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Abstract: In many MapReduce applications, there is an unbalanced distribution of intermediate map-

outputs to the reducers. The partitioner determines the load on the reducers. The completion time for a 

MapReduce job is determined as the slowest reduce task. Under normal conditions assigning a huge 

amount of data to a task will increase the time required for completion. The current study presents an 

adaptive algorithm called LAHP (learning automata hash partitioner) that is based on a learning 

automata game for custom distribution of intermediate key-value pairs to reducers. In this algorithm, a 

learning automaton on every mapper node is set to control the load on the reducers. This leads to a 

learning automata game during the execution of a job. This algorithm can partition the intermediate 

key-value pairs arbitrarily regardless of the statistical distribution of input data and pre-processing. 

Using the Bonett-test at a confidence level of 95%, the standard deviation ratio of hash-to-LAHP was 

[0.1, 2858]. This means that LAHP showed much lower dispersion. The results show that the 

proposed algorithm can successfully distribute any custom load to reducers with an accuracy of over 

99% and can speed up the execution of popular applications more than four-fold. 

 

Keywords: Reduce Side Data Skew, Load Balancing, Partitioner, Learning Automata, MapReduce  

 

1. Introduction 

The amount of shared data on the Internet is constantly increasing and traditional processing systems 

are having trouble saving and processing data. A distributed system is required to handle this. The 

popular term which is used to describe this amount of data is big data [10]. The MapReduce [9] 

programming model saves and processes such data in distributed systems. The open-source 

MapReduce programming framework Apache Hadoop [1] is currently in use by Yahoo, Facebook and 

Google. Data skew often is produced because of the physical properties of objects (e.g. the height of 
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people distributed normally) and hot spots on subsets of an entire domain (e.g. word frequency in 

documents following a Zipf distribution) [8]. 

 

Data skew can occur in both the map and reduce phases. Because the chunk size is equal, the 

processing time of map tasks is approximately equivalent. The challenge is for unbalanced loads that 

are distributed to reducers. The size of the load processed by each reducer is determined by the 

partitioner function in the map phase. In Hadoop, the default partitioner is a hash function. While the 

statistical distribution of the keys is uniform, this function distributes the loads to reducers equally. In 

scientific applications, however, data does not always follow a uniform distribution [8]. Data is 

skewed in many real-world applications, including scientific applications, database operations such as 

Join, aggregation functions, search engine functions such as PageRank and invert index and simple 

applications like sort and grep [29].  

 

When a data skew exists, the load on the reducers becomes imbalanced and the job completion time 

becomes longer because the slowest reduce task in a MapReduce job determines its finish time. In 

other words, with the existence of data skew, Hadoop cannot make the best use of the ability of the 

reducers to reduce. Therefore, handling reducer side data skew is necessary in order to decrease the 

job execution time and improve system efficiency. 

 

Recent investigations on reducer side skew can be divided into two main categories. One is 

performing preliminary measures on the whole dataset or a small part of the input and extracting the 

statistical distribution of data and its frequency to achieve better partitioning for the main job [13, 29, 

33, 42]. The other is when the extraction is simultaneously performed in the map phase of the main 

job. The start time of the reduce phase in this case will be postponed to the end of all or part of the 

map tasks [8, 11, 14, 18, 27]. The preliminary work for extracting a statistical distribution of data and 

the lack of parallel execution in the map and reduce phases are considered to be weaknesses in this 

category, respectively. 

 

The present study introduces a new adaptive partitioning algorithm called learning automata hash 

partitioner (LAHP) that handles reduce side data skew by adding learning automata to each mapper 

node. In this algorithm, when the load detected on a reducer is greater than its portion, the learning 

automaton runs and selects another reducer. With the learning automata, there is no need for 

preprocessing of data. Furthermore, knowing the statistical distribution of the data in advance is 

unnecessary. This algorithm has been shown to adapt well to reducer diversity in computational 

capacity as well as different and a priori unknown user jobs. Also, the load on reducers can be 

determined during the execution time using a smart scheme. The LAHP map and reduce phases can 
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be run in parallel. Cluster splitting, which is used in LAHP, can significantly improve load balancing 

[8, 22, 24, 35, 40]. In summary, the main contributions of this research can be summarized as follows:  

 

 LAHP arbitrarily distributes intermediate keys among reducers regardless of the statistical 

distribution type without preprocessing, such as sampling of data, postponing shuffle time and 

reducing the concurrency of the map and reduce phases. 

  

 Heterogeneity is a common issue in data centers as related to the speed of hardware 

generation over time; however, LAHP has the ability to adapt itself to heterogeneous 

environments.  

 

 LAHP is implemented in Hadoop. Its performance was evaluated using popular benchmarks 

and it was compared with state-of-the-art algorithms. The experiment results show that LAHP 

can improve the job execution time by up to a factor of four in comparison with the default 

Hadoop partitioner. 

 

The rest of this paper is organized as follows: Section 2 discusses related studies. Section 3 briefly 

explains the MapReduce technique on Hadoop. Section 4 presents the learning automata. LAHP is 

proposed for partitioning in Section 5. Section 6 states the reasons that cause a cluster to split and the 

overhead of the second job is analyzed. Section 7 reports on the results of experiments done to 

evaluate the performance of LAHP. Section 8 presents the conclusion. 

2. Related work  

FP-Hadoop, which was introduced by Liroz-Gistau et al. [25], changed the Hadoop internal 

mechanism by defining a new phase called intermediate reduce with better process map outputs and 

overcome to data skew. The only difference between the map phase FP-Hadoop and Hadoop are that 

the map outputs of FP-Hadoop are managed under a set of intermediate reduce fragments used as 

inputs to the intermediate reduce phase. The algorithm introduced by Chen et al. [8] called LIBRA 

applies a new sampling method from map output during the mapping process. In LIBRA,  in order to 

achieve suitable precision during partitioning, shuffling should be started after 20% of the map tasks 

are finished. This algorithm supports total order. However, in LIBRA, the reduce phase is postponed 

to the end of sampling, which decreases the concurrency of the map and reduce phases. 

Gao et al. [13] introduced an algorithm called DLBA that consists of two phases and is based on the 

greedy algorithm PP. The first phase is a descending arrangement of all map tasks by size. To achieve 

this purpose, it uses a MapReduce job. In the next phase, based on the arrangement of the previous 

phase, the task will be assigned to the reducer with the minimum load. SkewTune was introduced by 
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Kwon et al. [22] to dynamically re-partition unprocessed data of a task if the remaining time is more 

than one minute and there is an idle node in the cluster. However, because SkewTune does not 

support cluster splitting, if there is a large cluster in the data, Skewtune cannot handle it and it works 

only in homogeneous environments.  

Lin [24] introduced a theoretical model to show the effect of Zipf distribution in MapReduce 

performance. Berlińska et al. [6] compared four algorithms for handling reducer side data skew under 

Zipf in MapReduce. The method introduced by Ramakrishnan et al. [33] estimates reducer load by 

sampling, splits big clusters and packs medium keys to try to balance the reducer load. Unlike other 

sampling algorithms that take the required sample size to be stationary, in this algorithm, the user 

defines a confidence interval. This algorithm requires user knowledge of the statistical distribution or 

sampling. It is not possible to run the original MapReduce until the sampling phase is complete. Also, 

this algorithm does not support heterogeneous environments.  

A survey of skew in MapReduce applications and mechanisms was carried out by Kwon et al. [21]. 

The algorithm proposed by Zhang et al. [44] was used to investigate skew caused by heterogeneous 

machines. It requires a history of job execution time in a heterogeneous environment. Smartjoin, 

introduced by Slagter et al. [35], considers network traffic when distributing loads on reducers for 

multiway join. Other researchers [5, 15, 29, 45] have introduced algorithms for handling skew for 

joins in the MapReduce programming model. 

Ibrahim et al. [19] introduced an algorithm called LEEN in which the shuffling start time is postponed 

to the end of all map tasks to obtain statistics about the keys and their frequency. Then, by using a 

heuristic method that considers the locality of keys and balancing the reducer load, it can distribute 

the keys between reducers.  LEEN, however, does not support concurrent execution of the map and 

reduce phases and works only in homogeneous environments. It also assumes that the data size of the 

key-value pairs is the same.  

Gufler et al. [17] developed a method in which the cost of the load that is distributed on reducers is 

estimated based on a cost model approximation. It uses two histograms for approximations called 

local and global. Sailfish [34] uses I-files to collect information about intermediate keys based on 

KFS [3]. It used them to optimize the number of reduce tasks and partition the keys to reducer 

workers. The straggler problem in a MapReduce job was investigated by Dean et al. [9]. The strategy 

was for a task to be identified as a speculative when the task progress falls behind the average 

progress of all tasks at a threshold. This strategy is usually effective for the map task; however, due to 

its high cost, using it for a reduce task is not effective. Memishi et al. [28] introduced three algorithms 

for detection and further solving of the straggler problem.  
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Li et al. [23] investigated a new parallel programming model for handling reducer side data skew 

which is called Map-Balance-Reduce. In this scheme, when the detected load on a reduce task is over 

60%, that reducer stops working and the remaining loads will be distributed fairly to other reducers. 

However, in this model, there is an overhead to stop the execution of the reducer and to distribute 

unprocessed data to other reducers. The model does not support heterogeneous environments.  

Tang et al. [37] introduced an algorithm called SCID to balance loads on the reducers in the Spark. In 

this method, a job for sampling must be run first. Then the size of the clusters are estimated based on 

sampling and the heavy clusters are identified. In the next step, the algorithm attempts to split the 

heavy clusters so that it can form the balanced load on the reducers. SCID does not support 

heterogeneous environments and the main job only can be run when the sampling is done and 

partitioning decision is made.  

Liu et al. [26] introduced a method for handling reducer side data skew in Spark streaming. C2WC 

was introduced by Xu et al. [43]. In this algorithm, before the original job is executed, a MapReduce 

job is run for sampling. After taking samples and the estimating cluster size, it sorts them in 

descending order. Then C2WC uses a heuristic method for cluster combinations and assign clusters to 

reducers. C2WC does not support heterogeneous environments and, when the data skew degree is 

high, it performs poorly.   

Recent approaches require modification in the Hadoop framework. Moreover, a large proportion of 

them are based on preprocessing and sampling.  LAHP, without sampling and Hadoop modification, 

can effectively distribute the load on the reducers and simply adapt itself to heterogeneous 

environments. Additionally, LAHP can handle any type of intermediate key skew. 

 

3. MapReduce Programming in Hadoop  

 

The MapReduce project in Hadoop includes the following classes: map, reduce, driver and one 

optional class called partitioner. Programmers in the map and reduce classes write a specific logic for 

the map and reduce operations present in the key-value pair model. In the driver class, programmers 

define the main function and job configuration settings. If the partitioner class is not defined, Hadoop 

uses a hash partitioner to distribute the intermediate map output to the reducers. Therefore, this 

function defines the load on the reducers. If reducers are placed on homogeneous machines and this 

function does not distribute the load on reducers equally, the resulting finish time of the job is 

determined by the slowest reducer or by the biggest load. The MapReduce is based on the divide and 

conquer approach [32]. Data processed in this framework is first saved on Hadoop distributed file 

systems (HDFS) in which data is divided into chunks of the same size that can be deployed on data 

nodes. Then, map phase begins and mapper nodes run map logic on each chunk [36]. Reduce phase 

will then start and its results will be saved on the distributed file system [36].  
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A brief explanation of the work basis of MapReduce on Hadoop 2 is as follows [41]: 

1. Job registration by a client;  

2. Assigning a unique ID for it and computing the number of input splits; 

3. Running YARN (yet another resource scheduler) by the resource manager and assigning and 

executing a container as AppMaster (application master);  

4. A) AppMaster asks for a container for each map task;  

B) Because the number of reducers is determined by the user, AppMaster requests containers 

equal to that number; 

5. Run map tasks and subsequently reduce tasks. By default, whenever 5% of the map tasks are 

complete Hadoop starts the shuffling process of the reduce phase.   

 

4. Learning Automata   

The learning automata [30, 31, 39], as shown in Fig. 1, are machines that deal with the random 

environment placed in them. A learning automaton has a limited set of actions. It examines the effects 

of its own previous actions that it randomly selects based on a probability distribution. This selection 

is made within the stored action-set in the environment and acquires favorability from the 

circumference response. When arriving at a specific conclusion, it updates the probability of various 

actions for selecting the best action for different criteria.  

The environment is shown as a triple *     + in which   is the environment input,   is the output and 

c is the set of penalty probabilities. The automaton, by performing action    with probability 

   receives a penalty from the environment. The environment is divided into the p-model, s-model and 

Q-model based on output value  . If the environment output is binary {0, 1}, it is a p-model in which 

zero and one are desirable actions and undesirable actions, respectively. If environment output is 

always in the range of [0, 1], it is a s-model. If it is discrete in [0, 1], it is a Q-model.  

Learning automata fall into two general families: fixed structure and variable structure. Variable 

structure learning automata are represented by a triple *     + in which   is the set of inputs,   is a 

set of actions and   is the learning algorithm (a recursive relation) used to modify the action 

probability vector. Let  ( ) denote an action that is chosen at the n moment and p(n) shows the 

corresponding action probability vector. Let a and b define the reward and penalty parameters, 

respectively, and let   ( ) be the action chosen by the automaton at the n moment. When the action 

taken is rewarded by the environment ( (n) = 0), action probability vector p(n) is updated using 

recursive Eq. (1), which is a linear learning algorithm. 
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  (   )  {
  ( )   [    ( )]          

  ( )     ( )                 
 (1) 

 

Similarly, in case of penalties,  (n) = 1, the updated formula would be:  

 

  (   )  {

  ( )(   )                                 

 

   
   ( )(   )                

 (2) 

 

In Eq. (2), r is the number of selected actions by the automaton. Based on the values of a and b, three 

types of learning algorithms have been defined. If the a=b then recurrence Eq. (1) and (2) is called 

linear reward penalty (LR−P) algorithm, if a ≫ b the given equations are called linear reward- penalty 

(LR− P) and finally if b = 0 they are called linear Reward-Inaction (LR−I). In the latter case, the action 

probability vectors remain unchanged when the taken action penalized by the environment. 

 

Fig. 1. Relationship between learning automata and its environment 

4.1 Variable action-set learning automata 

If the number of available actions at each instant changes over time, this learning automaton is called 

a variable action-set learning automaton (VLA) [38]. In this situation, if A is the set of all actions with 

n members, then  ( )    is a non-empty subset of actions with m members such that     (active 

actions) at time k in which the automaton can select one action randomly according to the scaled 

probability vector defined in Eq. (3).  

 

{
  ̂ ( )   

  ( )

 ( )  ∑   ( )
 
   

         ( )

  ̂ ( )                                              ( ) 

 (3) 

 

By receiving a reinforcement signal from the environment, the automaton only updates the probability 

of the active actions. After updating these probabilities, it is necessary to rescale the probability of 

every action in set B(k) as per Eq. (4).  

 

  (   )     ̂(   )   ( )        ( ) (4) 

Random Environment 

Learning Automata  

𝛽(𝑛) 

𝛼(𝑛) 
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4.2 Game of Learning Automata 

If a multi-automata system is viewed as players involved in a game, this configuration is called the 

game of learning automata [39, 40]. In such game, there are N automata that contribute to the game as 

N players. Each of these players independently chooses an action randomly according to its 

probability. These N actions are input into the environment and it responds to them with N random 

payoffs. In this scenario, the probability distribution of the action shows a mixed strategy used by the 

player at any given instant. By repeating the game, the automata can learn how to solve the game. In 

this configuration, the reinforcement signal received by each automaton depends on the actions 

chosen by all automata. 

The game can be run in two modes: synchronous and asynchronous. In the first, all players run at the 

same time and update their strategy at every play of the game. In the second mode, each player can 

change its strategy at any time or assess the playoff of its current strategy. This absence of synchrony 

is very common in distributed control systems in which time is continuous and the various elements 

of the system update their behavior separately [12].  

 

5. Our proposed Algorithm: Learning Automata Hash Partitioner (LAHP) 

The proposed adaptive partitioner algorithm is based on an asynchronous game of learning automata. 

As shown in Figure 2, the map phase in Hadoop has been divided into two subphases: mapping and 

partitioning.  

In the map phase, the mapper nodes begin processing preferably local data and save intermediate 

results in a circular buffer. When the size of this buffer reaches the threshold, the spill buffer to the 

local disk will start. Before spilling, the partition function calls to allocate key-value pairs to reducers 

for processing. The mapping operation is always prior to partitioning. The LAHP was designed based 

on this order. The notations used in this paper are summarized in Table 1. 

 

Fig. 2. Map phase includes two sub phases: Mapping and partitioning 

 

  

Mapper 

Mapping Partitioning 

P1      P2       P3 

Intermediate key-value pairs store in circular buffer Partitioning / Sorting / Spilling 
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5.1 Proposed Partitioning Algorithm  

To effectively partition a data set consisting of K keys on N reducers, the best solution in a space of 

   possible solutions must be found [19]. Given that all possible solutions are too many to explore, 

LAHP uses an automata–based approximation algorithm to solve the reducer side data skew problem. 

In LAHP, when data skew is detected during a job, a game of learning automata is used to distribute 

the load to the reducers. Each mapper has a learning automaton and contributes to the game as a 

player. Every player, based on the probability vector, chooses an action independently. Depending on 

the environment response of reward or penalty for the actions chosen by other automata, the player 

updates its probability vector. By repeating the game, each player learns to choose the optimal action 

from among all actions. The LAHP process is as follows: 

 

1- Each mapper has a learning automaton. In all automata, we define action-set as *          +, in 

which r is equal to the number of reducers. The action-probability vector of the learning 

automaton is specified as  ( )  *          +               and initializes them to 1/r. Let the 

reducer capability vector be    *              +   If all reducers are homogeneous 

machines, the capability values are assumed to be equal for all reducers. However, if the reducer 

machines are heterogeneous, the values depend on the capability of each machine. For example, if 

the load on machine A should be as twice as much on machine B, it is sufficient to set     

      .  

 

2- In this algorithm, we use r global counters {L1, L2, …, Lr}, in which r is the number of the 

reducers. These counters save the cost of the load placed on each reducer in order to acquire the 

amount of each reducer’s contribution based on LAHP. The initial value of these counters is zero.  

 

Table 1: The notation that used in this paper 

Name Description 

Li The Load placed on reducer i. 

KC Key Counter. 

A The number of Active reducers (actions, in VLA). 

H Reducer selected by Hash partitioner 

VLA  Variable action-set Learning Automata. 

TL Total present Loads distributed to all reducers 

F Frequent Interval. 

RP The Reducer portion from distributed loads. 

ALRTP Average ratio of active reducer load to the portion already distributed. 

RCi The Capability of Reducer i. 

MAPE Mean Absolute Percentage Error. 
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3- In the map or combiner function, for each output key, the relative reducer is determined by the 

array x=MapHash2LAHP [HashPartitioner
1
(key)] that will be described in step 4a, and its counter 

(Lx) will be added by the return value of the cost function (key, value, m, x) where m is the 

mapper number and x is the reducer number. In general, this function can compute various costs, 

such as those for communication and computation according to the application. 

 

4- The partitioning phase contains the following steps: 

a. For mapping, the reducer selected with a hash partitioner to LAHP considers local array 

MapHash2LAHP= {0, 1,…,r-1}  by size r in which r is equal to the number of reducers in 

each mapper. For job initialization, LAHP and the hash partitioner work similarly. 

However, during job progress, if the observed load cost of the reducer selected by the 

hash is greater than that of its portion (data skew), the learning automaton will run and 

select a reducer from among the other reducers that has less load than of its portions.   

                                                                        . 

            , -  {
       
        (5) 

b. Consider frequent intervals (F) for executing learning automata. These intervals have a 

direct relation to the job size. If the job is large, a larger period should be chosen and vice 

versa. In fact, this parameter determines the interval for choosing optimal actions in the 

automata to overcome data skew. When this interval is very small, other automata 

(players) do not have sufficient opportunity to respond to the strategy selected in the 

previous step. For large intervals, the automata do not have sufficient opportunity to 

choose an optimal action before the end of a job. Consequently, the load distribution will 

become unbalanced. 

 

c. Consider a local counter such as KC with an initial value of zero. This value increases by 

one when a key enters the partitioner.   

 

d. For an incoming key entering at a frequent interval (F), suppose H is the reducer selected 

by the hash partitioner for the key. 

 

e. The total load cost distributed to all reducers up to now must be calculated using to Eq. 

(6).  

   ∑  

 

   

 (6) 

                                                             
1 (key.hashcode() & integer.maxvalue)%the the number of reducers   
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f. If LH (load cost on reducer H up to now) is neither more than nor equal to its portion 

(RP(H)) × (1+threshold), set MapHash2LAHP[HashPartitioner(key)]=H and return H. 

RP(H) is computed using Eq. (7) and the threshold is the maximum percentage at which 

the load can be tolerated, otherwise data skew occurs and the learning automaton starts to 

select a reducer randomly according to probability. The following cases can occur: 

 

  ( )         ∑   

 

   

 (7) 

i. In the action set of this automaton, all reducers (such as H) that have a load 

cost greater than that of their portion   ( )   (           ) must be 

removed, as described in Sect. 4.1 on VLA. This increases the convergence 

rate and convergence speed of the automaton. Suppose the number of active 

reducers is equal to A. 

ii. The automaton selects a reducer such as i according to its (scaled) probability 

vector for all active actions (reducers). 

iii. Calculate the average dynamic load cost ratio of the active reducers 

according to their portions that have already been distributed and save it to 

      as computed using Eq. (8).   

       

∑
  

  ( )
 
   

 
 (8) 

 

iv. Because the most important purpose of handling reducer side data skew is 

for all reducers to finish their works almost simultaneously, if the ratio of 

reducer load cost to reducer portion 
  

  ( )
                   , action i 

gives a reward (   ) and otherwise it gives a penalty (   ). 

v. The reducer election probability should be updated using Eqs. (1) and (2).   

vi. Array MapHash2LAHP should be updated according to the reducer selected 

in step ii as follows:  

 MapHash2LAHP[HashPartitioner(key)]=i.  

This means that the load on the reducer selected by the hash partitioner is 

placed on the reducer which is selected by LAHP. This continues at least 

until the next frequent interval.  

vii. The learning automaton again enables the removed actions according to Eq. 

(4). 

viii. Return Ri. 
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g. Outside the frequent interval, operate as follows:  

                        (           )    ( )  

     MapHash2LAHP[HashPartitioner(key)]=H.  

       Return H. 

                   Else 

       Reducer = MapHash2LAHP[hashPartitoner(key)] is selected and returned. 

 

5.2 Pseudo Code for LAHP in MapReduce Applications  

The pseudo code for LAHP partitioner is presented below.  

 

Algorithm 1. LAHP partitioner.  

Inputs: 

            k: The key of key/value pairs for specifying reducer  

            r: The number of reducers  

Output: 

             Reducer number 

Assumptions 

1: Initialize r-dimensional action-set:   *          + with r actions. 

2: Initialize r-dimensional action-probability vector:  ( )  *          +  *
 

 
 
 

 
   

 

 
+  at 

instant n. 

3: Initialize r-dimensional vector    *             +  This vector defines the capability of 

each reducer, in homogeneous machines, it is assumed that all values are equal.  

4: Initialize F as a frequent interval. 

5: Initialize r-dimensional MapHash2LAHP={0,1,…,r-1}. 

6: Set r global counter {L1, L2, …, Ln} with zero initial value. 

7: In the map or combiner function for each output key, the relative reducer is determined 

according to x=MapHash2LAHP[HashPartitioner (k)] and its counter added by the return 

value of cost (key, value, m, x) function. 

8: Define a local counter by name such as KC with zero initial value. 

 

Begin 

1: increment KC.     

2: If  KC % F == 0  then 

3:     Set H= HashPartitioner(k) 

4:     Calculate the total load cost as the sum of loads cost that placed on all reducers until now 

          and save it into TL according to Eq. (6). 
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5:     i     (           )    ( )       

6:            In automaton action-set, all reducers such as H that have 

                     (           )    ( ) must be Removed and  

                  probability of remaining actions should be updated according to VLA Eq. (3).  

7:            Set A= the number of remaining actions (active action). 

8:            Automaton select an action or another word selects a reducer such as Ri  randomly 

                        according to its (scaled) probability vector of all active actions.  

9:            Compute         according to Eq. (8).  

10:                 
  

  ( )
              

11:                 Beta=0  

12:                 The selected action by learning automaton is rewarded according to Eq. (1). 

13:           Else  

14:                 Beta=1 

15:                 The selected action by learning automaton is penalized according to Eq. (2).      

16:           End If 

17:           MapHash2LAHP[hashpartitioner(k)] = Ri. 

18:           Learning automaton enables the removed actions again according to Eq. (4).  

19:           Return Ri. 

20:     Else  

21:          MapHash2LAHP[hashpartitioner(k)] = H. 

22:          Return H. 

23:     End If 

24: Else 

25:         i        ( )   (           )        

26:               MapHash2LAHP[hashpartitioner(k)] = H. 

27:                Return H 

28:         Else 

29:                Ri = MapHash2LAHP[hashpartitioner(k)]. 

30:                Return Ri 

31:       End If 

32: End If 

End 
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5.3 Time complexity analysis 

In this subsection, the time complexity of LAHP is analyzed by closely following the procedure for  

selection of a reducer for each key-value pair as received from map output. LAHP is separated in the 

following steps:  

1. In the frequent interval (lines 3 - 24), the following occur:  

i. Determine the reducer selected by the hash partitioner for the key received: O(1). 

ii. Calculate the total load cost: O(r).  

iii. Compare the load on the reducer selected in the step 1(i) by its portion: O(r).  

iv. If the result of the comparison in step 1(iii) is true, disable some actions: O(r).  

v. Update the probability vector of active actions: O(A).  

vi. Select an action: O(A). 

vii. Compute      : O(A).  

viii. Reward or penalize the selected action: O(A).  

ix. Enable the disabled actions: O(r). 

x. If the result of the comparison in step 1(iii) is false, update the array and return the 

selected reducer: O(1). 

2. Outside of the frequent interval (lines 25-32), LAHP computes the portion of reducer selected by 

the hash partitioner, compares it with its load and updates an array: O(r).  

The time complexity of LAHP is  ( )     *                                   +;  

therefore, the time complexity of LAHP for distributing m key-value pairs is  (   ).  

 

The time complexity of SCID [37] for cluster combination and splitting is  (   ) and this 

algorithm has time complexity  (   *   +) for dispatching a cluster for each key-value pair. 

Therefore, the time complexity of SCID for distributing m key-value pairs is  (   *        

  +) where r is the number of reducers and n is the number of clusters. The time complexity of 

C2WC [43] in the cluster combination by assuming use of a sorting algorithm with complexity 

      is  (   *            +) and in cluster dispatching using a linear search algorithm for 

each key-value pair is  ( ); therefore, the time complexity C2WC for distributing m key-value 

pairs is  (   *                +)  SCID and C2WC are based on sampling which requires a 

separate job to be run before the main job for the purpose of obtaining a variety of clusters and 

their sizes. LAHP can handle data skew in MapReduce without postponing shuffle time or 

requiring a preprocessing step such as sampling of data.  

 

6. Discussion about Cluster Split in LAHP and Integrative Job  

All keys with the same value are called a cluster. In the hash partitioner, all members of one cluster 

are sent to one reducer only. This is not necessary for the following reasons. 
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6.1 Cluster Split  

a. In applications such as sort, grep and total join, if all members of one cluster do not send data 

to one reducer only, there will be no disturbance in the final result [8]. In other words, mapper 

output can be sent to any reducer in this application [8].  

b. If members of some clusters are further away than others and those clusters map to only a 

small percentage of reducers, it will result in more load on those reducers compared to the 

others. Consequently, the slowest reducer will determine the job finish time. For example, 

suppose that the intermediate map output word count application includes three clusters having 

1000, 50 and 50 members. If we consider two reducers, the best load distribution that can be 

done without cluster splitting by partitioners is as follows:  

Reducer1: 1000 keys  

Reducer2: 50+50 keys 

As a result, the load on reducer1 is 10 times than that placed on reducer2. 

Gray et al. [16] classified aggregation functions to three groups: distributive, algebraic and holistic. 

Liroz-Gistau et al. [25] used this classification on reduce functions. For all distributive and algebraic 

reduce functions, LAHP can be used as a partitioner. It also can be used for some holistic reduce 

functions. LAHP always considers a cluster split. After the main job is finished using LAHP, an 

integrative job with a hash partitioner must be run in order to integrate the results. This does not apply 

to applications that do not  need to send all values of a cluster to one reducer only. The output of the 

main job is considered to be integrative job input. Mathematical analysis and implementation results 

show that the time required to run the second job is too short; thus, the execution time of both jobs 

(main and integrative job) is much less than one main job with a hash partitioner. 

For example, suppose that the intermediate map outputs of a job contain three unique clusters as 

described in section 5(1b). If the loads of the three clusters are distributed to two reducers fairly, in 

the optimal case, the load on each reducer will be 550 keys. However,  if the partitioner does not 

consider a cluster split, the best load distribution which can be done is 1000 keys for reducer1 and 100 

keys for reducer2. Therefore, in comparison with the optimal distribution, reducer1 must process an 

additional 450 keys. Although LAHP, in applications which must send all of the same keys to one 

reducer, must execute an additional job for integrating of the results, it consumes much less time in 

comparison with having the same main job with a hash partitioner. In this example, there are three 

unique keys A, B, C in which B and C are placed on reducer2. In the worst case in LAHP, at the end 

of the reduce phase, each reducer has one sample of each unique key. Therefore, the integrative job 

processing overhead on the reduce phase is max {two keys on reducer1, four keys on reducer2}. LAHP 

will totally process 550+4 keys. As a result, the load decreases at least 44.6% on reducer1. This 

example is shown in Table 2. 
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6.2 Integration Methods    

In order to integrate the results produced by LAHP, two methods can be considered. In the first 

method, without changing the Hadoop internal mechanism, it uses an extra job according to the hash 

partitioner which it applies to the output of LAHP for integrating the results of job1. In the second, an 

internal Hadoop mechanism is changed by defining two reducer functions. The first and second 

reducer functions are based on LAHP and the hash partitioner, respectively. In this method, after 

completion of all reduce tasks, the output of the first reduce function by the hash partitioner is sent to 

the appropriate reducer and second reduce function is run to integrate the results. In the current study, 

the first method was used. 

 

6.3 Integration Job  

This job must be defined according to the application. Here we introduce some applications and their 

integrative jobs.  

 

6.3.1 Count or Sum Application 

The integrative job for count or sum application. 

1: Map(k,v) 

2:      For each key in content do 

   Emit(k,v) 

Table 2. Job1 uses a partitioner with two reducers that does not do cluster split. Job2 uses LAHP with two reducers. Job3 is an 
integrative job, the input of which is the output of job2 and which the Hash partitioner distributes to two reducers. Note: cnt 
is an abbreviation for “count”. 

Job output Reducer input 

  

Intermediate map 

outputs  

Job # 

  (Exist data skew on reducers)   

      Reducer2 Reducer1 Reducer2 

 

 

 

Reducer1           

Jo
b

 1
 

  (Does not exist data skew (    

   

 

 

 

 

 

Jo
b

 2  

    

 

 

 

 

 

 

 

 

 

 

 
Jo

b
 3  

(In
teg

rativ
e) 

A, cnt=1000 

B, cnt=50 

C, cnt=50 

  

A, cnt=2 

B, cnt=2 

C, cnt=2 

  

 

A, cnt=500 
B, cnt=25 
C, cnt=25 

 

A, cnt=500 
B, cnt=25 
C, cnt=25 

 

A, value 
B, value 
C, value 

 A, value 
B, value 
C, value 

B, cnt=50 

C, cnt=50 

 

A, cnt=1000 
B, value 
C, value 

 A, value  

B, cnt=2 

C, cnt=2 

 

A, cnt=2 A, value 
B, value 
C, value 

A, cnt=1000 
B, cnt=50 
C, cnt=50 
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3:      End  

4: Reduce(k,list v) 

5:       S=0 

6:       For each member in list v such as u do 

      S+=u.value  

7:       End  

8:       Emit (k,s) 

 

6.3.2 Min or Max Application 

The integrative job for min or max application. 

1: Map(k,v) 

2:     For each key in content do 

3:         Emit(k,v) 

4:     End  

5: Reduce(k,list v) 

6:     In list v find min or max and save it in min or max 

7:     Emit (k, min or max) 

 

6.3.3 Avg Application 

The integrative job for avg application. 

1: Map(k,v) 

2:     For each key in content do 

3:         Emit(k,v) 

4:     End  

5: Reduce(k,mixed list v include sum and count) 

6:     For each member in list v such as u do 

       S+=u.sum  

       count+=u.count 

7:     End  

8:     Emit (k,s/count) 

 

 

6.4 Integrative Job Complexity Analysis 

The complexity of the integrative job is analyzed below.  
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Theorem 1. In the worst case, the overhead of the integrative job is equal to the required processing 

cost of the unique keys of the main job. 

 

Proof. Suppose that the total number of keys which must be processed by the main job is equal to n 

and the number of unique keys in this job is m such that m<<n and r is the number of reducers. 

Because the number of distinct keys is m, after executing the main job, there will exist in each reducer 

one delegate for each key. In the worst case, LAHP produces m unique keys in every reducer. 

Consequently, the total number of keys that an integrative job must process in the worst case is equal 

to r×m. Using a hash partitioner, the contribution of each reducer is approximately equal to m keys. 

The cost required for processing r×m keys is equal to the approximate processing cost of m keys. 

7. Performance Evaluation 

LAHP was implemented on Hadoop 2.7.1. The experimental setup, including the experimental 

platform, datasets and queries are first discussed. Next, the results of tests done to study LAHP 

performance in different situations is discussed. 

7.1 Setup  

Experiments were run on a cluster with seven virtual machines on an HP Proliant DL580G7 server 

(KVM as the hypervisor) [20]. Table 3 shows the properties of the machines. 

Table 3. The properties of seven machines. 
OS HDD Ram CPU # Type 

Ubuntu 16.04 LTS 30GB 12 GB Intel® Xeon CPU E7-4870 30 

MB SmartCache 4 CPU – 2 

core per CPU 

1 Master 

// // // // 6 Worker 

 

All experiments used the default configuration in the Hadoop. Linear learning scheme LR-P with equal 

reward and penalty parameters values of 0.015 were used in all experiments. Because the 

implementation platform was limited and the hard disks of the machines had limited space, no 

combiner function was used in the experiments, which allowed a better examination of the 

performance of LAHP.  

It is assumed that the return value of the cost function for each key-value pair is 1 and the threshold is 

set to 1%. Synthetic and real datasets were used to evaluate LAHP and three benchmarks were used: 

word count, grep and inverted index. The synthetic dataset was generated using a zeta distribution 

(Zipf) with the value of   being 0.5 to 5.0. The real dataset was downloaded from [2]. All 

experiments were conducted five times and the average results are reported. The probability density 

function for the zeta distribution is:  
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 ( )  
 

  ∑ (  ⁄ )
  

   

                                             (9) 

 

LAHP was compared with the following algorithms: 

 Hash: a default partitioner used in Hadoop and Spark for partitioning [4]. 

 SkewTune: During the job execution time, it detects a straggler node and distributes the 

remaining loads among other nodes [22]. 

 SCID: Before the main job, a sampling job is run. After estimating a variety of clusters and 

sizes, SCID try to overcome data skew by cluster combination and cluster splitting [37]. 

 C2WC: Uses a heuristic method for cluster combination after sampling by a separate 

MapReduce job [43]. 

 

7.2 Criteria of Evaluation  

To compare LAHP with the algorithms in subsection 7.1, the following criteria were used: 

 Job runtime: This parameter is equal to the job finish time – job start time. 

 Reduce time: This parameter is equal to reduce finish time – shuffle start time. 

 Percentage of load on each reducer: To compute this parameter it is sufficient to calculate 

            

          
 and multiple it by 100 . 

 Coefficient of variation of the distributed load (COV): COV is a common measurement for 

data skew, which is computed as 
      (    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

   (    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )
, where        is standard deviation and load 

is a vector that includes the load placed on each reducer.  

7.3 Experimental Results 

This section is divided into two parts. Part one reports on the results on the synthetic dataset. In part 

two the results for the real dataset are shown.  

7.3.1 Experiments on Synthetic Dataset 

In all experiments, the 4.2-GB synthetic dataset produced by a Zipf distribution was used. 

 

Experiment 1: In this experiment,       was set for generating the dataset. The number of reducers 

changed from 2 to 12 and the word count benchmark was run by LAHP and other algorithms. Fig. 3 

shows that the job execution time by LAHP outperformed the others at any number of reducers. When 

extreme skew existed in the input data, Hash, SkewTune and C2WC performed badly because an 

increasing the number of reducers did not have a considerable effect on job execution time. The 

execution time decreased substantially for LAHP and SCID by increasing the number of reducers. 

Because C2WC is based on sampling and cluster combination, when the data skew was high, C2WC 

could not handle it using cluster combination. In this algorithm, the startup of the main job was 
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postponed to the completion of sampling and partition decision making. For this reason, the job 

execution time by C2WC was higher than for Hash at a higher degree of skew. SkewTune has extra 

overhead, such as resource competition, and does not support cluster splitting. 

 

Fig. 3. Varying reducer number 

Fig. 4 shows the elapsed time for 12 reducers. In Hash, SkewTune and C2WC, one reducer took a 

much longer time because of data skew, whereas, in LAHP, all reducers took approximately the same 

amount of time. Because SCID is also based on cluster splitting, it worked better than Hash, C2WC 

and SkewTune; however, the elapsed reducer time shows variations because the loads on the reducers 

were not equal. The loads placed on 12 and 6 reducers are shown in Figs. 5(a) and 5(b), respectively. 

Clearly, using LAHP, the load percentage of each reducer was approximately 
   

  
 and 

   

 
  respectively, and there was no data skew on the reducers. In Hash, C2WC and SkewTune, almost 

96% of the load was placed on reducer1. 

 

Fig. 4. Elapsed reducer time 
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Fig. 5 a. Percentage of load placed on 12 reducers; b. Percentage of load placed on 6 reducers. 

 

The COV of the loads placed on reducers by different algorithms is shown in Fig. 6. This parameter 

measures the ratio of standard deviation to mean. A larger coefficient indicates heavier skew. As 

shown, this ratio for LAHP using 12 reducers was only 0.005, while the COV for Hash was 3.1893. 

The optimal value of COV in homogenous environments is zero, which indicates that the load has 

been distributed among reducers quite fairly. After LAHP, SCID performed better than the others 

because this algorithm is also supported cluster splitting.  

 

Fig. 6. Coefficient of variation versus number of reducers 

Experiment 2: In this experiment, to evaluate the performance of LAHP for different amounts of 

skew, a 4.2 GB synthetic dataset with a Zipf distribution was used and the values of σ from 0.5 to 5.0 

controlled the degree of skew. A larger value of σ means a heavier skew. In this test, the number of 

reducers was set to 12. The job execution time is shown in Fig. 7. It is clear that skew had a 

significant impact on hash, C2WC and SkewTune, whereas LAHP was skew-protected and performed 

better than the others. The job execution time for LAHP at       (light skew) was slightly more 

0

20

40

60

80

100

1 2 3 4 5 6

Lo
ad

%
 

b. 6 Reducers 

Load placed on reducers 

Hash LAHP Skewtune C2WC SCID

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

Lo
ad

%
 

a. 12 Reducers 

Load placed on reducers 

Hash LAHP Skewtune C2WC SCID

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

2reducer 6reducer 12reducer

C
O

V
 

Number of reducers 

Coefficient of varaition 

Hash LAHP Skewtune C2WC SCID



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22 
 

than for Hash, SkewTune and C2WC because it required additional work to select the best reducer 

and integrative job. At a heavier skew, the job execution time by LAHP was approximately 25% that 

of Hash (       
    

    
   ). 

 

Fig. 7. Job execution time versus    

The COV for LAHP and the other algorithms at different values of   are shown in Fig. 8. LAHP, for 

all degrees of skew had a near-zero COV (0.003, 0.006), whereas, in Hash, C2WC and SkewTune, as 

the degree of skew increased, the COV grew rapidly. The COV of SCID was lower than for Hash, 

C2WC and SkewTune; however, LAHP had the lowest COV.  

 

Fig. 8. Coefficient of variation versus    

Experiment 3: In the heterogeneity test, σ = 0.5 (light skew) because the goal of this test was to 

evaluate LAHP for placement of various amount of loads on reducers. Suppose six reducers with 

40%, 7%, 13%, 20%, 15% and 5% of loading are expected, the experimental results are depicted in 

Fig. 9. LAHP had the best results for this test; demonstrating that it is a flexible algorithm which can 
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work well in a heterogeneous environment. The MAPE and accuracy were calculated according to 

according to Eqs. (10) and (11), respectively.     is the percentage of expected load and     is the 

percentage of actual load on reducer i.  

     
∑

|       |     
   

 
   

 
 (10) 

 

                             (11) 

 

In this Experiment MAPE and accuracy are computed as follow: 

 

            

 

                 

The experiment was repeated 10 times with different expected loads for each reducer and an average 

accuracy of 99.1% was obtained.  

 

Fig. 9. Heterogeneity load on six reducers 

Experiment 4: In this experiment, we ran the word count benchmark using LAHP and the Hash 

partitioner in different situations by varying   and the number of reducers and by computing the 

COV. The results are shown in Table 4. The table shows that, at all values of   with any number of 

reducer, the LAHP COV was significantly lower than the Hash COV. At a heavier skew of   = 5 

using 12 reducers, the LAHP COV was only 0.00253 while the Hash COV was 3.331. At every  , the 

Hash COV was directly related to the number of reducers whereas LAHP COV was approximately 

fixed for all variations. 
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Experiment 5: The value of σ was set at 5 and a 4.7-GB synthetic data set was generated. By varying 

the number of reducers, the performance of the word count, inverted index and grep benchmarks were 

evaluated for the Hash partitioner and LAHP. The results of this test are shown in Fig. 10. Clearly, for 

all three applications and every number of reducer, the job finish time for LAHP was much lower than 

for Hash. Furthermore, increasing the number of reducers decreased the job finish time of the LAHP, 

whereas the job finish time for Hash showed no appreciable change. 

 

Fig. 10. Comparison of applications versus the number of reducers 

 

7.3.2 Experiments on Real Dataset 

 

We evaluated the use of LAHP on a 4.1 GB real dataset [2].  

 

Experiment 6. The word count benchmark was run for LAHP and the Hash partitioner. The number 

of reducers was set at 4. As shown in Fig. 11, the load distribution by LAHP for each reducer was 

very close to optimal. The job execution time and COV of this experiment are shown in Table 5. It is 

clear that the job execution time and COV for LAHP were lower than for Hash. 

Table 4. Hash and LAHP COV on different    and number of reducers 

 2 reducers  6 reducers  12 reducers 

  Hash LAHP  Hash LAHP            Hash LAHP 

0.5 0.001138 0.00006  0.002797 0.000908  0.004800 0.004920000 

1 0.079305 0.00002  0.173382 0.000657  0.275201 0.003822279 

2 0.707142 0.00003  1.397555 0.000952  2.071223 0.003902856 

3 1.060683 0.00005  1.977513 0.000749  2.852716 0.004215653 

4 1.237429 0.00002  2.230974 0.001159  3.182849 0.004318502 

5 1.325852 0.00001  2.346051 0.001183  3.331158 0.002535249 
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Fig. 11. Load on four reducers 

 

Table 5. Experiment results on real data set 
 Hash LAHP 

Job execution time (second) 467.4 410.75 

Coefficient of variation 0.226530214 0.000639346 

 

7.3.3 The Bonett-test 

The statistical Bonett test [7] is used if the standard deviation of the two populations are equal and the 

ratio of standard deviations should be estimated with the desired confidence and precision. In this test, 

the null hypothesis was σ (Hash load)/σ (LAHP load) = 1 and the alternative hypothesis was σ (Hash 

load)/σ (LAHP load) ≠ 1. From the results given in Table 6, for    0.5, the null hypothesis was 

accepted because p = 0.942    = 0.05. As a result, Hash StDev (standard deviation) and LAHP 

StDev are approximately equal. For the other  , because p = 0.000    = 0.05, the alternative 

hypothesis was accepted. For example, at   5.0, the Hash StDev was 27.76% and LAHP StDev was 

only 0.021%. Therefore, the ratio of Hash StDev to LAHP StDev was 1313.937. At a confidence level 

of 95%, the StDev of the distributed load percentage by Hash and LAHP were [8.228%, 111.934%] 

and [0.015%, 0.037%], respectively. Based on the Bonett test at a confidence level of 95%, the StDev 

ratio of Hash partitioner to LAHP was at least 147.727 and at most 2857.975. This means that the 

dispersal by LAHP was much lower than for Hash.   
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Table 6. The  Bonett test results 

  

StDev% 

Hash 

StDev% 

LAHP 

Ratio of 

standard 

deviations 

95% CI for  

StDev% Hash 

95% CI for 

StDev% LAHP 

95% CI for StDev 

Ratio(Bonett) p-value 

(Bonett) Min% Max% Min% Max% Min Max 

0.5 0.003999 0.040983 0.976000 0.022 0.08800 0.031 0.066 0.10700 3.111000 0.942 

1 2.292952 0.031847 71.99900 0.916 6.86400 0.020 0.062 13.6720 177.2550 0.000 

2 17.25976 0.032523 530.6940 5.379 66.1980 0.020 0.062 65.0710 1288.845 0.000 

3 23.77233 0.035130 676.6960 7.056 95.7330 0.024 0.061 76.2530 1475.960 0.000 

4 26.52336 0.035987 737.0260 7.839 107.258 0.027 0.057 82.4560 1477.218 0.000 

5 27.75823 0.021126 1313.937 8.228 111.934 0.015 0.037 147.727 2857.975 0.000 

 

8. Conclusion  

The current study developed a partitioner called LAHP to handle reducer side data skew in 

MapReduce. LAHP, which is based on a learning automata game, can handle data skew very 

efficiently. This algorithm can manage any type of intermediate map output skew and does not require 

sampling. It can also adapt very well to heterogeneous systems. The performance of LAHP was 

evaluated in experiments using synthetic and real datasets. The results show that LAHP, with 

minimum overhead, can distribute the load more equitably to the reducers than other state-of-the-art 

algorithms. The results of the experiments reached better than 99% accuracy for load balancing. The 

results of the statistical Bonett test [7] on LAHP and Hash partitioner showed that, at a confidence 

level of 95%, the standard deviation ratio of Hash-to-LAHP was [0.1, 2858]. This means that the 

standard deviation ratio of the distributed load by LAHP partitioner has less dispersion around the 

mean compared to that of the Hash partitioner. LAHP can also handle data skew caused by size. This 

means that data skew could also occur when the sizes of the keys are different and affect the shuffle 

time. In future works, this issue will be considered. Furthermore, the effectiveness of LAHP in the 

presence of the combiner operation will be investigated and the communication cost among mappers 

and reducers will be considered.  
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