

Accepted Manuscript

A Novel Algorithm for Handling Reducer Side Data Skew in
MapReduce based on a Learning Automata Game

Mohammad Amin Irandoost , Amir Masoud Rahmani ,
Saeed Setayeshi

PII: S0020-0255(18)30895-8
DOI: https://doi.org/10.1016/j.ins.2018.11.007
Reference: INS 14051

To appear in: Information Sciences

Received date: 6 August 2017
Revised date: 27 October 2018
Accepted date: 4 November 2018

Please cite this article as: Mohammad Amin Irandoost , Amir Masoud Rahmani , Saeed Setayeshi ,
A Novel Algorithm for Handling Reducer Side Data Skew in MapReduce based on a Learning Automata
Game, Information Sciences (2018), doi: https://doi.org/10.1016/j.ins.2018.11.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ins.2018.11.007
https://doi.org/10.1016/j.ins.2018.11.007

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

A Novel Algorithm for Handling Reducer Side Data Skew in

MapReduce based on a Learning Automata Game

Mohammad Amin Irandoost
1
, Amir Masoud Rahmani

1,2,*
, Saeed Setayeshi

3

1
Department of Computer Engineering, Science and Research Branch, Islamic Azad

University, Tehran, Iran

2
 Computer Science, University of Human Development, Sulaymaniyah, Iraq

3
Department of Medical Radiation Engineering, Amirkabir University of Technology,

Tehran, Iran

* Corresponding author

Abstract: In many MapReduce applications, there is an unbalanced distribution of intermediate map-

outputs to the reducers. The partitioner determines the load on the reducers. The completion time for a

MapReduce job is determined as the slowest reduce task. Under normal conditions assigning a huge

amount of data to a task will increase the time required for completion. The current study presents an

adaptive algorithm called LAHP (learning automata hash partitioner) that is based on a learning

automata game for custom distribution of intermediate key-value pairs to reducers. In this algorithm, a

learning automaton on every mapper node is set to control the load on the reducers. This leads to a

learning automata game during the execution of a job. This algorithm can partition the intermediate

key-value pairs arbitrarily regardless of the statistical distribution of input data and pre-processing.

Using the Bonett-test at a confidence level of 95%, the standard deviation ratio of hash-to-LAHP was

[0.1, 2858]. This means that LAHP showed much lower dispersion. The results show that the

proposed algorithm can successfully distribute any custom load to reducers with an accuracy of over

99% and can speed up the execution of popular applications more than four-fold.

Keywords: Reduce Side Data Skew, Load Balancing, Partitioner, Learning Automata, MapReduce

1. Introduction

The amount of shared data on the Internet is constantly increasing and traditional processing systems

are having trouble saving and processing data. A distributed system is required to handle this. The

popular term which is used to describe this amount of data is big data [10]. The MapReduce [9]

programming model saves and processes such data in distributed systems. The open-source

MapReduce programming framework Apache Hadoop [1] is currently in use by Yahoo, Facebook and

Google. Data skew often is produced because of the physical properties of objects (e.g. the height of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

people distributed normally) and hot spots on subsets of an entire domain (e.g. word frequency in

documents following a Zipf distribution) [8].

Data skew can occur in both the map and reduce phases. Because the chunk size is equal, the

processing time of map tasks is approximately equivalent. The challenge is for unbalanced loads that

are distributed to reducers. The size of the load processed by each reducer is determined by the

partitioner function in the map phase. In Hadoop, the default partitioner is a hash function. While the

statistical distribution of the keys is uniform, this function distributes the loads to reducers equally. In

scientific applications, however, data does not always follow a uniform distribution [8]. Data is

skewed in many real-world applications, including scientific applications, database operations such as

Join, aggregation functions, search engine functions such as PageRank and invert index and simple

applications like sort and grep [29].

When a data skew exists, the load on the reducers becomes imbalanced and the job completion time

becomes longer because the slowest reduce task in a MapReduce job determines its finish time. In

other words, with the existence of data skew, Hadoop cannot make the best use of the ability of the

reducers to reduce. Therefore, handling reducer side data skew is necessary in order to decrease the

job execution time and improve system efficiency.

Recent investigations on reducer side skew can be divided into two main categories. One is

performing preliminary measures on the whole dataset or a small part of the input and extracting the

statistical distribution of data and its frequency to achieve better partitioning for the main job [13, 29,

33, 42]. The other is when the extraction is simultaneously performed in the map phase of the main

job. The start time of the reduce phase in this case will be postponed to the end of all or part of the

map tasks [8, 11, 14, 18, 27]. The preliminary work for extracting a statistical distribution of data and

the lack of parallel execution in the map and reduce phases are considered to be weaknesses in this

category, respectively.

The present study introduces a new adaptive partitioning algorithm called learning automata hash

partitioner (LAHP) that handles reduce side data skew by adding learning automata to each mapper

node. In this algorithm, when the load detected on a reducer is greater than its portion, the learning

automaton runs and selects another reducer. With the learning automata, there is no need for

preprocessing of data. Furthermore, knowing the statistical distribution of the data in advance is

unnecessary. This algorithm has been shown to adapt well to reducer diversity in computational

capacity as well as different and a priori unknown user jobs. Also, the load on reducers can be

determined during the execution time using a smart scheme. The LAHP map and reduce phases can

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

be run in parallel. Cluster splitting, which is used in LAHP, can significantly improve load balancing

[8, 22, 24, 35, 40]. In summary, the main contributions of this research can be summarized as follows:

 LAHP arbitrarily distributes intermediate keys among reducers regardless of the statistical

distribution type without preprocessing, such as sampling of data, postponing shuffle time and

reducing the concurrency of the map and reduce phases.

 Heterogeneity is a common issue in data centers as related to the speed of hardware

generation over time; however, LAHP has the ability to adapt itself to heterogeneous

environments.

 LAHP is implemented in Hadoop. Its performance was evaluated using popular benchmarks

and it was compared with state-of-the-art algorithms. The experiment results show that LAHP

can improve the job execution time by up to a factor of four in comparison with the default

Hadoop partitioner.

The rest of this paper is organized as follows: Section 2 discusses related studies. Section 3 briefly

explains the MapReduce technique on Hadoop. Section 4 presents the learning automata. LAHP is

proposed for partitioning in Section 5. Section 6 states the reasons that cause a cluster to split and the

overhead of the second job is analyzed. Section 7 reports on the results of experiments done to

evaluate the performance of LAHP. Section 8 presents the conclusion.

2. Related work

FP-Hadoop, which was introduced by Liroz-Gistau et al. [25], changed the Hadoop internal

mechanism by defining a new phase called intermediate reduce with better process map outputs and

overcome to data skew. The only difference between the map phase FP-Hadoop and Hadoop are that

the map outputs of FP-Hadoop are managed under a set of intermediate reduce fragments used as

inputs to the intermediate reduce phase. The algorithm introduced by Chen et al. [8] called LIBRA

applies a new sampling method from map output during the mapping process. In LIBRA, in order to

achieve suitable precision during partitioning, shuffling should be started after 20% of the map tasks

are finished. This algorithm supports total order. However, in LIBRA, the reduce phase is postponed

to the end of sampling, which decreases the concurrency of the map and reduce phases.

Gao et al. [13] introduced an algorithm called DLBA that consists of two phases and is based on the

greedy algorithm PP. The first phase is a descending arrangement of all map tasks by size. To achieve

this purpose, it uses a MapReduce job. In the next phase, based on the arrangement of the previous

phase, the task will be assigned to the reducer with the minimum load. SkewTune was introduced by

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

Kwon et al. [22] to dynamically re-partition unprocessed data of a task if the remaining time is more

than one minute and there is an idle node in the cluster. However, because SkewTune does not

support cluster splitting, if there is a large cluster in the data, Skewtune cannot handle it and it works

only in homogeneous environments.

Lin [24] introduced a theoretical model to show the effect of Zipf distribution in MapReduce

performance. Berlińska et al. [6] compared four algorithms for handling reducer side data skew under

Zipf in MapReduce. The method introduced by Ramakrishnan et al. [33] estimates reducer load by

sampling, splits big clusters and packs medium keys to try to balance the reducer load. Unlike other

sampling algorithms that take the required sample size to be stationary, in this algorithm, the user

defines a confidence interval. This algorithm requires user knowledge of the statistical distribution or

sampling. It is not possible to run the original MapReduce until the sampling phase is complete. Also,

this algorithm does not support heterogeneous environments.

A survey of skew in MapReduce applications and mechanisms was carried out by Kwon et al. [21].

The algorithm proposed by Zhang et al. [44] was used to investigate skew caused by heterogeneous

machines. It requires a history of job execution time in a heterogeneous environment. Smartjoin,

introduced by Slagter et al. [35], considers network traffic when distributing loads on reducers for

multiway join. Other researchers [5, 15, 29, 45] have introduced algorithms for handling skew for

joins in the MapReduce programming model.

Ibrahim et al. [19] introduced an algorithm called LEEN in which the shuffling start time is postponed

to the end of all map tasks to obtain statistics about the keys and their frequency. Then, by using a

heuristic method that considers the locality of keys and balancing the reducer load, it can distribute

the keys between reducers. LEEN, however, does not support concurrent execution of the map and

reduce phases and works only in homogeneous environments. It also assumes that the data size of the

key-value pairs is the same.

Gufler et al. [17] developed a method in which the cost of the load that is distributed on reducers is

estimated based on a cost model approximation. It uses two histograms for approximations called

local and global. Sailfish [34] uses I-files to collect information about intermediate keys based on

KFS [3]. It used them to optimize the number of reduce tasks and partition the keys to reducer

workers. The straggler problem in a MapReduce job was investigated by Dean et al. [9]. The strategy

was for a task to be identified as a speculative when the task progress falls behind the average

progress of all tasks at a threshold. This strategy is usually effective for the map task; however, due to

its high cost, using it for a reduce task is not effective. Memishi et al. [28] introduced three algorithms

for detection and further solving of the straggler problem.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

Li et al. [23] investigated a new parallel programming model for handling reducer side data skew

which is called Map-Balance-Reduce. In this scheme, when the detected load on a reduce task is over

60%, that reducer stops working and the remaining loads will be distributed fairly to other reducers.

However, in this model, there is an overhead to stop the execution of the reducer and to distribute

unprocessed data to other reducers. The model does not support heterogeneous environments.

Tang et al. [37] introduced an algorithm called SCID to balance loads on the reducers in the Spark. In

this method, a job for sampling must be run first. Then the size of the clusters are estimated based on

sampling and the heavy clusters are identified. In the next step, the algorithm attempts to split the

heavy clusters so that it can form the balanced load on the reducers. SCID does not support

heterogeneous environments and the main job only can be run when the sampling is done and

partitioning decision is made.

Liu et al. [26] introduced a method for handling reducer side data skew in Spark streaming. C2WC

was introduced by Xu et al. [43]. In this algorithm, before the original job is executed, a MapReduce

job is run for sampling. After taking samples and the estimating cluster size, it sorts them in

descending order. Then C2WC uses a heuristic method for cluster combinations and assign clusters to

reducers. C2WC does not support heterogeneous environments and, when the data skew degree is

high, it performs poorly.

Recent approaches require modification in the Hadoop framework. Moreover, a large proportion of

them are based on preprocessing and sampling. LAHP, without sampling and Hadoop modification,

can effectively distribute the load on the reducers and simply adapt itself to heterogeneous

environments. Additionally, LAHP can handle any type of intermediate key skew.

3. MapReduce Programming in Hadoop

The MapReduce project in Hadoop includes the following classes: map, reduce, driver and one

optional class called partitioner. Programmers in the map and reduce classes write a specific logic for

the map and reduce operations present in the key-value pair model. In the driver class, programmers

define the main function and job configuration settings. If the partitioner class is not defined, Hadoop

uses a hash partitioner to distribute the intermediate map output to the reducers. Therefore, this

function defines the load on the reducers. If reducers are placed on homogeneous machines and this

function does not distribute the load on reducers equally, the resulting finish time of the job is

determined by the slowest reducer or by the biggest load. The MapReduce is based on the divide and

conquer approach [32]. Data processed in this framework is first saved on Hadoop distributed file

systems (HDFS) in which data is divided into chunks of the same size that can be deployed on data

nodes. Then, map phase begins and mapper nodes run map logic on each chunk [36]. Reduce phase

will then start and its results will be saved on the distributed file system [36].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

A brief explanation of the work basis of MapReduce on Hadoop 2 is as follows [41]:

1. Job registration by a client;

2. Assigning a unique ID for it and computing the number of input splits;

3. Running YARN (yet another resource scheduler) by the resource manager and assigning and

executing a container as AppMaster (application master);

4. A) AppMaster asks for a container for each map task;

B) Because the number of reducers is determined by the user, AppMaster requests containers

equal to that number;

5. Run map tasks and subsequently reduce tasks. By default, whenever 5% of the map tasks are

complete Hadoop starts the shuffling process of the reduce phase.

4. Learning Automata

The learning automata [30, 31, 39], as shown in Fig. 1, are machines that deal with the random

environment placed in them. A learning automaton has a limited set of actions. It examines the effects

of its own previous actions that it randomly selects based on a probability distribution. This selection

is made within the stored action-set in the environment and acquires favorability from the

circumference response. When arriving at a specific conclusion, it updates the probability of various

actions for selecting the best action for different criteria.

The environment is shown as a triple * + in which is the environment input, is the output and

c is the set of penalty probabilities. The automaton, by performing action with probability

 receives a penalty from the environment. The environment is divided into the p-model, s-model and

Q-model based on output value . If the environment output is binary {0, 1}, it is a p-model in which

zero and one are desirable actions and undesirable actions, respectively. If environment output is

always in the range of [0, 1], it is a s-model. If it is discrete in [0, 1], it is a Q-model.

Learning automata fall into two general families: fixed structure and variable structure. Variable

structure learning automata are represented by a triple * + in which is the set of inputs, is a

set of actions and is the learning algorithm (a recursive relation) used to modify the action

probability vector. Let () denote an action that is chosen at the n moment and p(n) shows the

corresponding action probability vector. Let a and b define the reward and penalty parameters,

respectively, and let () be the action chosen by the automaton at the n moment. When the action

taken is rewarded by the environment ((n) = 0), action probability vector p(n) is updated using

recursive Eq. (1), which is a linear learning algorithm.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

 () {
 () [()]

 () ()
 (1)

Similarly, in case of penalties, (n) = 1, the updated formula would be:

 () {

 ()()

 ()()

 (2)

In Eq. (2), r is the number of selected actions by the automaton. Based on the values of a and b, three

types of learning algorithms have been defined. If the a=b then recurrence Eq. (1) and (2) is called

linear reward penalty (LR−P) algorithm, if a ≫ b the given equations are called linear reward- penalty

(LR− P) and finally if b = 0 they are called linear Reward-Inaction (LR−I). In the latter case, the action

probability vectors remain unchanged when the taken action penalized by the environment.

Fig. 1. Relationship between learning automata and its environment

4.1 Variable action-set learning automata

If the number of available actions at each instant changes over time, this learning automaton is called

a variable action-set learning automaton (VLA) [38]. In this situation, if A is the set of all actions with

n members, then () is a non-empty subset of actions with m members such that (active

actions) at time k in which the automaton can select one action randomly according to the scaled

probability vector defined in Eq. (3).

{
 ̂ ()

 ()

 () ∑ ()

 ()

 ̂ () ()

 (3)

By receiving a reinforcement signal from the environment, the automaton only updates the probability

of the active actions. After updating these probabilities, it is necessary to rescale the probability of

every action in set B(k) as per Eq. (4).

 () ̂() () () (4)

Random Environment

Learning Automata

𝛽(𝑛)

𝛼(𝑛)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

4.2 Game of Learning Automata

If a multi-automata system is viewed as players involved in a game, this configuration is called the

game of learning automata [39, 40]. In such game, there are N automata that contribute to the game as

N players. Each of these players independently chooses an action randomly according to its

probability. These N actions are input into the environment and it responds to them with N random

payoffs. In this scenario, the probability distribution of the action shows a mixed strategy used by the

player at any given instant. By repeating the game, the automata can learn how to solve the game. In

this configuration, the reinforcement signal received by each automaton depends on the actions

chosen by all automata.

The game can be run in two modes: synchronous and asynchronous. In the first, all players run at the

same time and update their strategy at every play of the game. In the second mode, each player can

change its strategy at any time or assess the playoff of its current strategy. This absence of synchrony

is very common in distributed control systems in which time is continuous and the various elements

of the system update their behavior separately [12].

5. Our proposed Algorithm: Learning Automata Hash Partitioner (LAHP)

The proposed adaptive partitioner algorithm is based on an asynchronous game of learning automata.

As shown in Figure 2, the map phase in Hadoop has been divided into two subphases: mapping and

partitioning.

In the map phase, the mapper nodes begin processing preferably local data and save intermediate

results in a circular buffer. When the size of this buffer reaches the threshold, the spill buffer to the

local disk will start. Before spilling, the partition function calls to allocate key-value pairs to reducers

for processing. The mapping operation is always prior to partitioning. The LAHP was designed based

on this order. The notations used in this paper are summarized in Table 1.

Fig. 2. Map phase includes two sub phases: Mapping and partitioning

Mapper

Mapping Partitioning

P1 P2 P3

Intermediate key-value pairs store in circular buffer Partitioning / Sorting / Spilling

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

5.1 Proposed Partitioning Algorithm

To effectively partition a data set consisting of K keys on N reducers, the best solution in a space of

 possible solutions must be found [19]. Given that all possible solutions are too many to explore,

LAHP uses an automata–based approximation algorithm to solve the reducer side data skew problem.

In LAHP, when data skew is detected during a job, a game of learning automata is used to distribute

the load to the reducers. Each mapper has a learning automaton and contributes to the game as a

player. Every player, based on the probability vector, chooses an action independently. Depending on

the environment response of reward or penalty for the actions chosen by other automata, the player

updates its probability vector. By repeating the game, each player learns to choose the optimal action

from among all actions. The LAHP process is as follows:

1- Each mapper has a learning automaton. In all automata, we define action-set as * +, in

which r is equal to the number of reducers. The action-probability vector of the learning

automaton is specified as () * + and initializes them to 1/r. Let the

reducer capability vector be * + If all reducers are homogeneous

machines, the capability values are assumed to be equal for all reducers. However, if the reducer

machines are heterogeneous, the values depend on the capability of each machine. For example, if

the load on machine A should be as twice as much on machine B, it is sufficient to set

 .

2- In this algorithm, we use r global counters {L1, L2, …, Lr}, in which r is the number of the

reducers. These counters save the cost of the load placed on each reducer in order to acquire the

amount of each reducer’s contribution based on LAHP. The initial value of these counters is zero.

Table 1: The notation that used in this paper

Name Description

Li The Load placed on reducer i.

KC Key Counter.

A The number of Active reducers (actions, in VLA).

H Reducer selected by Hash partitioner

VLA Variable action-set Learning Automata.

TL Total present Loads distributed to all reducers

F Frequent Interval.

RP The Reducer portion from distributed loads.

ALRTP Average ratio of active reducer load to the portion already distributed.

RCi The Capability of Reducer i.

MAPE Mean Absolute Percentage Error.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

3- In the map or combiner function, for each output key, the relative reducer is determined by the

array x=MapHash2LAHP [HashPartitioner
1
(key)] that will be described in step 4a, and its counter

(Lx) will be added by the return value of the cost function (key, value, m, x) where m is the

mapper number and x is the reducer number. In general, this function can compute various costs,

such as those for communication and computation according to the application.

4- The partitioning phase contains the following steps:

a. For mapping, the reducer selected with a hash partitioner to LAHP considers local array

MapHash2LAHP= {0, 1,…,r-1} by size r in which r is equal to the number of reducers in

each mapper. For job initialization, LAHP and the hash partitioner work similarly.

However, during job progress, if the observed load cost of the reducer selected by the

hash is greater than that of its portion (data skew), the learning automaton will run and

select a reducer from among the other reducers that has less load than of its portions.

 .

 , - {

 (5)

b. Consider frequent intervals (F) for executing learning automata. These intervals have a

direct relation to the job size. If the job is large, a larger period should be chosen and vice

versa. In fact, this parameter determines the interval for choosing optimal actions in the

automata to overcome data skew. When this interval is very small, other automata

(players) do not have sufficient opportunity to respond to the strategy selected in the

previous step. For large intervals, the automata do not have sufficient opportunity to

choose an optimal action before the end of a job. Consequently, the load distribution will

become unbalanced.

c. Consider a local counter such as KC with an initial value of zero. This value increases by

one when a key enters the partitioner.

d. For an incoming key entering at a frequent interval (F), suppose H is the reducer selected

by the hash partitioner for the key.

e. The total load cost distributed to all reducers up to now must be calculated using to Eq.

(6).

 ∑

 (6)

1 (key.hashcode() & integer.maxvalue)%the the number of reducers

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

f. If LH (load cost on reducer H up to now) is neither more than nor equal to its portion

(RP(H)) × (1+threshold), set MapHash2LAHP[HashPartitioner(key)]=H and return H.

RP(H) is computed using Eq. (7) and the threshold is the maximum percentage at which

the load can be tolerated, otherwise data skew occurs and the learning automaton starts to

select a reducer randomly according to probability. The following cases can occur:

 () ∑

 (7)

i. In the action set of this automaton, all reducers (such as H) that have a load

cost greater than that of their portion () () must be

removed, as described in Sect. 4.1 on VLA. This increases the convergence

rate and convergence speed of the automaton. Suppose the number of active

reducers is equal to A.

ii. The automaton selects a reducer such as i according to its (scaled) probability

vector for all active actions (reducers).

iii. Calculate the average dynamic load cost ratio of the active reducers

according to their portions that have already been distributed and save it to

 as computed using Eq. (8).

∑

 ()

 (8)

iv. Because the most important purpose of handling reducer side data skew is

for all reducers to finish their works almost simultaneously, if the ratio of

reducer load cost to reducer portion

 ()
 , action i

gives a reward () and otherwise it gives a penalty ().

v. The reducer election probability should be updated using Eqs. (1) and (2).

vi. Array MapHash2LAHP should be updated according to the reducer selected

in step ii as follows:

 MapHash2LAHP[HashPartitioner(key)]=i.

This means that the load on the reducer selected by the hash partitioner is

placed on the reducer which is selected by LAHP. This continues at least

until the next frequent interval.

vii. The learning automaton again enables the removed actions according to Eq.

(4).

viii. Return Ri.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

g. Outside the frequent interval, operate as follows:

 () ()

 MapHash2LAHP[HashPartitioner(key)]=H.

 Return H.

 Else

 Reducer = MapHash2LAHP[hashPartitoner(key)] is selected and returned.

5.2 Pseudo Code for LAHP in MapReduce Applications

The pseudo code for LAHP partitioner is presented below.

Algorithm 1. LAHP partitioner.

Inputs:

 k: The key of key/value pairs for specifying reducer

 r: The number of reducers

Output:

 Reducer number

Assumptions

1: Initialize r-dimensional action-set: * + with r actions.

2: Initialize r-dimensional action-probability vector: () * + *

+ at

instant n.

3: Initialize r-dimensional vector * + This vector defines the capability of

each reducer, in homogeneous machines, it is assumed that all values are equal.

4: Initialize F as a frequent interval.

5: Initialize r-dimensional MapHash2LAHP={0,1,…,r-1}.

6: Set r global counter {L1, L2, …, Ln} with zero initial value.

7: In the map or combiner function for each output key, the relative reducer is determined

according to x=MapHash2LAHP[HashPartitioner (k)] and its counter added by the return

value of cost (key, value, m, x) function.

8: Define a local counter by name such as KC with zero initial value.

Begin

1: increment KC.

2: If KC % F == 0 then

3: Set H= HashPartitioner(k)

4: Calculate the total load cost as the sum of loads cost that placed on all reducers until now

 and save it into TL according to Eq. (6).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

5: i () ()

6: In automaton action-set, all reducers such as H that have

 () () must be Removed and

 probability of remaining actions should be updated according to VLA Eq. (3).

7: Set A= the number of remaining actions (active action).

8: Automaton select an action or another word selects a reducer such as Ri randomly

 according to its (scaled) probability vector of all active actions.

9: Compute according to Eq. (8).

10:

 ()

11: Beta=0

12: The selected action by learning automaton is rewarded according to Eq. (1).

13: Else

14: Beta=1

15: The selected action by learning automaton is penalized according to Eq. (2).

16: End If

17: MapHash2LAHP[hashpartitioner(k)] = Ri.

18: Learning automaton enables the removed actions again according to Eq. (4).

19: Return Ri.

20: Else

21: MapHash2LAHP[hashpartitioner(k)] = H.

22: Return H.

23: End If

24: Else

25: i () ()

26: MapHash2LAHP[hashpartitioner(k)] = H.

27: Return H

28: Else

29: Ri = MapHash2LAHP[hashpartitioner(k)].

30: Return Ri

31: End If

32: End If

End

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

5.3 Time complexity analysis

In this subsection, the time complexity of LAHP is analyzed by closely following the procedure for

selection of a reducer for each key-value pair as received from map output. LAHP is separated in the

following steps:

1. In the frequent interval (lines 3 - 24), the following occur:

i. Determine the reducer selected by the hash partitioner for the key received: O(1).

ii. Calculate the total load cost: O(r).

iii. Compare the load on the reducer selected in the step 1(i) by its portion: O(r).

iv. If the result of the comparison in step 1(iii) is true, disable some actions: O(r).

v. Update the probability vector of active actions: O(A).

vi. Select an action: O(A).

vii. Compute : O(A).

viii. Reward or penalize the selected action: O(A).

ix. Enable the disabled actions: O(r).

x. If the result of the comparison in step 1(iii) is false, update the array and return the

selected reducer: O(1).

2. Outside of the frequent interval (lines 25-32), LAHP computes the portion of reducer selected by

the hash partitioner, compares it with its load and updates an array: O(r).

The time complexity of LAHP is () * +;

therefore, the time complexity of LAHP for distributing m key-value pairs is ().

The time complexity of SCID [37] for cluster combination and splitting is () and this

algorithm has time complexity (* +) for dispatching a cluster for each key-value pair.

Therefore, the time complexity of SCID for distributing m key-value pairs is (*

 +) where r is the number of reducers and n is the number of clusters. The time complexity of

C2WC [43] in the cluster combination by assuming use of a sorting algorithm with complexity

 is (* +) and in cluster dispatching using a linear search algorithm for

each key-value pair is (); therefore, the time complexity C2WC for distributing m key-value

pairs is (* +) SCID and C2WC are based on sampling which requires a

separate job to be run before the main job for the purpose of obtaining a variety of clusters and

their sizes. LAHP can handle data skew in MapReduce without postponing shuffle time or

requiring a preprocessing step such as sampling of data.

6. Discussion about Cluster Split in LAHP and Integrative Job

All keys with the same value are called a cluster. In the hash partitioner, all members of one cluster

are sent to one reducer only. This is not necessary for the following reasons.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

6.1 Cluster Split

a. In applications such as sort, grep and total join, if all members of one cluster do not send data

to one reducer only, there will be no disturbance in the final result [8]. In other words, mapper

output can be sent to any reducer in this application [8].

b. If members of some clusters are further away than others and those clusters map to only a

small percentage of reducers, it will result in more load on those reducers compared to the

others. Consequently, the slowest reducer will determine the job finish time. For example,

suppose that the intermediate map output word count application includes three clusters having

1000, 50 and 50 members. If we consider two reducers, the best load distribution that can be

done without cluster splitting by partitioners is as follows:

Reducer1: 1000 keys

Reducer2: 50+50 keys

As a result, the load on reducer1 is 10 times than that placed on reducer2.

Gray et al. [16] classified aggregation functions to three groups: distributive, algebraic and holistic.

Liroz-Gistau et al. [25] used this classification on reduce functions. For all distributive and algebraic

reduce functions, LAHP can be used as a partitioner. It also can be used for some holistic reduce

functions. LAHP always considers a cluster split. After the main job is finished using LAHP, an

integrative job with a hash partitioner must be run in order to integrate the results. This does not apply

to applications that do not need to send all values of a cluster to one reducer only. The output of the

main job is considered to be integrative job input. Mathematical analysis and implementation results

show that the time required to run the second job is too short; thus, the execution time of both jobs

(main and integrative job) is much less than one main job with a hash partitioner.

For example, suppose that the intermediate map outputs of a job contain three unique clusters as

described in section 5(1b). If the loads of the three clusters are distributed to two reducers fairly, in

the optimal case, the load on each reducer will be 550 keys. However, if the partitioner does not

consider a cluster split, the best load distribution which can be done is 1000 keys for reducer1 and 100

keys for reducer2. Therefore, in comparison with the optimal distribution, reducer1 must process an

additional 450 keys. Although LAHP, in applications which must send all of the same keys to one

reducer, must execute an additional job for integrating of the results, it consumes much less time in

comparison with having the same main job with a hash partitioner. In this example, there are three

unique keys A, B, C in which B and C are placed on reducer2. In the worst case in LAHP, at the end

of the reduce phase, each reducer has one sample of each unique key. Therefore, the integrative job

processing overhead on the reduce phase is max {two keys on reducer1, four keys on reducer2}. LAHP

will totally process 550+4 keys. As a result, the load decreases at least 44.6% on reducer1. This

example is shown in Table 2.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

6.2 Integration Methods

In order to integrate the results produced by LAHP, two methods can be considered. In the first

method, without changing the Hadoop internal mechanism, it uses an extra job according to the hash

partitioner which it applies to the output of LAHP for integrating the results of job1. In the second, an

internal Hadoop mechanism is changed by defining two reducer functions. The first and second

reducer functions are based on LAHP and the hash partitioner, respectively. In this method, after

completion of all reduce tasks, the output of the first reduce function by the hash partitioner is sent to

the appropriate reducer and second reduce function is run to integrate the results. In the current study,

the first method was used.

6.3 Integration Job

This job must be defined according to the application. Here we introduce some applications and their

integrative jobs.

6.3.1 Count or Sum Application

The integrative job for count or sum application.

1: Map(k,v)

2: For each key in content do

 Emit(k,v)

Table 2. Job1 uses a partitioner with two reducers that does not do cluster split. Job2 uses LAHP with two reducers. Job3 is an
integrative job, the input of which is the output of job2 and which the Hash partitioner distributes to two reducers. Note: cnt
is an abbreviation for “count”.

Job output Reducer input

Intermediate map

outputs

Job #

 (Exist data skew on reducers)

 Reducer2 Reducer1 Reducer2

Reducer1

Jo
b

 1

 (Does not exist data skew (

Jo
b

 2

Jo

b
 3

(In
teg

rativ
e)

A, cnt=1000

B, cnt=50

C, cnt=50

A, cnt=2

B, cnt=2

C, cnt=2

A, cnt=500
B, cnt=25
C, cnt=25

A, cnt=500
B, cnt=25
C, cnt=25

A, value
B, value
C, value

 A, value
B, value
C, value

B, cnt=50

C, cnt=50

A, cnt=1000
B, value
C, value

 A, value

B, cnt=2

C, cnt=2

A, cnt=2 A, value
B, value
C, value

A, cnt=1000
B, cnt=50
C, cnt=50

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

3: End

4: Reduce(k,list v)

5: S=0

6: For each member in list v such as u do

 S+=u.value

7: End

8: Emit (k,s)

6.3.2 Min or Max Application

The integrative job for min or max application.

1: Map(k,v)

2: For each key in content do

3: Emit(k,v)

4: End

5: Reduce(k,list v)

6: In list v find min or max and save it in min or max

7: Emit (k, min or max)

6.3.3 Avg Application

The integrative job for avg application.

1: Map(k,v)

2: For each key in content do

3: Emit(k,v)

4: End

5: Reduce(k,mixed list v include sum and count)

6: For each member in list v such as u do

 S+=u.sum

 count+=u.count

7: End

8: Emit (k,s/count)

6.4 Integrative Job Complexity Analysis

The complexity of the integrative job is analyzed below.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

Theorem 1. In the worst case, the overhead of the integrative job is equal to the required processing

cost of the unique keys of the main job.

Proof. Suppose that the total number of keys which must be processed by the main job is equal to n

and the number of unique keys in this job is m such that m<<n and r is the number of reducers.

Because the number of distinct keys is m, after executing the main job, there will exist in each reducer

one delegate for each key. In the worst case, LAHP produces m unique keys in every reducer.

Consequently, the total number of keys that an integrative job must process in the worst case is equal

to r×m. Using a hash partitioner, the contribution of each reducer is approximately equal to m keys.

The cost required for processing r×m keys is equal to the approximate processing cost of m keys.

7. Performance Evaluation

LAHP was implemented on Hadoop 2.7.1. The experimental setup, including the experimental

platform, datasets and queries are first discussed. Next, the results of tests done to study LAHP

performance in different situations is discussed.

7.1 Setup

Experiments were run on a cluster with seven virtual machines on an HP Proliant DL580G7 server

(KVM as the hypervisor) [20]. Table 3 shows the properties of the machines.

Table 3. The properties of seven machines.
OS HDD Ram CPU # Type

Ubuntu 16.04 LTS 30GB 12 GB Intel® Xeon CPU E7-4870 30

MB SmartCache 4 CPU – 2

core per CPU

1 Master

// // // // 6 Worker

All experiments used the default configuration in the Hadoop. Linear learning scheme LR-P with equal

reward and penalty parameters values of 0.015 were used in all experiments. Because the

implementation platform was limited and the hard disks of the machines had limited space, no

combiner function was used in the experiments, which allowed a better examination of the

performance of LAHP.

It is assumed that the return value of the cost function for each key-value pair is 1 and the threshold is

set to 1%. Synthetic and real datasets were used to evaluate LAHP and three benchmarks were used:

word count, grep and inverted index. The synthetic dataset was generated using a zeta distribution

(Zipf) with the value of being 0.5 to 5.0. The real dataset was downloaded from [2]. All

experiments were conducted five times and the average results are reported. The probability density

function for the zeta distribution is:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

 ()

 ∑ (⁄)

 (9)

LAHP was compared with the following algorithms:

 Hash: a default partitioner used in Hadoop and Spark for partitioning [4].

 SkewTune: During the job execution time, it detects a straggler node and distributes the

remaining loads among other nodes [22].

 SCID: Before the main job, a sampling job is run. After estimating a variety of clusters and

sizes, SCID try to overcome data skew by cluster combination and cluster splitting [37].

 C2WC: Uses a heuristic method for cluster combination after sampling by a separate

MapReduce job [43].

7.2 Criteria of Evaluation

To compare LAHP with the algorithms in subsection 7.1, the following criteria were used:

 Job runtime: This parameter is equal to the job finish time – job start time.

 Reduce time: This parameter is equal to reduce finish time – shuffle start time.

 Percentage of load on each reducer: To compute this parameter it is sufficient to calculate

 and multiple it by 100 .

 Coefficient of variation of the distributed load (COV): COV is a common measurement for

data skew, which is computed as
 (⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)

 (⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)
, where is standard deviation and load

is a vector that includes the load placed on each reducer.

7.3 Experimental Results

This section is divided into two parts. Part one reports on the results on the synthetic dataset. In part

two the results for the real dataset are shown.

7.3.1 Experiments on Synthetic Dataset

In all experiments, the 4.2-GB synthetic dataset produced by a Zipf distribution was used.

Experiment 1: In this experiment, was set for generating the dataset. The number of reducers

changed from 2 to 12 and the word count benchmark was run by LAHP and other algorithms. Fig. 3

shows that the job execution time by LAHP outperformed the others at any number of reducers. When

extreme skew existed in the input data, Hash, SkewTune and C2WC performed badly because an

increasing the number of reducers did not have a considerable effect on job execution time. The

execution time decreased substantially for LAHP and SCID by increasing the number of reducers.

Because C2WC is based on sampling and cluster combination, when the data skew was high, C2WC

could not handle it using cluster combination. In this algorithm, the startup of the main job was

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

postponed to the completion of sampling and partition decision making. For this reason, the job

execution time by C2WC was higher than for Hash at a higher degree of skew. SkewTune has extra

overhead, such as resource competition, and does not support cluster splitting.

Fig. 3. Varying reducer number

Fig. 4 shows the elapsed time for 12 reducers. In Hash, SkewTune and C2WC, one reducer took a

much longer time because of data skew, whereas, in LAHP, all reducers took approximately the same

amount of time. Because SCID is also based on cluster splitting, it worked better than Hash, C2WC

and SkewTune; however, the elapsed reducer time shows variations because the loads on the reducers

were not equal. The loads placed on 12 and 6 reducers are shown in Figs. 5(a) and 5(b), respectively.

Clearly, using LAHP, the load percentage of each reducer was approximately

 and

 respectively, and there was no data skew on the reducers. In Hash, C2WC and SkewTune, almost

96% of the load was placed on reducer1.

Fig. 4. Elapsed reducer time

0

200

400

600

800

1000

1200

1400

2 r e d u c e r 6 r e d u c e r 1 2 r e d u c e r

Se
co

n
d

J o b e x e c u t i o n t i m e z i p f σ = 5

Hash LAHP Skewtune C2WC SCID

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12

Se
co

n
d

Reducers

Reducer Time

Hash LAHP Skewtune C2WC SCID

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

Fig. 5 a. Percentage of load placed on 12 reducers; b. Percentage of load placed on 6 reducers.

The COV of the loads placed on reducers by different algorithms is shown in Fig. 6. This parameter

measures the ratio of standard deviation to mean. A larger coefficient indicates heavier skew. As

shown, this ratio for LAHP using 12 reducers was only 0.005, while the COV for Hash was 3.1893.

The optimal value of COV in homogenous environments is zero, which indicates that the load has

been distributed among reducers quite fairly. After LAHP, SCID performed better than the others

because this algorithm is also supported cluster splitting.

Fig. 6. Coefficient of variation versus number of reducers

Experiment 2: In this experiment, to evaluate the performance of LAHP for different amounts of

skew, a 4.2 GB synthetic dataset with a Zipf distribution was used and the values of σ from 0.5 to 5.0

controlled the degree of skew. A larger value of σ means a heavier skew. In this test, the number of

reducers was set to 12. The job execution time is shown in Fig. 7. It is clear that skew had a

significant impact on hash, C2WC and SkewTune, whereas LAHP was skew-protected and performed

better than the others. The job execution time for LAHP at (light skew) was slightly more

0

20

40

60

80

100

1 2 3 4 5 6

Lo
ad

%

b. 6 Reducers

Load placed on reducers

Hash LAHP Skewtune C2WC SCID

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

Lo
ad

%

a. 12 Reducers

Load placed on reducers

Hash LAHP Skewtune C2WC SCID

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

2reducer 6reducer 12reducer

C
O

V

Number of reducers

Coefficient of varaition

Hash LAHP Skewtune C2WC SCID

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

than for Hash, SkewTune and C2WC because it required additional work to select the best reducer

and integrative job. At a heavier skew, the job execution time by LAHP was approximately 25% that

of Hash (

).

Fig. 7. Job execution time versus

The COV for LAHP and the other algorithms at different values of are shown in Fig. 8. LAHP, for

all degrees of skew had a near-zero COV (0.003, 0.006), whereas, in Hash, C2WC and SkewTune, as

the degree of skew increased, the COV grew rapidly. The COV of SCID was lower than for Hash,

C2WC and SkewTune; however, LAHP had the lowest COV.

Fig. 8. Coefficient of variation versus

Experiment 3: In the heterogeneity test, σ = 0.5 (light skew) because the goal of this test was to

evaluate LAHP for placement of various amount of loads on reducers. Suppose six reducers with

40%, 7%, 13%, 20%, 15% and 5% of loading are expected, the experimental results are depicted in

Fig. 9. LAHP had the best results for this test; demonstrating that it is a flexible algorithm which can

0

200

400

600

800

1000

1200

1400

0 . 5 1 2 3 4 5

Se
co

n
d

Zipf 𝜎

J o b e x e c u t i o n t i m e

Hash LAHP Skewtune C2WC SCID

0

0.5

1

1.5

2

2.5

3

3.5

0 . 5 1 2 3 4 5

C
o

e
ff

ic
ie

n
t

o
f

va
ri

at
io

n

Zipf 𝜎

Hash LAHP Skewtune C2WC SCID

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

work well in a heterogeneous environment. The MAPE and accuracy were calculated according to

according to Eqs. (10) and (11), respectively. is the percentage of expected load and is the

percentage of actual load on reducer i.

∑

| |

 (10)

 (11)

In this Experiment MAPE and accuracy are computed as follow:

The experiment was repeated 10 times with different expected loads for each reducer and an average

accuracy of 99.1% was obtained.

Fig. 9. Heterogeneity load on six reducers

Experiment 4: In this experiment, we ran the word count benchmark using LAHP and the Hash

partitioner in different situations by varying and the number of reducers and by computing the

COV. The results are shown in Table 4. The table shows that, at all values of with any number of

reducer, the LAHP COV was significantly lower than the Hash COV. At a heavier skew of = 5

using 12 reducers, the LAHP COV was only 0.00253 while the Hash COV was 3.331. At every , the

Hash COV was directly related to the number of reducers whereas LAHP COV was approximately

fixed for all variations.

39.88196459

7.068034863
13.01515598

19.92598498
15.03560634

5.07325325

0

10

20

30

40

50

Reducer 1 Reducer 2 Reducer 3 Reducer 4 Reducer 5 Reducer 6

Lo
ad

%

Reducers

Heterogeneity test

LAHP

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

Experiment 5: The value of σ was set at 5 and a 4.7-GB synthetic data set was generated. By varying

the number of reducers, the performance of the word count, inverted index and grep benchmarks were

evaluated for the Hash partitioner and LAHP. The results of this test are shown in Fig. 10. Clearly, for

all three applications and every number of reducer, the job finish time for LAHP was much lower than

for Hash. Furthermore, increasing the number of reducers decreased the job finish time of the LAHP,

whereas the job finish time for Hash showed no appreciable change.

Fig. 10. Comparison of applications versus the number of reducers

7.3.2 Experiments on Real Dataset

We evaluated the use of LAHP on a 4.1 GB real dataset [2].

Experiment 6. The word count benchmark was run for LAHP and the Hash partitioner. The number

of reducers was set at 4. As shown in Fig. 11, the load distribution by LAHP for each reducer was

very close to optimal. The job execution time and COV of this experiment are shown in Table 5. It is

clear that the job execution time and COV for LAHP were lower than for Hash.

Table 4. Hash and LAHP COV on different and number of reducers

 2 reducers 6 reducers 12 reducers

 Hash LAHP Hash LAHP Hash LAHP

0.5 0.001138 0.00006 0.002797 0.000908 0.004800 0.004920000

1 0.079305 0.00002 0.173382 0.000657 0.275201 0.003822279

2 0.707142 0.00003 1.397555 0.000952 2.071223 0.003902856

3 1.060683 0.00005 1.977513 0.000749 2.852716 0.004215653

4 1.237429 0.00002 2.230974 0.001159 3.182849 0.004318502

5 1.325852 0.00001 2.346051 0.001183 3.331158 0.002535249

0
200
400
600
800

1000
1200
1400

Hash LAHP Hash LAHP Hash LAHP

WordCount InvertedIndex Grep

Se
co

n
d

WordCount, InvertedIndex and Grep applications

Comparing different applications by varying the number of reducers

4Reducers 6Reducers 12Reducers

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25

Fig. 11. Load on four reducers

Table 5. Experiment results on real data set
 Hash LAHP

Job execution time (second) 467.4 410.75

Coefficient of variation 0.226530214 0.000639346

7.3.3 The Bonett-test

The statistical Bonett test [7] is used if the standard deviation of the two populations are equal and the

ratio of standard deviations should be estimated with the desired confidence and precision. In this test,

the null hypothesis was σ (Hash load)/σ (LAHP load) = 1 and the alternative hypothesis was σ (Hash

load)/σ (LAHP load) ≠ 1. From the results given in Table 6, for 0.5, the null hypothesis was

accepted because p = 0.942 = 0.05. As a result, Hash StDev (standard deviation) and LAHP

StDev are approximately equal. For the other , because p = 0.000 = 0.05, the alternative

hypothesis was accepted. For example, at 5.0, the Hash StDev was 27.76% and LAHP StDev was

only 0.021%. Therefore, the ratio of Hash StDev to LAHP StDev was 1313.937. At a confidence level

of 95%, the StDev of the distributed load percentage by Hash and LAHP were [8.228%, 111.934%]

and [0.015%, 0.037%], respectively. Based on the Bonett test at a confidence level of 95%, the StDev

ratio of Hash partitioner to LAHP was at least 147.727 and at most 2857.975. This means that the

dispersal by LAHP was much lower than for Hash.

0

5

10

15

20

25

30

35

40

Reducer 1 Reducer 2 Reducer 3 Reducer 4

Lo
ad

%

Load on reducers

LAHP HASH

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26

Table 6. The Bonett test results

StDev%

Hash

StDev%

LAHP

Ratio of

standard

deviations

95% CI for

StDev% Hash

95% CI for

StDev% LAHP

95% CI for StDev

Ratio(Bonett) p-value

(Bonett) Min% Max% Min% Max% Min Max

0.5 0.003999 0.040983 0.976000 0.022 0.08800 0.031 0.066 0.10700 3.111000 0.942

1 2.292952 0.031847 71.99900 0.916 6.86400 0.020 0.062 13.6720 177.2550 0.000

2 17.25976 0.032523 530.6940 5.379 66.1980 0.020 0.062 65.0710 1288.845 0.000

3 23.77233 0.035130 676.6960 7.056 95.7330 0.024 0.061 76.2530 1475.960 0.000

4 26.52336 0.035987 737.0260 7.839 107.258 0.027 0.057 82.4560 1477.218 0.000

5 27.75823 0.021126 1313.937 8.228 111.934 0.015 0.037 147.727 2857.975 0.000

8. Conclusion

The current study developed a partitioner called LAHP to handle reducer side data skew in

MapReduce. LAHP, which is based on a learning automata game, can handle data skew very

efficiently. This algorithm can manage any type of intermediate map output skew and does not require

sampling. It can also adapt very well to heterogeneous systems. The performance of LAHP was

evaluated in experiments using synthetic and real datasets. The results show that LAHP, with

minimum overhead, can distribute the load more equitably to the reducers than other state-of-the-art

algorithms. The results of the experiments reached better than 99% accuracy for load balancing. The

results of the statistical Bonett test [7] on LAHP and Hash partitioner showed that, at a confidence

level of 95%, the standard deviation ratio of Hash-to-LAHP was [0.1, 2858]. This means that the

standard deviation ratio of the distributed load by LAHP partitioner has less dispersion around the

mean compared to that of the Hash partitioner. LAHP can also handle data skew caused by size. This

means that data skew could also occur when the sizes of the keys are different and affect the shuffle

time. In future works, this issue will be considered. Furthermore, the effectiveness of LAHP in the

presence of the combiner operation will be investigated and the communication cost among mappers

and reducers will be considered.

References

[1] Apache Hadoop, in, http://hadoop.apache.org/.

[2] Billion Word Imputation, in, https://www.kaggle.com/c/billion-word-imputation/data.

[3] KFS, in, https://code.google.com/p/kosmosfs/.

[4] Hash Partitioner, in, https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/
mapreduce/lib/partition/HashPartitioner.html.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27

[5] F.N. Afrati, N. Stasinopoulos, J.D. Ullman, A. Vassilakopoulos, SharesSkew: An algorithm to handle
skew for joins in MapReduce, Information Systems, 77 (2018) 129-150.

[6] J. Berlioska, M. Drozdowski, Comparing load-balancing algorithms for MapReduce under Zipfian
data skews, Parallel Computing, 72 (2018) 14-28.

[7] D.G. Bonett, Robust confidence interval for a ratio of standard deviations, Applied psychological
measurement, 30 (2006) 432-439.

[8] Q. Chen, J. Yao, Z. Xiao, LIBRA: Lightweight Data Skew Mitigation in MapReduce, IEEE
Transactions on Parallel and Distributed Systems, 26 (2015) 2520-2533.

[9] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM,
51 (2008) 107-113.

[10] S. Del Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for imbalanced big data
using Random Forest, Information Sciences, 285 (2014) 112-137.

[11] Y. Fan, W. Wu, Y. Xu, H. Chen, Improving MapReduce performance by balancing skewed loads,
China Communications, 11 (2014) 85-108.

[12] E. Friedman, S. Shenker, Synchronous and asynchronous learning by responsive learning
automata, Mimeo, (1996).

[13] Y. Gao, Y. Zhang, H. Wang, J. Li, H. Gao, A Distributed Load Balance Algorithm of MapReduce for
Data Quality Detection, in: H. Gao, J. Kim, Y. Sakurai (Eds.) Database Systems for Advanced
Applications: DASFAA 2016 International Workshops: BDMS, BDQM, MoI, and SeCoP, Dallas, TX,
USA, April 16-19, 2016, Proceedings, Springer International Publishing, Cham, 2016, pp. 294-306.

[14] E. Gavagsaz, A. Rezaee, H. Haj Seyyed Javadi, Load balancing in reducers for skewed data in
MapReduce systems by using scalable simple random sampling, The Journal of Supercomputing, 74
(2018) 3415-3440.

[15] E. Gavagsaz, A. Rezaee, H. Haj Seyyed Javadi, Load balancing in join algorithms for skewed data
in MapReduce systems, The Journal of Supercomputing, (2018).

[16] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, H. Pirahesh,
Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,
Data Mining and Knowledge Discovery, 1 (1997) 29-53.

[17] B. Gufler, N. Augsten, A. Reiser, A. Kemper, Load balancing in mapreduce based on scalable
cardinality estimates, in: 2012 IEEE 28th International Conference on Data Engineering, IEEE, 2012,
pp. 522-533.

[18] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, L. Qi, LEEN: Locality/Fairness-Aware Key Partitioning for
MapReduce in the Cloud, in: Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, 2010, pp. 17-24.

[19] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Handling partitioning skew in MapReduce using
LEEN, Peer-to-Peer Networking and Applications, 6 (2013) 409-424.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, {kvm: the Linux virtual machine monitor}, in:
Proceedings of the Linux Symposium, 2007, pp. 225-230.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28

[21] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, A study of skew in mapreduce applications, Open
Cirrus Summit, (2011).

[22] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, SkewTune: mitigating skew in mapreduce applications,
in: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, ACM,
Scottsdale, Arizona, USA, 2012, pp. 25-36.

[23] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, L. Wang, Map-Balance-Reduce: An improved parallel
programming model for load balancing of MapReduce, Future Generation Computer Systems,
(2017).

[24] J. Lin, The Curse of Zipf and Limits to Parallelization: A Look at the Stragglers Problem in
MapReduce, in: 7th Workshop on Large-Scale Distributed Systems for Information Retrieval, 2009.

[25] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, P. Valduriez, FP-Hadoop: Efficient processing of
skewed MapReduce jobs, Information Systems, 60 (2016) 69-84.

[26] G. Liu, X. Zhu, J. Wang, D. Guo, W. Bao, H. Guo, SP-Partitioner: A novel partition method to
handle intermediate data skew in spark streaming, Future Generation Computer Systems, (2017).

[27] W. Lu, L. Chen, L. Wang, H. Yuan, W. Xing, Y. Yang, NPIY : A novel partitioner for improving
mapreduce performance, Journal of Visual Languages & Computing, 46 (2018) 1-11.

[28] B. Memishi, M.S. Pérez, G. Antoniu, Failure detector abstractions for MapReduce-based
systems, Information Sciences, 379 (2017) 112-127.

[29] J. Myung, J. Shim, J. Yeon, S.-g. Lee, Handling data skew in join algorithms using MapReduce,
Expert Systems with Applications, 51 (2016) 286-299.

[30] K. Najim, A.S. Poznyak, Learning automata: theory and applications, Pergamon Press, Inc., 1994.

[31] K.S. Narendra, M.A.L. Thathachar, Learning automata: an introduction, Prentice-Hall, Inc., 1989.

[32] C.L. Philip Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data, Information Sciences, 275 (2014) 314-347.

[33] S.R. Ramakrishnan, G. Swart, A. Urmanov, Balancing reducer skew in MapReduce workloads
using progressive sampling, in: Proceedings of the Third ACM Symposium on Cloud Computing,
ACM, San Jose, California, 2012, pp. 1-14.

[34] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, D. Reeves, Sailfish: a framework for
large scale data processing, in: Proceedings of the Third ACM Symposium on Cloud Computing,
ACM, San Jose, California, 2012, pp. 1-14.

[35] K. Slagter, C.-H. Hsu, Y.-C. Chung, G. Yi, SmartJoin: a network-aware multiway join for
MapReduce, Cluster Computing, 17 (2014) 629-641.

[36] B. Tang, M. Tang, G. Fedak, H. He, Availability/Network-aware MapReduce over the Internet,
Information Sciences, 379 (2017) 94-111.

[37] Z. Tang, X. Zhang, K. Li, K. Li, An intermediate data placement algorithm for load balancing in
Spark computing environment, Future Generation Computer Systems, (2016).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

[38] M.A.L. Thathachar, B.R. Harita, Learning automata with changing number of actions, IEEE
Transactions on Systems, Man, and Cybernetics, 17 (1987) 1095-1100.

[39] M.A.L. Thathachar, P.S. Sastry, Varieties of learning automata: an overview, IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 32 (2002) 711-722.

[40] M.A.L. Thathachar, P.S. Sastry, Networks of Learning Automata: Techniques for Online
Stochastic Optimization, Springer-Verlag New York, Inc., 2003.

[41] T. White, Hadoop: The Definitive Guide, 4th Edition, O'Reilly Media, Inc., 2015.

[42] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, X. Cui, Sampling-Based Partitioning in MapReduce for Skewed
Data, in: 2012 Seventh ChinaGrid Annual Conference, 2012, pp. 1-8.

[43] Y. Xu, W. Qu, Z. Li, Z. Liu, C. Ji, Y. Li, H. Li, Balancing reducer workload for skewed data using
sampling-based partitioning, Computers & Electrical Engineering, 40 (2014) 675-687.

[44] X. Zhang, Y. Wu, C. Zhao, MrHeter: improving MapReduce performance in heterogeneous
environments, Cluster Computing, 19 (2016) 1691-1701.

[45] X. Zhao, J. Zhang, X. Qin, k NN-DP: Handling Data Skewness in kNN Joins Using MapReduce,
IEEE Transactions on Parallel and Distributed Systems, 29 (2018) 600-613.

