-world networks, like the power-law distribution
of node degrees and community sizes. Therefore, Lancichinetti
et al. [47] proposed the LFR benchmark networks, which are more
consistent with the properties of real-world networks. In LFR
benchmark networks, both node degrees and community sizes
follow the power-law distribution with exponents τ1 and τ2
respectively. The significance of the community structure depends
on a mixing parameter μ, which indicates the average fraction of

the connections to other communities per node. The benchmark
network with smaller mixing parameter μ has more significant
community structure.

We also apply the CLA-net algorithm on LFR benchmark net-
works along with other community detection algorithms. In our
experiments, the network size is set to 1000 and the power-law
exponents τ1 and τ2 are set to 2 and 1 respectively. The node
degree is between [0, 50] and has an average value of 20. The
community size is in the range from 10 to 50. Since some of the
algorithms can perform well even when the community structure
in LFR benchmark networks is indistinct, the mixing parameter
μ varies from 0 to 0.8 with a span of 0.05. The NMI is still used as
the measure to evaluate the performances of different algorithms.
We run every algorithm 100 times and the statistical results are
reported in Fig. 4.

Seen from Fig. 4, when the mixing parameter μo0:1, there is
no obvious difference among the results of all the algorithms. As
the mixing parameter μ increases, the performances of most
algorithms, except CLA-net, MIGA and Meme-net, decline shar-
ply. When μo0:5, our CLA-net algorithm can always find the
correct partitions of the benchmark networks (NMI� 1). The
performance of the CLA-net algorithm is in close proximity to
that of the MIGA and Meme-net, and is significantly superior to
the performances of other algorithms. As the mixing parameter
μ exceeds 0.5, some of the build-in communities no longer
satisfy the Raghavan definition, resulting in the sharp decline of
the performance of the CLA-net algorithm. When μ40:6, our
CLA-net algorithm is outperformed by the MOEA/D-net, but still
performs better than the other algorithms. The MOEA/D-net
decomposes the problem of community detection into a number
of scalar optimization subproblems in terms of different mea-
sures of community structure. The decomposition strategy has
been proven to be highly effective at finding evenly distributed
Pareto optimal solutions [48], so that it makes the MOEA/D-net
outperform the other algorithms when the community structure
in the network is indistinct. From the curves, we can draw the
conclusion that our algorithm can perform well on LFR bench-
mark networks in most situations.

5.1.3. Evaluation of resolution limit
In the proposed CLA-net algorithm, the cellular learning automata

makes an approach to the largest modularity of community structure
by interacting with the global environment. We also make a brief
experiment to verify whether our algorithm has resolution limit.

Fig. 3. The average NMI obtained by CLA-net, CNM, MIGA, Meme-net, GA-net,
MOCD, MOGA-net and MOEA/D-net on GN benchmark networks.

Fig. 4. The average NMI obtained by CLA-net, CNM, MIGA, Meme-net, GA-net,
MOCD, MOGA-net and MOEA/D-net on LFR benchmark networks.
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The test network contains 54 nodes and is composed of two
communities C1 and C2 with 50 and 4 nodes respectively. In each
community, a node is connected with all the other nodes in the
same community. The single edge connecting the two commu-
nities is between node u in community C1 and node v in
community C2. A schematic of the test network is shown in
Fig. 5. The modularity of the community structure in the network
is 0.00845. However, according to basic modularity optimization,
node u would be assigned to community C2, because this partition
of the network achieves a larger modularity value of 0.01203. This
phenomenon is precisely due to the resolution limit of modularity
optimization.

We run the proposed CLA-net algorithm in comparison with
the CNM and MIGA on the test network 1000 times. Since the CNM
and MIGA solely depend on the modularity optimization, they
always incorrectly identify node u as a member of community C2.
On the contrary, our CLA-net algorithm can always find the correct
communities in the network. The experimental results demon-
strate that our algorithm effectively solves the resolution limit of
modularity optimization.

5.2. Real-world networks

We also compare the proposed CLA-net algorithm with other
algorithms on several real-world networks which are widely used
in the community detection literature. General information of
these real-world networks is shown in Table 1. Since the commu-
nity structures of most real-world networks are unknown, mod-
ularity is used to measure the quality of the communities obtained
by the algorithms. The average performances of the CLA-net
algorithm alongside other algorithms on real-world networks are
shown in Table 2.

As shown in Table 2, the CLA-net algorithm can find the
community structure with the largest Q value on dolphin network,
football network and SFI network. It also has the best average
performances among all the algorithms on dolphin network and
football network.

For karate network, the MOGA-net and the MOEA/D-net
achieve the largest Q value. The modularity of the community
structure obtained by the CLA-net algorithm is only 0.001 smaller
than the largest value. This slight difference is due to the member-
ship of a fuzzy node. Since this node has equal connections to the
core nodes of two different communities, it can be either classified
to the first community or to the second one.

On netscience network and powergrid network, the performances
of MIGA and Meme-net are absent, since they are very time-
consuming and need too much time to converge. The CLA-net
algorithm is only inferior to the CNM, but outperforms the other
algorithms. The CNM shows obvious superiority over all the other
algorithms from the perspective of modularity. However, many small
communities in the network cannot be identified by the CNM due to
the resolution limit. Our algorithm finds about 350 communities in
netscience network and 600 communities in powergrid network,
while the CNM only identifies 215 communities in netscience network
and 40 communities in powergrid network. Therefore, our algorithm
can discover some small communities ignored by the CNM.

From the above experiments on real-world networks, we can
see that the CLA-net algorithm is promising and effective for
community detection in complex networks in real applications.

5.3. Evaluation of time complexity

Finally, we experimentally measure the time complexity of the
CLA-net algorithm. The execution time of the algorithm CLA-net is
compared with that of several other community detection algo-
rithms including GA-net, MOCD, MOGA-net, MOEA/D-net and
CNM. The MIGA and Meme-net are not involved in this experi-
ment because they are very time-consuming. For the GA-net,
MOCD, MOGA-net and MOEA/D-net, the population size is set to
100 and the maximum number of generation is set to 500. The LFR
benchmark networks are still used in our experiments. For the test
benchmark networks, the mixing parameter μ is set to 0.2, average
node degree is set to 20 and the community size is in the range
from 10 to 50. The number of edges in the network varies from
1000 to 10,000. The execution time and the iteration number of
the CLA-net algorithm on benchmark networks are shown in
Fig. 6, where each data point is an average over 10 networks.

As is shown from Fig. 6, the CNM exhibits the lowest time
complexity among all the algorithms in our experiments. Our CLA-
net algorithm is only inferior to the CNM and faster than the other
algorithms. The time of the CLA-net algorithm increases slightly
worse than linearly because the iteration number slowly increases
along with the number of edges. Therefore, the time complexity of
the CLA-net algorithm is in correspondence with the previous
analysis in Section 4.4.

Fig. 5. A schematic of the test network for the evaluation of resolution limit. In the
network, different communities are rendered in different shapes.

Table 1
General information of the real-world networks.

Network Description Node Edge

Karate Zachary's karate club [49] 34 78
Dolphins Lusseau's dolphins [50] 62 159
Football American College football union [46] 115 616
SFI Collaboration network of scientists at the Santa Fe Institute [46] 118 200
Netscience Coauthorship network of scientists working on network theory [51] 1589 2742
Powergrid The topology of the Power Grid of the United States [52] 4941 6594
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6. Conclusion

In this paper, we propose the CLA-net algorithm to solve the
problem of community detection in complex network. In our
algorithm, the whole network is modeled as an irregular cellular
learning automata (ICLA) and the solution is constituted by current
actions chosen by the learning automata in the network. At each
cycle, every learning automaton chooses an action depending on
its action probability vector and then updates the action prob-
ability vector according to the response from the environments
using the CPRP algorithm. Through a series of interactions with
both the global environment and the local environments, the
cellular learning automata makes an approach to the optimal
community structure without resolution limit.

The CLA-net algorithm introduces the cellular learning auto-
mata to solve the problem of community detection in complex
network. It requires no prior information about the network and
effectively solves the resolution limit of modularity optimization.
We test the CLA-net algorithm along with several other commu-
nity detection algorithms on both synthetic and real-world net-
works for comparison. The experimental results demonstrate the
effectiveness and efficiency of our proposed algorithm.

We only deal with disjoint communities in this paper. However,
many real-world networks, especially social networks, have over-
lapping community structure. In this case, a node may belong to
multiple communities. Therefore, extending the CLA-net

algorithm to overlapping community structure will be the focus
of our work in the future.
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