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A Survey of Link Prediction in Complex Networks
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Networks have become increasingly important to model complex systems composed of interacting elements.
Network data mining has a large number of applications in many disciplines including protein-protein
interaction networks, social networks, transportation networks, and telecommunication networks. Different
empirical studies have shown that it is possible to predict new relationships between elements attending to
the topology of the network and the properties of its elements. The problem of predicting new relationships
in networks is called link prediction. Link prediction aims to infer the behavior of the network link formation
process by predicting missed or future relationships based on currently observed connections. It has become
an attractive area of study since it allows us to predict how networks will evolve. In this survey, we will review
the general-purpose techniques at the heart of the link prediction problem, which can be complemented by
domain-specific heuristic methods in practice.
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1. INTRODUCTION

A link is a connection between two nodes in a network. This simple concept can be
used to represent extremely complex systems where a large number of elements in-
teract among them. The proliferation of data that can be represented as networks has
created new opportunities but also new challenges in the field of data mining. A large
number of problems related to network mining are currently being studied, includ-
ing community detection [Fortunato 2010], structural network analysis [Kossinets and
Watts 2006], and network visualization [Tamassia 2013]. One of the most interesting
network-related problems is link prediction, which consists of inferring the existence
of new relationships or still unknown interactions between pairs of entities based on
their properties and the currently observed links [Liben-Nowell and Kleinberg 2007].
The approaches and techniques designed to solve this problem enable the extraction of
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implicit information present in the network and the identification of spurious links, as
well as modeling and evaluating network evolution mechanisms.

Link prediction methods have been successfully applied to biological networks in
order to predict previously unknown interactions between proteins [Martı́nez et al.
2014], significantly reducing the costs of empirical approaches [Schwikowski et al.
2000]. They have also been used to model highly dynamic systems, such as email or
telephone call networks [O’Madadhain et al. 2005]. Link prediction techniques are
widely present in our daily lives, suggesting people we may know but we are not still
connected to in our social networks [Liben-Nowell and Kleinberg 2007] or products we
could be interested in in electronic commerce [Huang et al. 2005].

Networks have been extensively studied since the proposition of the first basic models
to identify the laws that drive network formation and lead to their structural features
[Newman 2003]. Some techniques that could be considered as link prediction methods
were then proposed. However, it was not until specific link-prediction-oriented seminal
works [Liben-Nowell 2005], which performed a comprehensive analysis of the problem,
that this field came under the spotlight due to its applicability and usefulness in a
great variety of contexts.

Link prediction is grounded in the empirical evidence that two entities are more
likely to interact if they are similar. Similarity in networks must be understood as an
abstract concept and could vary between networks. Understanding the domain that the
network represents is a crucial step to define the similarity between two nodes. In most
domains, it has been observed that nodes tend to form highly connected communities
[Palla et al. 2005]. This has led to the common definition of similarity as the amount
of relevant direct or indirect paths between nodes.

One of the main difficulties in link prediction is achieving a good balance between
the amount of information considered to perform the prediction and the algorithm
complexity of the techniques needed to collect that information. Since actual networks
are usually formed by hundreds of thousands or even millions of nodes, the techniques
used to perform link prediction must be highly efficient. However, considering only
local information could lead to poor predictions, especially in very sparse networks.

Different reviews about this topic have been previously published and have influ-
enced this work [Liben-Nowell and Kleinberg 2007; Al Hasan and Zaki 2011; Lü and
Zhou 2011; Wang et al. 2015]. However, new approaches have been developed since
their publication and a new review of the state of the art is desirable. A large number
of domain-specific link prediction techniques have been proposed. However, these tech-
niques are left out of this review since most of them are tuned variations of the basic
methods that will be described later. In this work, we focus on link prediction tech-
niques in undirected networks using derived topological features. These techniques
are more versatile than attribute-based methods since topology-based techniques are
not domain specific.

We make several contributions in this survey. First, we perform a detailed and
thorough study of the state of the art of link prediction approaches and methods using
a unified notation. This study includes the computational complexity analysis of the
most important techniques, which is not always provided by their original authors.
Second, we propose a taxonomy to classify link prediction techniques attending to the
methodology that they employ and the amount of information they use. Finally, we
perform an empirical study of the techniques by applying the most important methods
to a set of networks with different properties and evaluating their results.

2. THE LINK PREDICTION PROBLEM

The link prediction problem in undirected networks is defined as follows. Given a
snapshot of an undirected network in time t where each node represents an entity
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Fig. 1. Our proposed taxonomy for link prediction techniques.

or actor and each link represents an interaction or relationship between the pair of
entities connected through the link, the link prediction problem can be formally defined
as inferring the subset of missing links (existing but nonobserved links) in the current
snapshot or that will be formed in time t + �.

Most existing link prediction techniques consider it a ranking problem where pairs
of unconnected nodes are given a score proportional to the likelihood of the existence
of a link between them. A threshold is usually established: all pairs with a score above
the threshold are considered as positive instances and all pairs below the threshold are
viewed as negative instances. This threshold can be specified by the user, application
dependent, or automatically determined. As far as we know, automatic threshold se-
lection in link prediction remains an unexplored problem. The link prediction problem
can be viewed as a binary classification problem for links in the network where two
classes are considered: positive or existence of link and negative or absence of link.

A large number of link prediction techniques have been proposed in the specialized
literature. These techniques differ in different aspects, including the evolution rules
that they model, their computational complexity, or the type or amount of information
they consider. We propose a custom extended version (see Figure 1) of the taxonomy
presented by Lü and Zhou [2011]. These taxonomies classify the previously proposed
methods attending to the approach they follow and the amount of information that
they take into account. Each method is described in detail next.

2.1. Applications of Link Prediction

Link prediction techniques have found a large number of applications in very different
fields. Any domain where entities interact in a structured way can potentially benefit
from link prediction. Some interesting or widely used applications of link prediction
are described later.

Link prediction techniques are used to improve similar users’ selection in recom-
mender systems that follow a collaborative approach, leading to better recommenda-
tion results [Schafer et al. 2007]. A similar application is related to social networks,
which have become extremely popular in modern society. The users of these systems
expect to have simple and effective mechanisms to find their acquaintances among the
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massive amount of users registered. Most social networks are using link prediction
techniques to automatically suggest acquaintances with a high degree of accuracy.

In the field of biology, link prediction techniques are being applied to find possible
interactions between pairs of proteins in a protein-protein interaction network (PPI
network) [Qi et al. 2006]. In vitro experiments to determine which proteins interact
are expensive in money and time, so studied targets are carefully selected when there
is prior evidence, which could be obtained computationally.

Another application is found in collaboration prediction in scientific coauthorship
networks. Collaboration data is easily accessible, since some journal indexing sites
make public their collections. Link prediction methods have become a tool to better
understand how some research fields will evolve by predicting which authors or groups
could potentially collaborate in the future [Pavlov and Ichise 2007].

Entity resolution, also known as record linkage or deduplication, consists of find-
ing duplicated references or records in a dataset. Traditionally, entity resolution only
relied on attribute similarity between entries. However, recently, some authors have
shown that considering context information in network-structured domains using link
prediction techniques to take into consideration the similarity between the instances
can lead to improvements in entity resolution [Bhattacharya and Getoor 2007].

Social network analysis has been widely used to analyze the structure of criminal and
terrorist networks in order to fight against organized crime [Krebs 2002]. For example,
Xu and Chen [2008] have shown that the topology of some criminal networks does not
change if a significant fraction of links are reinserted using link prediction techniques.
These results suggest that link prediction can reveal actual links in criminal networks,
allowing us to anticipate certain criminal actions.

Finally, networks can be used to analyze how tendencies spread across society. Net-
work analysis can be used to improve marketing studies. Some authors have shown
how link prediction can be used in viral marketing in order to achieve better marketing
plans [Richardson and Domingos 2002].

2.2. Terminology and Notation

A graph or network G is an ordered pair G = (V, E), where V is a set of optionally
labeled vertices or nodes and E is a set of links between pairs of elements from the
set V . A link between two nodes x and y is noted as ex,y. The number of nodes in the
network, also known as the size of the network, is denoted as |V |. The number of links
is denoted as |E|. We can distinguish between directed links (noted as arcs), which
connect a source node to a destination node, and undirected links (noted as edges),
when there is no concept of source and destination. A directed graph is composed only
of arcs. Similarly, an undirected graph is composed only of edges. Finally, a mixed graph
can contain both types of links (arcs and edges).

The set of nodes connected through an edge to a node x ∈ V is called the neighborhood
of x and is denoted as �x. In undirected graphs, the degree of a node x is defined as the
number of edges connected to the node and will be denoted as |�x|. In directed graphs,
the degree of a node is the sum of the out-degree and the in-degree, which are the count
of outgoing arcs and incoming arcs, respectively. The average degree of a network is
denoted as 〈�〉 and is equal to the average degree of all its nodes.

Let a loop be an edge or arc connecting a node to itself. A simple graph is defined
as a graph without loops and with no more than one edge or arc between each pair
of vertices. The techniques reviewed in this survey assume there are no loops in the
network.

A path is a sequence of links that connect a sequence of nodes in the graph. In directed
networks, path steps are restricted to move from the source node to the destination
node of the same arc. The path length is the number of links in the path. The shortest
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path between two vertices is the path with the smaller length between those vertices.
Multiple shortest paths for a pair of vertices can coexist. A graph is called connected if
there is a path between each pair of nodes x, y ∈ V . If the graph is not connected, it is
composed of components. A component is a connected subgraph. A connected graph has
only one component. If one of the components has a significantly larger number of nodes
compared to the other components, it is usually called the main or giant component.

3. SIMILARITY-BASED METHODS

Similarity-based methods assume that nodes tend to form links with other similar
nodes. These methods stem from the hypothesis that two nodes are similar if they are
connected to similar nodes or are near in the network according to a given distance
function. These approaches define a function s(x, y) that assigns a score known as
similarity for every pair of nodes x and y. This measure is computed for each interesting
pair of nodes, usually those with nonobserved links between them. Pairs of nodes are
ranked in decreasing order based on their similarity scores, so links at the top of the
ranking are supposed to be more likely to be present in the set of missing links.

The definition of similarity is not a trivial task, since it has a heuristic component.
The similarity function can vary between networks even from the same domain. As
a nonsurprising result, a large number of similarity-based methods with different
definitions of similarity have been proposed. It has been empirically shown that the
similarity between nodes can be defined in terms of network topological properties.

As an additional contribution of this survey, the algorithmic complexity is also com-
puted for every similarity-based method using the big O notation. Three variables have
been considered to measure problem size: v as the number of nodes, e as the number
of edges, and k as the maximum degree of a node. Some simple optimizations will be
taken into account in our algorithmic complexity analysis.

For example, the intersection between two sets of size n and m, respectively, can
be computed with complexity O(n + m) using hash tables. Insertion and lookup time
complexities are O(1) using hashing. A set is iterated to fill a hash table. The second
set is iterated to check whether its members already are in the hash table. Collisions
can be totally avoided since each node has a unique assigned number. The set union
operation has the same time complexity.

Matrix operations are also considered. Matrix addition and subtraction are O(n2).
However, in sparse networks, they can be computed with complexity O(nt), where t � n.
The inversion of a matrix of size n × n is of cubic time complexity O(n3) for the naive
algorithm. Some algorithms have been proposed to improve this efficiency, but they
are always worse than quadratic. The multiplication of two matrices of size n × m and
m × p, respectively, has a complexity O(mnp) in dense matrices. However, in sparse
matrices, this efficiency can be reduced to O(mtp), where t � n. It should be noted that
the adjacency matrices of real-world networks are typically sparse.

3.1. Local Approaches

Local similarity-based approaches use node neighborhood-related structural informa-
tion to compute the similarity of each node with other nodes in the network. These
approaches are faster than nonlocal techniques and highly parallelizable. In addition,
they allow us to handle efficiently the link prediction problem in very dynamic and
changing networks such as online social networks. Their main drawback is that us-
ing only local information restricts the set of nodes similarity can be computed for to
distance-two nodes (neighbors of neighbors). This can be a big drawback as many links
are formed at distances greater than two in many real-world networks, especially in
non-small-world networks [Liben-Nowell and Kleinberg 2007]. However, these methods
have shown a very competitive prediction accuracy against more complex techniques. It
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should be noted that, since these methods are limited to two-hop nodes, their time com-
plexity is O(vk2 f (k)), where f (k) is the complexity of computing the similarity between
a pair of nodes and their spatial complexity is O(vk2).

3.1.1. Common Neighbors (CN). Common neighbors is the simplest local technique. The
similarity between two nodes is defined as the number of shared neighbors between
both nodes [Liben-Nowell and Kleinberg 2007]. It makes sense to assume that, if
two individuals share many acquaintances, they are more likely to meet than two
individuals without common contacts. Different studies have confirmed this hypothesis
by observing a correlation between the number of shared neighbors between pairs of
nodes and the probability of being linked [Newman 2001]. This method defines the
similarity function as

s(x, y) = |�x ∩ �y|.
Despite its simplicity, this measure performs surprisingly well on most real-world

networks and beats very complex approaches. This method is the basis for other ap-
proaches presented later. Using this method to compute similarity for all possible pairs
results in a local link prediction technique with O(vk2(k + k))) = O(vk3) time complexity.

3.1.2. The Adamic-Adar Index (AA). This similarity measure, initially proposed by Lada
Adamic and Eytan Adar, was intended to measure the similarity between two entities
based on their shared features [Adamic and Adar 2003]. However, each feature weight is
logarithmically penalized by its appearance frequency. If we take neighbors as features,
it can be written as

s(x, y) =
∑

z∈�x∩�y

1
log |�z| .

This equation is a variation of the common neighbors similarity function where
each shared neighbor is penalized by its degree. This intuitively makes sense in a
large number of real-world networks. For example, in social networks, the amount of
resources or time that a node can spend on each of its neighbors decreases as its degree
increases, also decreasing its influence on them. Its computational complexity is, again,
O(vk3).

3.1.3. The Resource Allocation Index (RA). This index is motivated by the resource al-
location process that takes place in complex networks [Zhou et al. 2009]. It models
the transmission of units of resources between two unconnected nodes x and y through
neighborhood nodes. Each neighborhood node gets a unit of resource from x and equally
distributes it to its neighbors. The amount of resources obtained by node y can be con-
sidered as the similarity between both nodes. This similarity function is formulated
as

s(x, y) =
∑

z∈�x∩�y

1
|�z| .

It should be noted that this measure is strongly related to the common neighbors
and the Adamic-Adar index [Martı́nez et al. 2016]. The resource allocation index has
been shown to be the local measure that achieves better results in a large number of
networks. Some recent works have led to the conclusion that the performance of these
metrics increases by making the penalization for high-degree nodes more pronounced
in scale-free networks [Virinchi and Mitra 2013]. This method also has a O(vk3) time
complexity.

3.1.4. Resource Allocation Based on Common Neighbor Interactions (RA-CNI). Resource allo-
cation based on common neighbor interactions is motivated by the resource allocation
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process where each node sends a unit of resource to its neighbors [Zhang et al. 2014].
However, this method also takes into consideration the return of resources in the op-
posite direction. It is defined as

s(x, y) =
∑

z∈�x∩�y

1
|�z| +

∑
ei, j∈E,|�i |<|� j |,i∈�x, j∈�y

(
1

|�i| − 1
|� j |

)
.

Experimental results obtained by its original authors show that this method achieves
a better precision than the original local resource allocation score in many real-world
networks. The computational complexity of this method is, however, O(vk4) in the worst
case, worse than the aforementioned methods.

3.1.5. The Preferential Attachment Index (PA). This index is a direct result of the well-
known Barabási-Albert complex network formation model [Barabási and Albert 1999;
Mitzenmacher 2004]. Many real network node degrees follow a power law distribution,
resulting in scale-free networks that could not be explained by previous network forma-
tion models. Albert-László Barabási and Réka Albert built a theoretical model based
on the observation that the probability of link formation between two nodes increases
as the degree of these nodes does. This formation model leads to the concept of “the rich
get richer,” which generates the power law degree distribution observed in scale-free
networks. The similarity between two nodes, according to the Barabási-Albert model,
can be estimated as

s(x, y) = |�x||�y|.
This measure can be also applied in nonlocal contexts, since it does not rely on

shared neighbors. However, its prediction accuracy is usually poor when applied as a
global measure. The computational complexity of this method is O(vk2), faster than the
methods based on shared neighbors.

3.1.6. The Jaccard Index (JA). This widely used coefficient in information retrieval sys-
tems was proposed by Paul Jaccard (1868–1944) to compare the similarity and diversity
of sample sets [Jaccard 1901]. It measures the ratio of shared neighbors in the complete
set of neighbors for two nodes. This similarity function is defined as

s(x, y) = |�x ∩ �y|
|�x ∪ �y| .

It can be easily seen that this method is yet another variation of the common neigh-
bors method where there is a penalization for each nonshared neighbor. The algorith-
mical time complexity of this method is O(vk2(2k + 2k)) = O(vk3).

3.1.7. The Salton Index (SA). This index is also known as the cosine similarity [Salton
and McGill 1983]. This measure is closely related to the Jaccard index, and some works
have shown that, in most practical situations, the Salton index yields a value that is
approximately twice the Jaccard index [Hamers et al. 1989]. This similarity function
is defined as

s(x, y) = |�x ∩ �y|√|�x||�y|
.

The computational time complexity of this method is, again, O(vk3).

3.1.8. The Sørensen Index (SO). This index was developed by the botanist Thorvald
Sørensen in 1948 to compare the similarity between different ecological community
data samples [Sørensen 1948]. Despite its similarity with the Jaccard index, it is less
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sensitive to outliers [McCune et al. 2002]. Sørensen similarity is defined as

s(x, y) = 2|�x ∩ �y|
|�x| + |�y| .

The algorithmic time complexity of this method for all possible distance-two pairs is
O(vk3).

3.1.9. The Hub Promoted Index (HPI). This index was proposed as a result of studying
modularity in metabolic networks [Ravasz et al. 2002]. These networks show a hierar-
chical structure with small highly internally connected modules that are also highly
isolated from each other. The main goal of this similarity measure is to avoid link
formation between hub nodes and promote link formation between low-degree nodes
and hubs. This index defines similarity as

s(x, y) = |�x ∩ �y|
min(|�x|, |�y|) .

The computation complexity of this method is, once more, O(vk3).

3.1.10. The Hub Depressed Index (HDI). This index is based on the hub promoted index
but has an opposite goal [Ravasz et al. 2002]. The hub depressed index promotes link
formation between hubs and between low-degree nodes, but not between hubs and
low-degree nodes. This similarity function can be defined as

s(x, y) = |�x ∩ �y|
max(|�x|, |�y|) .

This method has the same computational complexity as the hub promoted index,
which is O(vk3).

3.1.11. The Local Leicht-Holme-Newman Index (LLHN). This index is defined as the ratio of
actual paths of length two between two nodes and a value proportional to the expected
number of paths of length two between them [Leicht et al. 2006]. Its own authors
proclaim that this index is a more sensitive measure of structural equivalence than
others like the Salton index or the Jaccard index. The similarity function defined by
this index can be computed as

s(x, y) = |�x ∩ �y|
|�x||�y| .

As with almost all local methods, this one has a time complexity of O(vk3).

3.1.12. The Individual Attraction Index (IA). This index is similar to the resource allocation
index but also takes into account how connected the shared neighbors are [Dong et al.
2011]. It makes sense to assume that two nodes with the same number of shared neigh-
bors are more likely to be connected if their neighborhoods are also highly connected
among them. These links are called inner links. This similarity is computed as

s(x, y) =
∑

z∈�x∩�y

|ez,�x∩�y | + 2
|�z| ,

where |ez,�x∩�y | is the number of links between node z and nodes from the set �x ∩ �y.
Dong et al. [2011] also proposed an alternative version with a lower computational
complexity, which they called the simple individual attraction index:

s(x, y) =
∑

z∈�x∩�y

|e�x∩�y | + 2
|�z||�x ∩ �y| ,
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where |e�x∩�y | is the number of edges in the network that connect common neighbors
of nodes x and y. The computational complexity of the more complex version, which
we will call IA1, is O(vk4), whereas the computation complexity of the more efficient
version, which we will call IA2, is O(vk3).

3.1.13. Mutual Information (MI). This method treats the problem from the perspective of
information theory by computing the conditional self-information of the existence of a
link given the set of common neighbors [Tan et al. 2014]. The similarity among two
nodes is computed as

s(x, y) = −I(ex,y|�x ∩ �y) = −I(ex,y) +
∑

z∈�x∩�y

I(ex,y; z),

where I(ex,y) is the self-information of x and y being connected, which is computed as

I(ex,y) = − log2

⎛
⎝1 −

|�y|∏
i=1

|E| − |�x| − i + 1
|E| − i + 1

⎞
⎠ ,

and I(ex,y; z) is the mutual information of the existence of a link between x and y and
the set of shared neighbors of these nodes, which is computed as

I(ex,y; z) = 1
|�z|(|�z| − 1)

∑
u,v∈�z:u	=v

(I(eu,v) − I(eu,v|z)).

Finally, the conditional self-information of x and y being connected is computed as

I(ex,y|z) = − log2
|{ex,y : x, y ∈ �z, ex,y ∈ E}|

1
2 |�z|(|�z| − 1)

.

The complexity of evaluating a single link is O(k4), as shown by its authors. Therefore,
applying it to nodes at distance two leads to a computational complexity O(nk6) when
used as a local link prediction technique.

3.1.14. Local Naı̈ve Bayes (LNB). This method assumes that each shared neighbor has
a different role or degree of influence, which can be estimated using probability theory
[Liu et al. 2011]. This method estimates the similarity of two nodes as

s(x, y) =
∑

z∈�x∩�y

f (z) log (oRz),

where o is a constant for the network, which is computed as

o = punconnected

pconnected
=

1
2 |V |(|V | − 1)

|E| − 1.

Rz is the role or influence of the node, which is computed as

Rz = 2|{ex,y : x, y ∈ �z, ex,y ∈ E}| + 1
2|{ex,y : x, y ∈ �z, ex,y /∈ E}| + 1

and f (z) is a function that measures the influence of the node. The authors suggest
f (z) = 1 from common neighbors, f (z) = 1

log |�z| from the Adamic-Adar index, or f (z) =
1

|�z| from the resource allocation method. The computational complexity of this method
is, therefore, O(vO( f (z)) + vk3).
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3.1.15. CAR-Based Indices (CAR). CAR-based methods are proposed under the hypothe-
sis that two nodes are more likely to be linked if their common neighbors are members
of a strongly inner-linked cohort, named a local community (LC) [Cannistraci et al.
2013]. This assumption allows us to give more importance to nodes interlinked with
other neighbors. A CAR-based version of common neighbors is defined as

s(x, y) =
∑

z∈�x∩�y

1 + |�x ∩ �y ∩ �z|
2

.

In a similar way, a CAR-based variation of the resource allocation can be computed
as

s(x, y) =
∑

z∈�x∩�y

|�x ∩ �y ∩ �z|
|�z| .

The computational complexity of this approach relies on the underlying technique.
Both examples shown previously have a computational complexity of O(vk4).

3.1.16. Functional Similarity Weight (FSW). This method is derived from the Sørensen in-
dex considering that the probability of a node x interacting with a node y is independent
of the probability of the node y interacting with the node x in directed networks [Chua
et al. 2006]. However, this score can be also applied to undirected networks as

s(x, y) =
(

2|�x ∩ �y|
|�x − �y| + 2|�x ∩ �y| + λ

)2

,

where λ is computed as λ = max (0, 〈�〉 − (|�x − �y| + |�x ∩ �y|)). This parameter is
included to penalize the similarity between nodes when any of them has a small degree.
The computational complexity of this method is O(vk3).

3.1.17. Local Interacting Score (LIT). This score is an iterative variation of the functional
similarity weight [Liu et al. 2008]. Initially, weights are assigned as sx,y(0) = 1 for con-
nected pairs of nodes and sx,y(0) = 0 for the rest of pairs. Then, weights are iteratively
updated as

sx,y(t) =
∑

u∈�x∩�y
sz,x(t − 1) + ∑

v∈�x∩�y
sz,y(t − 1)∑

u∈�x
sz,x(t − 1) + ∑

v∈�y
sz,y(t − 1) + λ(x) + λ(y)

.

where λ(x) is computed as λ(x) = max (0,
∑

u∈V
∑

v∈�u
su,x(t)/|V | − ∑

z∈�x∩�y
sz,x(t − 1)).

λ(x) plays the role of the λ penalization in functional similarity weight. The computa-
tional complexity of each iteration is O(vk3). When the process is limited to l iterations,
the final computational complexity is O(lvk3).

3.2. Global Approaches

Global similarity-based indices use the whole network topological information to score
each link. These methods are not limited to measuring similarity between distance-
two nodes. However, their computational complexity can make them unfeasible for
large networks and their parallelization can be very complex, especially in distributed
environments where the complete topology of the network may not be known by ev-
ery computational agent. Although they exhibit very diverse time complexities, their
spatial complexity is O(v2), since they have to store a score for every pair of nodes.

3.2.1. Negated Shortest Path (NSP). Negated shortest path [Liben-Nowell 2005] is a basic
graph similarity measure that requires one to compute the shortest path between a
pair of nodes. Shortest paths can be efficiently computed with Dijkstra’s algorithm,
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which has a O(e log v) complexity using an adjacency list representation of the network
and a heap data structure for its priority queue. Given the shortest path between a
pair of nodes x and y, their similarity can be computed as

s(x, y) = −|shortest pathx,y|.
Since shortest paths must be computed for each node in the network, the overall

time complexity of this method is O(ev log v). Negated path prediction accuracy is poor
even when compared to most local methods. Other methods described later, based on
multiple paths, obtain significantly better results. This fact illustrates the importance
of considering indirect paths in link prediction techniques.

3.2.2. The Katz Index (KI). This index sums the influence of all possible paths between
two pairs of nodes, incrementally penalizing paths by their length [Katz 1953]. This
index is defined as

s(x, y) =
∞∑

l=1

βl|pathsl
x,y| =

∞∑
l=1

βl(Al)x,y,

where pathsl
x,y is the set of paths of length l between nodes x and y, and A is the

adjacency matrix of the network. It should be noted that the lth power of the matrix
has each of its entries equal to the count of paths of length l between the corresponding
pair of nodes. The parameter β is a damping factor where 0 < β < 1. Giving a larger
value to this parameter increases the influence of longer paths. If 1 is added to each
element of the diagonal of the resulting similarity matrix S, this expression can be
written in matrix terms as S = β AS + I. The similarity between all pairs of nodes
can be directly computed using the closed form by rearranging for S in the previous
expression and subtracting the previously added 1s to the elements in the diagonal:

S = (I − β A)−1 − I,

where I is the identity matrix. The similarity for each pair of nodes x and y is s(x, y) =
Sx,y, where Sx,y is the (x, y)-element of the matrix S. The Katz index has a great
predictive power but the high algorithmic complexity required to compute the inverse
of a matrix limits its applicability to small networks. The time complexity of this
method is O(vk+ v3 + v), where the O(vk) term is due to matrix subtraction and scalar
multiplication, O(v3) is due to matrix inversion, and O(v) comes from the subtraction
of the diagonal elements in the identity matrix. Therefore, the time complexity of this
method is O(v3).

3.2.3. The Global Leicht-Holme-Newman Index (GLHN). The global version of the Leicht-
Holme-Newman index is based on the same fundamentals as the Katz index [Leicht
et al. 2006]. This index assigns a similarity proportional to the number of paths between
nodes. Similarity between all pairs of nodes is defined as

S = I +
∞∑

l=1

φl Al,

where the identity matrix term indicates maximal self-similarity. Parameter φ is simi-
lar to the damping factor used in the Katz index. The number of actual paths of length l
between each pair of nodes can be replaced by their expected value, which is computed
as

Expected
(
(Al)x,y

) = |�x||�y|
2|E| λl−1

1 ,
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where λ1 is the largest or dominant eigenvalue of the network adjacency matrix A.
Replacing Al by Expected(Al), this similarity can be finally expressed as

S = 2|E|λ1 D−1
(

I − β

λ1
A
)−1

D−1,

where D is a diagonal matrix with each element set to Di,i = |�i| and β is a free param-
eter related to φ. If the constant factor is removed, this expression can be iteratively
computed avoiding the matrix inversions as

S(t) = β

λ1
AS(t − 1) + I

starting with S(0) having all its elements set to zero. This iterative process is performed
until convergence. Iterative methods require a threshold parameter ε with a value close
to zero. When the absolute difference between two iterations is below this threshold,
the process is considered to have converged.

In order to compute the required dominant eigenvalue, different approaches can
be followed. One of the most efficient is power iteration, or the Von Mises iteration
method. This technique performs a series of iterative steps that converge to the largest
eigenvector. It can be expressed as

b(t) = Ab(t − 1)
‖Ab(t − 1)‖ ,

where A is the adjacency matrix of the network and b is a vector of length |V |, which can
be initialized with random values. This process is repeated until convergence. Finally,
it has been shown that the dominant eigenvalue is equal to the norm of this vector, so
λ1 = ‖b(c)‖, where c is the step of convergence.

The similarity between two nodes is defined as s(x, y) = S(c)x,y, where c is the time
step when convergence is reached. The computational complexity of this method is
analyzed as follows, considering c as the number of iterations required. The largest
eigenvalue can be computed in O(cvk) time using the power iteration method. The
complexity of the iterative process to obtain S(t) is O(cv2k). In summary, the complexity
of the Global Leicht-Holme-Newman method is O(cv2k + cvk) = O(cv2k).

3.2.4. Random Walks (RW). Given a graph and a starting node, let us suppose that we
randomly select a neighbor of this node and move to it; then, we repeat this process
for each reached node. This Markov chain of randomly selected nodes is known as
a random walk on the graph [Liu and Lü 2010]. Random walks were introduced by
the mathematician Karl Pearson and have been applied to describe lots of stochastic
processes in many fields such as economics, physics, or biology [Pearson 1905]. If we
define

−→
px as the probability vector of reaching any node starting a random walk from

node x, the probability of reaching each node can be iteratively approximated by
−→
px(t) = MT −→

px(t − 1),

where M is the transition probability matrix defined by the adjacency matrix A nor-
malized by rows, with Mi, j = Ai, j/

∑
k Ai,k, and

−→
px(0) has all its elements set to 0

except
−→
px

x (0), which is set to 1. The transition probability matrix must satisfy some
properties to ensure convergence. These constraints are satisfied for undirected simple
networks. The previous equation is iteratively applied until a stop condition is met
such as

∑
i∈V (

−→
px

i (t) − −→
px

i (t − 1))2 < ε, where ε is a threshold value close to zero. Finally,
the similarity for each pair of nodes x and y is defined as s(x, y) = −→

px
y. Assuming that
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the network is sparse and c is the number of iterations until convergence, the time com-
plexity of this method is O(cv2k), since a sparse multiplication between the adjacency
matrix and the probability vector (O(vk)) is repeated for each node in each iteration.
If we also take into account the matrix normalization, the final time complexity is
O(cv2k + vk) = O(cv2k).

3.2.5. Random Walks with Restart (RWR). Let us consider a model based on the definition
of random walk where we pick a node and move following a random walk with proba-
bility α or we return to the starting node with probability (1 − α). This model is known
as a random walk with restart [Tong et al. 2006]. It is almost equivalent to the rooted
version of the popular Google’s PageRank algorithm [Page et al. 1999]. This problem
can be defined as an optimization problem:

min−→
px

α
∑

i, j∈V

MT
i, j

(−→
px

i − −→
px

j

)2
+ (1 − α)

∑
i∈V

(−→
px

i − −→
sx
i

)2
,

where M is the transition probability matrix computed for random walks and
−→
sx is the

seed vector of length |V | with all its elements set to 0 except for
−→
sx

x = 1. The closed-form
solution of this equation is

−→
px = (1 − α)(I − αMT )−1−→sx .

Although this computation may be unfeasible for large networks, it can be iteratively
approximated by the following iterative equation:

−→
px(t) = αMT −→

px(t − 1) + (1 − α)sx,

where
−→
px(0) has all its elements initially set to zero. This expression is iteratively

applied, as in the random walk method. Since this measure is not symmetric, the final

similarity for each pair of nodes is defined as s(x, y) = −→
px

y + −→
py

x . Like the random walk
method, if we assume that the network is sparse, its complexity is O(vc(vk+ k) + vk) ≈
O(cv2k), where the O(vc(vk+ k)) term is the time complexity of random walk including
vector addition and the O(vk) term is the computational complexity of the normalization
process.

3.2.6. Flow Propagation (FP). Despite the fact that the random walk with restart method
converges to a vector of probabilities, its iterative definition corresponds to a propa-
gation process. Alternative normalizations can be used for the adjacency matrix. For
example, Vanunu and Sharan [2008] proposed to apply RWR replacing the normalized
adjacency matrix with the normalized Laplacian matrix, which can be computed as

M = Dl ADr,

where Dl and Dr are diagonal matrices whose elements are respectively defined as
Dl

i,i = 1/
√∑

j Ai, j and Dr
i,i = 1/

√∑
j Aj,i. The computational complexity of this method

is the same as the random walk with restart method complexity, since the transition
matrix can be computed by the multiplication of each adjacency matrix entry by a
scalar value.

3.2.7. Maximal Entropy Random Walk (MERW). Nodes tend to be linked to central nodes
in structured networks. The maximal entropy random walk method incorporates the
centrality of nodes in order to model this behavior [Burda et al. 2009]. This method
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aims to maximize the entropy rate of a walk μ that is defined as

μ = lim
l←∞

−∑
pathl

x,y∈pathsl p(pathl
x,y) ln p(pathl

x,y)

l
,

where p(pathl
x,y) = Mx,hMh,i . . . Mi, j Mj,y. In order to maximize the entropy, each element

of the transition matrix is computed as

Mi, j = Ai, j

λ

ψ j

ψi
,

where λ is the largest eigenvalue of the adjacency matrix and ψ is the normalized
eigenvector with respect to λ satisfying

∑
x∈V ψ2

x = 1. Following this theory, Li et al.
[2011] proposes entropy maximizations of other global techniques described in this
survey. The computational complexity of the normalization process is O(cvk+ vk) since
computing the largest eigenvalue and the associated vector is O(cvk) using the power
iteration method as we have described. The final computational complexity of this
method is O(cvk + 2vk + vc(vk + k)) = O(cv2k).

3.2.8. SimRank (SR). SimRank is a method that computes how soon two random walk-
ers starting from nodes x and y are expected to meet [Jeh and Widom 2002]. This
method is recommended for directed or mixed networks. However, as the number of
undirected edges increases, it becomes impractical. It is recursively defined as

s(x, y) = β

∑
i∈�x

∑
j∈�y

s(i, j)

|�x||�y| ,

where s(z, z) = 1 and 0 < β < 1 is a damping factor. The high algorithmic complexity of
this method makes it necessary to apply optimization techniques for its computation.
Its original authors suggest pruning recursive branches beyond a radius l. The authors
of SimRank suggest a near-linear complexity with a large constant factor in directed
networks. However, this recursive expansion process has a complexity O(k2l). Since
two nested summations must be performed, the complexity for each pair of nodes is
O(k2l+2). This score must be computed for each pair of nodes so the final algorithmic
time complexity is O(v2k2l+2). It should be noted that, if pruning is applied with a
radius lower than the network diameter, this method can be considered as a quasi-
local method (quasi-local methods are described in Section 3.3).

3.2.9. Pseudoinverse of the Laplacian Matrix (PLM). The Laplacian matrix provides an al-
ternative representation of a graph, and it is widely used in spectral graph theory
[Spielman 2009]. It can be defined as L = D − A, where D is a diagonal matrix of size
|V | with each element Di,i = |�i| and A is the adjacency matrix of the graph. The Moore-
Penrose pseudoinverse of the Laplacian matrix is noted as L+. This matrix is a kernel
and can be considered as a similarity matrix [Fouss et al. 2007]. The Moore-Penrose
pseudoinverse can be computed in many different ways. One of the most popular ap-
proaches, implemented in most important mathematical packages such as MATLAB,
GNU Octave, or NumPy, is based on singular value decomposition (SVD). Detailed
steps to compute the SVD are included in the description of the low-rank approxima-
tion preprocessing method (see Section 6). Given the Laplacian matrix decomposition
L = U
V T , the Moore-Penrose pseudoinverse is computed as L+ = V
+U T , where

+ is the matrix obtained from replacing each nonzero element of 
 by its inverse.
Similarity can be computed using an inner-product-based measure such as the cosine
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distance:

s(x, y) = L+
x,y√

L+
x,x L+

y,y

.

The complexity of the Moore-Penrose pseudoinverse of the Laplacian matrix compu-
tation is dominated by the cost of computing the SVD, which is O(v3). Once this matrix
has been computed, the complexity of computing the similarity for each pair of nodes
is O(v2). The overall complexity of this global link prediction method is, therefore,
O(v3 + v2) = O(v3).

3.2.10. Average Commute Time (ACT). The average commute time is defined as the aver-
age number of steps that a random walker starting from node x takes to reach a node
y for the first time and go back to x [Liu and Lü 2010]. If the number of steps needed to
reach node y starting from node x in a random walk is denoted by m(x, y) (also known
as hitting time), the ACT value c(x, y) between both nodes can be defined as

n(x, y) = m(x, y) + m(y, x).

The average commute time can also be computed in terms of the pseudoinverse of
the Laplacian matrix L:

n(x, y) = |E|(L+
x,x + L+

y,y − 2L+
x,y),

where
√

n(x, y) defines a distance measure called the Euclidean commute time distance
(ECTD) between nodes x and y [Fouss et al. 2007]. Finally, the similarity between two
nodes can be computed as the inverse of the squared ECDT between both nodes,
ignoring the constant |E|:

s(x, y) = 1
L+

x,x + L+
y,y − 2L+

x,y
.

The complexity of this method is the same we obtained for the pseudoinverse of the
Laplacian matrix method, which was O(v3 + v2) = O(v3).

3.2.11. Random Forest Kernel Index (RFK). In graph theory, a spanning tree of a graph G is
defined as a connected undirected subgraph with no cycles that includes all the vertices
and some or all the edges of G. The matrix-tree theorem [Chebotarev and Shamis 2006]
states that the number of spanning trees in G is equal to any cofactor of an entry of
its Laplacian representation. A cofactor is the determinant of the matrix obtained by
removing the row and column of a given element. A rooted forest is defined as the union
of disjoint rooted spanning trees. It can be proved that the cofactor of (I + L)x,y is equal
to the number of spanning rooted forests in which x and y are contained in the same
x-rooted spanning tree. The inverse of this number can be considered as a measure of
accessibility between x and y. Therefore, a similarity measure can be defined as

S = (I + L)−1.

Given this similarity matrix, the similarity between a pair of nodes is s(x, y) = Sx,y.
The algorithmic time complexity of this method is O(v3 + vk + v) = O(v3) if we take
into account the Laplacian matrix computation, O(vk); the addition of the diagonal
elements of the identity matrix, O(v); and the matrix inversion, O(v3).

3.2.12. The Blondel Index (BI). The Blondel index was initially proposed to measure
similarity for a pair of vertices in different graphs [Blondel et al. 2004]. However, it
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can be adapted to work in a single graph. It is iteratively computed as

S(t) = AS(t − 1)AT + AT S(t − 1)A
‖AS(t − 1)AT + AT S(t − 1)A‖F

,

where S(0) = I and ‖M‖F is the Frobenius matrix norm. The Frobenius norm for a
matrix is computed as

‖Mm×n‖F =
√√√√ m∑

i=1

n∑
j=1

(Mi, j)2.

This measure is iteratively computed as in random-walk-based methods. The final
similarity between a pair of nodes is defined as s(x, y) = Sx,y(c), where c is the odd time
step when convergence is reached. It is important to remark that this method reaches
convergence only in odd iterations. The difference between the similarity matrices
obtained in odd iterations must be computed in order to test for convergence.

The complexity of this method is O(cv2k+ cv2) = O(cv2k), which can be derived from
sparse matrix multiplications, O(v2k), matrix addition, matrix division by a scalar, and
the Frobenius norm, O(v2).

3.3. Quasi-Local Approaches

Quasi-local methods have recently emerged to strike a balance between local and
global measures. Quasi-local approaches are almost as efficient to compute as local
methods but also consider additional topological information, as global methods do.
They do not take into account the similarity between any arbitrary pair of nodes in
the network, but neither are they limited to neighbors of neighbors. Some quasi-local
methods have access to the whole network, but their algorithmic time complexity is
still below the time complexity of global methods. Their spatial complexity is O(vk2+s),
where s depends on specific parameters that set the number of iterations or the length
of the paths considered.

3.3.1. The Local Path Index (LPI). This index is strongly based on the Katz index but it
only considers a finite number of path lengths [Lü et al. 2009]. The similarity matrix
can be computed as

S =
l∑

i=2

βi−2 Ai,

where l > 2 is the maximal path length and β is a damping factor. It should be noted
that, when l = 2, it would be equivalent to the common neighbors method. Similarity
for each pair of nodes x and y is defined as s(x, y) = Sx,y. This measure is typically
used with l = 3 due to its algorithmic complexity. When the damping factor is set to a
low value, this measure obtains very similar results to the Katz index but avoids the
matrix inversion computation. If the power of each adjacency matrix from the previous
summation term is reused, the complexity of this method O(lv2k + lv2) = O(lv2k).

3.3.2. Local Random Walks (LRW). Local random walks exploit the concept of random
walks but limit the number of iterations to a fixed a priori small number l [Liu and Lü
2010]. This method does not focus on the stationary state when convergence is reached
like other random-walk-based approaches. It is defined as

sx,y(t) = |�x|
2|E|

−→
px

y(t) + |�y|
2|E|

−→
py

x (t),
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where
−→
px

y(t) is the probability vector obtained by the random walk at iteration t. This
method only requires us to compute a limited number of random walk steps for all the
nodes in the network, so its computational complexity is O(lv2k), where usually l < i,
with i being the number of steps the random walk method would need to converge.

3.3.3. Superposed Random Walks (SRW). Random-walk-based methods are too sensitive
to the topology of the network in distant zones. The superposed random walk method,
which is based on the local random walk method, has been proposed to counteract this
issue by continuously releasing the walker at the starting node [Liu and Lü 2010]. This
behavior can be obtained by superposing each walker contribution as

sx,y(t) =
t∑

i=1

( |�x|
2|E|

−→
px

y(i) + |�y|
2|E|

−→
py

x (i)
)

.

The final similarity is computed as s(x, y) = sx,y(l). The computational complexity of
this method is O(lv2k + lvk) = O(lv2k).

3.3.4. Third-Order Resource Allocation Based on Common Neighbor Interactions (ORA-CNI).
This measure is an extension of resource allocation based on common neighbor inter-
actions that also takes into consideration distance-three paths [Zhang et al. 2014]. It
redefines resource allocation for nodes at distance three. It is computed as

s(x, y) =
∑

z∈�x∩�y

1
|�z| +

∑
ei, j∈E,|�i |<|� j |,i∈�x, j∈�y

(
1

|�i| − 1
|� j |

)
+ β

∑
[x,p,q,y]∈paths3

x,y

1
|�p||�q| ,

where β is a damping factor to adjust the influence of the three-hop resource allocation
term. This method starts from the resource allocation based on common neighbors’
interactions complexity, which it must also compute for distance-three nodes. Adding
the third term to reach three-hop nodes increases its computational complexity to
O(vk3(k2 + k3)) = O(vk6).

3.3.5. FriendLink (FL). FriendLink is a quasi-local measure based on the path count be-
tween nodes of interest, like the local path index [Papadimitriou et al. 2012]. However,
this method uses a normalization and other path length penalization mechanisms. The
similarity between two nodes x and y is computed as

s(x, y) =
l∑

i=2

1
i − 1

(Ai)x,y∏i
j=2(|V | − j)

,

where 1
i−1 is an attenuation factor similar to the Katz or the local path index damping

factors, and the count of paths of length i between x and y is normalized by the count of
paths of length i between x and y that would exist in a complete version of the network.
The algorithmic complexity of this method is O(lv2k).

3.3.6. PropFlow Predictor (PFP). PropFlow is a similarity-based method that computes
the probability that a restricted random walk starting from x ends at y in l steps or
fewer [Lichtenwalter et al. 2010]. Given a source node x and maximal path length l, this
algorithm returns an array Sx where each element Sx,y is the score assigned between
the pair of nodes x and y. New links can be predicted, as in other similarity-based
methods, by setting the similarity score to s(x, y) = Sx,y.

The pseudocode of the algorithm can be found in Algorithm 1. This method is similar
to the random walk with restart or rooted PageRank algorithms, but it employs the
localized method of propagation and, therefore, is more insensitive to noise far from
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ALGORITHM 1: PropFlow Predictor (Unweighted Version).
Input: Network G = (V, E), node x and max path length l.
Output: Score Sx,y for all n ≤ l-degree neighbors of y from x.
Found = {x};
NewSearch = {x};
Sx,x = 1;
for each z in V − {x} do

Sx,z = 0;
end
for CurrentDegree from 0 to l do

OldSearch = NewSearch;
NewSearch = ∅;
for each i in OldSearch do

for each j in �i do
Sx, j ← Sx, j + Sx,i

|�i | ;
if j is not in Found then

Found = Found ∪ { j};
NewSearch = NewSearch ∪ { j};

end
end

end
end

the source node x. It is also more efficient to compute, since it employs a breadth-
first search limited to l steps. The analysis of this method, given that the maximum
size of set OldSearch is kl and the process must be repeated |V | times, results in a
computational complexity of O(vlkl).

3.4. Summary

Our survey has shown that very different approaches can be used to perform link
prediction. A large number of methods using diverse approaches have been described
in this chapter. These methods have been catalogued using the taxonomy shown in
Figure 1. This taxonomy has two levels, which allow us to categorize each method
based on its main features.

Similarity-based methods are the most studied category in link prediction and they
compose the core of this survey. These methods are usually applied in massive networks
so their time complexity is a fundamental feature. A summary of the similarity-based
techniques that have been studied in this survey and their time complexity is shown
in Table I, which groups methods by their taxonomic classification.

As it has been seen in this chapter, most link prediction techniques are heuristics
based on some coherent assumptions. The heuristic nature of the link prediction prob-
lem allows a rich variety of approaches that might work better or worse depending on
the particular context, since network formation is a complex process and some funda-
mental factors can vary among networks. This implies that it is impossible to devise a
method that works better than all other methods for all networks.

3.5. Experimentation

In practice, link prediction strongly relies on similarity-based techniques, since most of
them are efficient enough to be applied to massive networks. Furthermore, similarity-
based scores are usually used as features when more complex approaches are applied
using other algorithmic techniques. We have performed an extensive comparison of
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Table I. Computational Complexity and References for Similarity-Based Link Prediction Methods

Time Reference
Type Name Complexity

Local

CN O(vk3) Liben-Nowell and Kleinberg [2007]
AA O(vk3) Adamic and Adar [2003]
RA O(vk3) Zhou et al. [2009]
RA-CNI O(vk4) Zhang et al. [2014]
PA O(vk2) Barabási and Albert [1999]
JA O(vk3) Jaccard [1901]
SA O(vk3) Salton and McGill [1983]
SO O(vk3) Sørensen [1948]
HPI O(vk3) Ravasz et al. [2002]
HDI O(vk3) Ravasz et al. [2002]
LLHN O(vk3) Leicht et al. [2006]
IA1 O(vk4) Dong et al. [2011]
IA2 O(vk3) Dong et al. [2011]
MI O(nk6) Tan et al. [2014]
LNB O(O( f (z)) + vk3) Liu et al. [2011]
CAR O(vk4) Cannistraci et al. [2013]
FSW O(vk3) Chua et al. [2006]
LIT O(lvk3) Liu et al. [2008]

Global

NSP O(ev log v) Liben-Nowell [2005]
KI O(v3) Katz [1953]
GLHN O(cv2k) Leicht et al. [2006]
RW O(cv2k) Pearson [1905]
RWR O(cv2k) Tong et al. [2006]
FP O(cv2k) Vanunu and Sharan [2008]
MERW O(cv2k) Li et al. [2011]
SR O(v2k2l+2) Jeh and Widom [2002]
PLM O(v3) Fouss et al. [2007]
ACT O(v3) Fouss et al. [2007]
RFK O(v3) Chebotarev and Shamis [2006]
BI O(cv2k) Blondel et al. [2004]

Quasi-local

LPI O(lv2k) Lü et al. [2009]
LRW O(lv2k) Liu and Lü [2010]
SRW O(lv2k) Liu and Lü [2010]
ORA-CNI O(vk6) Zhang et al. [2014]
FL O(lv2k) Papadimitriou et al. [2012]
PFP O(vlkl) Lichtenwalter et al. [2010]

Columns (from left to right): type of similarity-based link prediction technique, name
of the technique, computational complexity of the technique, and original reference to
the technique.

these techniques in order to study how they behave in different kinds of networks. As
far as we know, the most complete existing comparison was Lü and Zhou [2011]. We
have implemented and applied to different networks all the similarity-based techniques
described previously. Other methods described in the following sections have not been
considered due to their computational complexity and their need to tune different
parameters, which would lead to unrepresentative results. In the following section, we
describe the set of networks used in our experiments, how they were preprocessed,
and how their structural properties were measured. In addition, results obtained are
presented and discussed.
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3.5.1. Datasets. Seven networks with different backgrounds and different topological
properties were collected: a protein-protein interaction network of budding yeast (YST,
Bu et al. [2003]), a neural network of Caenorhabditis elegans (CEL, Watts and Strogatz
[1998]), a network describing face-to-face contacts of people during the exhibition In-
fectious: Stay Away in 2009 at the Science Gallery in Dublin (INF, Isella et al. [2011]),
a frequent copurchasing network of books about US politics published in 2004 during
the presidential election campaign and sold by Amazon (BCK, Krebs [2008]), a net-
work of friendships among users of the hamsterster.com website (HMT, Kon [2014]),
North American Transportation Atlas Data (NORTAD) flights from a 1997 network
(USA, Batagelj and Mrvar [2006]), and a coauthorship network of scientists working
on network theory and experiments (NSC, Newman [2006]). Each network was prepro-
cessed to make its links undirected, isolated nodes were deleted, and duplicated links
and self-loops were removed. Some important topological properties of these networks
were computed and included in the supplementary material.

3.5.2. Evaluation and Results. To evaluate each technique, we conducted a fivefold cross-
validation as described in the supplement. We report the precision (see Table II) and the
AUC (see Table III) for each possible method and network combination. Methods with
parameters were evaluated with different reasonable hand-picked values. The local
interacting score has been tested with two, four, and six iterations and, as suggested
by its authors, its best results were obtained with only two iterations. The Katz index
(β), global Leicht-Holme-Newman index (φ), SimRank and local path index (β) with
l fixed to 3 in both cases, and third-order RA-CNI (β) were tested with values 0.1,
0.01, and 0.001. The best results for Katz, SimRank, and local path were obtained with
β = 0.001. The best results for the Leicht-Holme-Newman index were obtained with
φ = 0.1. ORA-CNI was set to β = 0.001. All random-walk-based methods with an α
parameter were tested for 0.5, 0.7, and 0.9, finally selecting 0.5 in all cases since the
results were very stable for all the tested parameter values. Finally, local random walk,
superposed random walk, and PropFlow predictors were tested with parameters t and
l set to 3, 5, and 7. The best average precision was obtained choosing 3 in all cases.

The number of times that each method appears in the top five for each network is
summarized in Table IV for precision and AUC. Different conclusions can be extracted
from our empirical results.

Global techniques obtain the worst results on average. Their poorer performance,
and the fact that tuning their parameters strongly penalizes indirect paths, suggests
that global methods are worse because they tend to consider too much noise. It can be
seen that global methods are less present in the top five. Only RWR, FP, MERW, and
RFK reach the top five on a few occasions in networks with a low average clustering
coefficient.

Local techniques work surprisingly well. Some local methods reach the top five a
few times, including AA, CAR-based methods, and the mutual information technique;
however, RA and its variation RA-CNI, the LNB-RA method, and IA techniques are
present in the top five a reasonable number of times when compared to other methods.
These results suggest that most of the information that can be used to perform link
prediction is of a local nature.

Quasi-local techniques also obtain good results on average. ORA-CNI, PFP, LRW,
and SRW appear among the best for almost all networks. The SRW technique is the
method that has been shown to obtain the bests results on average in our experiments.

Finally, the variety of methods in the top of the ranking shows that the performance
of each technique strongly depends on the structural properties of the network. This
highlights the importance of analyzing the properties of the network before choosing
a particular link prediction technique. As we observe in our results, the quality of
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Table II. Precision Results

Method YST CEL INF BCK HMT USA NSC

CN 0.0876 0.1119 0.3484 0.2101 0.2453 0.4091 0.3561
AA 0.1080 0.1532 0.4080 0.2608 0.3267 0.4558 0.6217
RA 0.0876 0.1448 0.4163 0.2563 0.3959 0.5160 0.6652
RA-CNI 0.0951 0.1490 0.4242 0.2630 0.4406 0.4965 0.6306
PA 0.0310 0.1051 0.0848 0.1820 0.0787 0.3819 0.1932
JA 0.0030 0.0373 0.4104 0.1297 0.2472 0.1081 0.4884
SA 0.0026 0.0340 0.4188 0.1395 0.2409 0.0866 0.4997
SO 0.0030 0.0373 0.4104 0.1297 0.2472 0.1081 0.4884
HPI 0.0000 0.0000 0.2764 0.1463 0.0000 0.0000 0.0005
HDP 0.0104 0.0364 0.4017 0.1053 0.2461 0.0810 0.4208
LLHN 0.0002 0.0023 0.1271 0.0897 0.0817 0.0104 0.2334
IA1 0.1079 0.1569 0.4195 0.2619 0.4093 0.4638 0.6170
IA2 0.0855 0.1493 0.4268 0.2427 0.4199 0.4927 0.6596
MI 0.1228 0.1676 0.4040 0.2313 0.3324 0.4365 0.5125
LNB-CN 0.1189 0.1569 0.3964 0.2494 0.2996 0.4440 0.5414
LNB-AA 0.1190 0.1555 0.4036 0.2534 0.3574 0.4685 0.6362
LNB-RA 0.0954 0.1462 0.4105 0.2540 0.4019 0.5169 0.6610
CAR-CN 0.1073 0.1240 0.3942 0.2029 0.2816 0.4228 0.3914
CAR-AA 0.1241 0.1480 0.4047 0.2222 0.3191 0.4322 0.5074
CAR-RA 0.1245 0.1560 0.4148 0.2517 0.3873 0.4487 0.5074
FSW 0.0504 0.0792 0.3637 0.1349 0.2266 0.2158 0.4849
LIT 0.1049 0.1220 0.4253 0.1814 0.4097 0.3984 0.5022

NSP 0.0000 0.0001 0.0001 0.0007 0.0000 0.0001 0.0003
KI 0.1186 0.1513 0.3924 0.2471 0.2595 0.4332 0.4300
GLHN 0.0876 0.1119 0.3484 0.2101 0.2453 0.4091 0.3561
RW 0.0891 0.1276 0.2555 0.1927 0.2639 0.1599 0.4282
RWR 0.1175 0.1983 0.4090 0.2268 0.3751 0.3316 0.5292
FP 0.1013 0.1643 0.3508 0.2449 0.2845 0.4059 0.4303
MERW 0.0129 0.0666 0.2575 0.1565 0.2618 0.0927 0.5036
SR 0.0009 0.0033 0.1309 0.1066 0.0877 0.0127 0.2918
PLM 0.0176 0.1066 0.1703 0.2494 0.0017 0.3782 0.0149
ACT 0.0284 0.0889 0.1826 0.2199 0.0807 0.3791 0.0543
RFK 0.0260 0.0847 0.2329 0.1746 0.2381 0.0814 0.4712
BI 0.0710 0.1359 0.1483 0.2221 0.0988 0.3923 0.1940

LPI 0.1069 0.1438 0.3852 0.2404 0.1723 0.4200 0.4194
LRW 0.1857 0.1839 0.3819 0.2177 0.4232 0.4972 0.4927
SRW 0.1380 0.1657 0.4123 0.2540 0.4265 0.5230 0.6580
ORA-CNI 0.0993 0.1490 0.4242 0.2630 0.4405 0.4967 0.6601
FL 0.1069 0.1443 0.3848 0.2358 0.2328 0.4191 0.4194
PFP 0.0405 0.1331 0.1834 0.2110 0.2456 0.1449 0.4776

Average precision of the five iterations of the cross-validation performed for each
method and network pair.

the results is related to the average clustering coefficient of the nodes with degree
above one. This is reasonable since most link prediction techniques are variations
of counting shared neighbors, and the count of shared neighbors increases as the
clustering coefficient does. Another variable that seems to play an important role is
the average degree. This makes sense since as we know the more neighbors there are
of a node, the more information we have to predict new links for it. However, revealing
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Table III. AUC Results

Method YST CEL INF BCK HMT USA NSC

CN 0.6850 0.8274 0.9264 0.8691 0.9523 0.9278 0.9056
AA 0.6855 0.8450 0.9300 0.8782 0.9553 0.9391 0.9061
RA 0.6854 0.8485 0.9305 0.8801 0.9561 0.9439 0.9061
RA-CNI 0.6854 0.8495 0.9307 0.8803 0.9564 0.9433 0.9061
PA 0.6846 0.8091 0.8991 0.8505 0.9386 0.9177 0.9043
JA 0.6837 0.7766 0.9285 0.8558 0.9492 0.8926 0.9059
SA 0.6837 0.7831 0.9285 0.8621 0.9501 0.8995 0.9059
SO 0.6837 0.7766 0.9285 0.8558 0.9492 0.8926 0.9059
HPI 0.6834 0.7933 0.9255 0.8671 0.9484 0.8666 0.9058
HDP 0.6836 0.7680 0.9277 0.8475 0.9483 0.8878 0.9057
LLHN 0.6828 0.7276 0.9195 0.8314 0.9411 0.7821 0.9056
IA1 0.6854 0.8490 0.9305 0.8791 0.9562 0.9418 0.9061
IA2 0.6853 0.8483 0.9306 0.8795 0.9562 0.9434 0.9061
MI 0.6527 0.8325 0.9083 0.8426 0.9379 0.9089 0.7765
LNB-CN 0.6858 0.8411 0.9263 0.8717 0.9541 0.9337 0.9057
LNB-AA 0.6858 0.8445 0.9285 0.8765 0.9557 0.9403 0.9059
LNB-RA 0.6857 0.8451 0.9295 0.8772 0.9561 0.9440 0.9059
CAR-CN 0.6850 0.8272 0.9264 0.8682 0.9525 0.9269 0.9056
CAR-AA 0.5792 0.7130 0.8254 0.7224 0.8832 0.8971 0.7554
CAR-RA 0.5792 0.7140 0.8255 0.7230 0.8838 0.9001 0.7554
FSW 0.6839 0.7822 0.9256 0.8535 0.9473 0.8949 0.9058
LIT 0.6730 0.8313 0.9206 0.8550 0.9501 0.9164 0.8424

NSP 0.7887 0.7443 0.9121 0.8456 0.9423 0.8135 0.9142
KI 0.8044 0.8507 0.9528 0.8946 0.9630 0.9180 0.9147
GLHN 0.6850 0.8274 0.9264 0.8691 0.9523 0.9278 0.9056
RW 0.7811 0.8354 0.9494 0.8851 0.9551 0.8796 0.9151
RWR 0.8029 0.8967 0.9637 0.9183 0.9681 0.9362 0.8892
FP 0.8113 0.8873 0.9599 0.9018 0.9674 0.9382 0.9154
MERW 0.7806 0.8519 0.9454 0.8906 0.9575 0.8809 0.9151
SR 0.6828 0.7310 0.9200 0.8334 0.9414 0.7856 0.9056
PLM 0.7725 0.8480 0.9439 0.8908 0.6435 0.9407 0.5263
ACT 0.7659 0.7370 0.7969 0.7456 0.8793 0.8749 0.5654
RFK 0.7964 0.8614 0.9549 0.8984 0.9593 0.9106 0.9150
BI 0.7784 0.7159 0.7730 0.8166 0.8800 0.8674 0.9081

LPI 0.8025 0.8345 0.9501 0.8882 0.9591 0.9136 0.9137
LRW 0.8164 0.8874 0.9514 0.8928 0.9647 0.9291 0.8536
SRW 0.8210 0.8936 0.9608 0.9139 0.9726 0.9463 0.9164
ORA-CNI 0.8135 0.8539 0.9515 0.8977 0.9682 0.9386 0.9164
FL 0.8025 0.8342 0.9500 0.8882 0.9619 0.9112 0.9137
PFP 0.8159 0.8645 0.9568 0.9081 0.9636 0.8899 0.9171

Average AUC of the five iterations of the cross-validation performed for each method
and network pair.

which specific properties play such an important role in link prediction is still an
unsolved problem that requires further work.

4. PROBABILISTIC AND STATISTICAL APPROACHES

Many network formation models have been successfully described in terms of statistical
and probabilistic concepts [Goldenberg et al. 2010]. These studies have opened the door
to link prediction techniques based on statistical analysis and probability theory. These
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Table IV. Summary of Methods Appearing in the Top Five of the Rank

Method 1st 2nd 3rd Top 5

AA 1
RA 1 1 3
RA-CNI 1 1 3
IA1 1 2
IA2 1 3
MI 1 2
LNB-RA 2 2
CAR-AA 1
CAR-RA 1 1
LIT 1 1
RWR 1 1
FP 1
LRW 1 1 4
SRW 1 1 1 5
ORA-CNI 1 1 2 5

Method 1st 2nd 3rd Top 5

RA 1 1
RA-CNI 1
IA2 1
LNB-RA 1 1
RWR 3 1 4
FP 1 6
MERW 1
RFK 2
LRW 1 1 3
SRW 3 3 1 7
ORA-CNI 2 3
PFP 1 2 5

Number of times that each method appears in the first, second, and third position and in the top five for all
networks according to precision (left table) and AUC (right table). The rows of methods that never are in the
top five of the rank are omitted.

approaches usually assume that the network has a known structure. They build a model
that fits the structure and estimate model parameters using statistical methods. These
parameters are used to compute the formation probability of each nonobserved link.
These probability values can be used to rank potential links as we did in similarity-
based methods.

4.1. The Hierarchical Structure Model

Some studies show that many real networks are hierarchically organized, including
metabolic networks, protein interaction networks, Internet domains, and some social
networks like actor networks [Ravasz and Barabási 2003]. In hierarchical networks,
nodes with higher degree are expected to have a lower clustering coefficient than lower-
degree nodes. Hub nodes weakly connect isolated communities of highly clustered
nodes. This way, a hierarchical structure is formed.

The method proposed by Clauset et al. [2008] represents a hierarchically structured
network by a dendrogram with |V | leaves and |V | − 1 internal nodes. Each leaf repre-
sents a node from the network and each internal node represents a relationship among
its descendant nodes in the dendrogram. Each internal node n has an associated prob-
ability pn, which is equal to the probability of a link between nodes of both branches
descending from it. Each network has multiple representations based on dendrograms
depending on how internal nodes are set. Given a dendrogram representation D of
the network, let en be the number of links in the network connecting nodes that have
internal node n as their lowest common ancestor in D. The likelihood of dendrogram D
together with the set of internal node probabilities can be estimated as

L(D, {pn}) =
∏
n∈D

pen
n (1 − pn)lnrn−en,

where ln and rn are, respectively, the numbers of leaves in the left and the right subtrees
with root n. If the dendrogram D is fixed, its likelihood can be maximized by a set of
probabilities pn computed as

pn = en

lnrn
.
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ALGORITHM 2: Link Prediction Based on the Hierarchical Structure Model.
Input: Network G = (V, E), number n of dendrograms to sample.
Output: Probability Px,y for all unconnected pairs of nodes.
Samples = ∅;
for i from 1 to n do

Initialize the Markov chain with a random dendrogram;
Run Monte Carlo algorithm until equilibrium is reached;
Insert resulting dendrogram D into Samples;

end
for each ex,y in UG − E do

avg prob = 0;
for each sample in Samples do

r ← lower common ancestor of x and y in sample;
avg prob ← avg prob + pr

|Samples| ;
end
Px,y = avg prob;

end

pn represents the ratio of the number of actual edges with respect to the number of
potential ones. Based on this result, the en term can be removed from the likelihood
formula to estimate the likelihood of a dendrogram at its maximum as

L(D) =
∏
n∈D

[ppn
n (1 − pn)1−pn]lnrn.

Once the theoretical background is set, these results can be used to perform link
prediction. A Markov chain Monte Carlo method [Geyer 1992] is used to sample a
set of dendrograms with a probability proportional to their likelihood. The transitions
between dendrograms consist of rearranging subtrees of the current dendrogram in an-
other order. The complete procedure, which computes the probability of link formation
between each pair of unconnected nodes, is described in Algorithm 2.

4.2. The Stochastic Block Model

Most networks do not fit in a hierarchical schema. A more general approach is to
consider that nodes are distributed in communities or blocks. The probability of link
formation between two nodes directly depends on the block they belong to [Guimerà
and Sales-Pardo 2009]. In this model, we are required to compute a partition M of the
network where each node is assigned to one group or block m ∈ M. Given a partition,
the likelihood of the network structure can be estimated as

L(G|M) =
∏

a,b∈M
pla,b

a,b(1 − pa,b)ra,b−la,b,

where la,b is the number of edges between nodes in groups a and b, |{ex,y : x ∈ a, y ∈ b}|;
and ra,b is the number of pairs between nodes of both groups, which are |a||b| when
a 	= b and |a|(|a| − 1) when a = b. This likelihood is maximized for

pa,b = la,b

ra,b
.

Applying the Bayes theorem, the probability of a link with maximum likelihood can
be computed as

Px,y =
∑

M∈ω L(ex,y ∈ E|M)L(G|M)p(M)∑
M′∈ω L(G|M′)p(M′)

,

ACM Computing Surveys, Vol. 49, No. 4, Article 69, Publication date: December 2016.



A Survey of Link Prediction in Complex Networks 69:25

ALGORITHM 3: Link Prediction Based on the Cycle Formation Model.
Input: Network G = (V, E), model degree k.
Output: Probability Px,y for all unconnected pairs of nodes.
Compute Generalized Clustering Coefficients C(2), . . . , C(k);
c1 = Connecting probability in random graph with same degree distribution that G;
c2 = (1−c1)C(2)

c1−2c1C(2)+C(2) ;
for i from 3 to k do

ci ← 0.5;
end
for i from 3 to k do

ci ← arg minci |C(i) − f (c1, . . . , ck)|;
end
for each ex,y in UG − E do

Px,y ← px,y(c1, . . . , ck);
end

where ω is the set of possible partitions. It should be noted that ω grows fast as the
number of nodes in the network increases (ω ∈ O(2|V |)), which makes this approach
impractical for large networks. The Metropolis algorithm can be used to sample parti-
tions, but this process is still computationally expensive.

4.3. The Cycle Formation Model

The cycle formation model is based on the assumption that networks have the tendency
to close cycles in their formation process [Huang 2006]. This assumption matches with
other techniques like the common neighbors method, which counts the number of cycles
of length three that would be formed if the evaluated link existed. This method tries
to capture longer cycles by extending the overall clustering coefficient to a generalized
clustering coefficient. This generalized clustering coefficient is defined as

C(k) = number of cycles of length k
number of paths of length k

,

where k is the length of the cycles under analysis.
A cycle formation model of degree k, denoted as CF(k) with k > 0, characterizes

each order formation mechanism, g(1), . . . , g(k), by a single coefficient, c1, . . . , ck, which
describes the conditional probability of k-order cycle formation. The expected clustering
coefficient of degree k based on this model can be estimated as

f (c1, . . . , ck) =
∑

i

|Gi|Pr(Gi)Pr(e1,k+1 ∈ E|Gi),

where Gi is the set of possible connected graphs with i nodes for each order in this model.
Finally, given the coefficients, the probability of the existence of a link is computed as

px,y(c1, . . . , ck) = c1
∏k

i=2 c
|pathsi

x,y|
i

c1
∏k

i=2 c
|pathsi

x,y|
i + (1 − c1)

∏k
i=2(1 − ci)|pathsi

x,y|
.

The whole link prediction method based on this cycle formation model is reproduced
in Algorithm 3.

4.4. The Local Co-Occurrence Model

The probabilistic methods presented previously are prohibitive for large networks
due to their high computational complexity. The local co-occurrence model proposes a
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ALGORITHM 4: Link Prediction Based on the Local Co-Occurrence Model.
Input: Network G = (V, E), central neighborhood set max size t, max path length k.
Output: Probability Px,y for all unconnected pairs of nodes.
for each ex,y in U − E do

Cx,y = ∅;
for l from 2 to k do

pi ← Compute and sort by length and frequency pathsl
x,y;

for each p in pi do
if |Cx,y| < t then

Insert all nodes in p into Cx,y;
end

end
end
NDI = Compute nonderivable itemsets from Cx,y;
Rx,y = ∅;
for each ndi in NDI do

if ndi in Cx,y then
Insert ndi into Rx,y;

end
end
M = Initialize Markov Random Fields using Cx,y and Rx,y;
while not M satisfies all constrains in Rx,y do

for each r in Rx,y do
Update M to force satisfying r;

end
end
Px,y = Infer probability of ex,y from M;

end

scalable probabilistic method based on local topological features of the network [Wang
et al. 2007].

A set Cx,y composed of relevant nodes, called the central neighborhood, is computed
for each pair of nodes x and y. These sets can be obtained using different topological
measures. The original paper proposes to compute these sets by obtaining all simple
paths (without cycles) of length 1, . . . , k. The t nodes in the most frequent paths are
selected as the central neighborhood set of a pair of nodes. In addition, a collection of
nonderivable itemsets (NDIs) is efficiently computed for each of these pairs by a depth-
first search [Calders and Goethals 2005]. Nonderivable itemsets are those itemsets
whose occurrence statistics cannot be inferred from other itemset patterns. These
itemsets provide nonredundant constraints that can be used to learn probabilistic
models without losing information.

These sets are used to learn a Markov random field (MRF) undirected graph model.
This model is iteratively built satisfying constraints associated to the NDI sets. Finally,
the built model allows one to compute the probability of existence of each link. The final
link prediction method appears in Algorithm 4.

5. ALGORITHMIC METHODS

All the approaches presented in the previous sections are based on computing a score for
each nonobserved link by defining a similarity or a probability function. However, link
prediction can also benefit from other algorithmic approaches, including supervised
learning and optimization techniques. These approaches have been less explored in
the literature of link prediction but present interesting properties.
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5.1. Classifier-Based Methods

The link prediction problem can be approached by classical supervised learning tech-
niques. It can be seen as a classification problem with two classes: existence and ab-
sence of link. This is a very powerful technique since it can use any topological property
and measure, or even any other link prediction measure as a feature. This approach,
however, has to deal with the well-known class imbalance problem [Kotsiantis et al.
2006], since almost all real networks are sparse; that is, the number of absent links is
extremely higher than the number of existent links.

Several classifier-based approaches have been proposed. Almost any type of classi-
fier can be used. Some works have compared different classifiers including decision
trees, support vector machines (SVMs), k-nearest neighbors, multilayer perceptrons,
radial basis function networks, naive Bayes, and different ensembles of these classi-
fiers [Al Hasan et al. 2006]. Other authors have obtained good results using random
forest classifiers [Cukierski et al. 2011]. Random forests are decision tree ensembles
trained on the same training set but using different subsets of the available features.

Many classifier-based methods do not rank possible links like similarity-based or
probabilistic methods. This property makes their comparison harder, since the number
of predicted links in each class cannot be controlled in this case.

5.2. Metaheuristic-Based Methods

Link formation is a complex process with a large number of factors involved. All ap-
proaches are heuristic, in the sense that they try to outperform a random baseline
predictor by making some assumptions about link formation in the studied network.
Assuming that all links are formed by the same mechanism is an oversimplification of
the problem.

Recently, Bliss et al. [2014] proposed an approach based on an evolutionary algo-
rithm. Their method assumes that different link formation heuristics can coexist and
cooperate in the same network. It uses an evolution strategy to optimize the influence
of different base link predictors including local and global similarity-based indices and
node similarity features in a Twitter reciprocal reply network. Each individual or can-
didate solution u in the population is a vector w(u) of as many real numbers as the
number of heuristics being considered. Each of these values represents the weight or
the influence of the heuristic in the network. Each candidate represents a similarity-
based link predictor characterized by the similarity function

s(x, y) =
|w(u)|∑
i=1

w
(u)
i si(x, y),

where si(x, y) is the similarity function for the ith heuristic. The fitness of each can-
didate is defined as the precision obtained by applying it on a second training subset
and a second test subset created from sampled links from the original training set.
A covariance matrix adaptation evolution strategy (CMA-ES) is applied to generate
new candidates with better fitness by creating new populations of candidates based on
combinations and mutations of the previous ones [Hansen and Ostermeier 2001].

5.3. Factorization-Based Methods

Matrix factorization models have been widely used in recommender systems since they
can extract latent features or use additional features to perform prediction [Koren et al.
2009]. For example, Menon and Elkan [2011] have suggested a latent feature learning
method for link prediction composed of a latent vector

−→
li for each node i, a scaling

factor Fx,y for each link, weights for node features Wn, and a vector of weights for link
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features −→wl . Furthermore, each node i has a vector of features −→ai and each link has a
vector of features

−→
bx,y.

In this model, given the latent vectors, the scaling factor, and the weights, a prediction
score is computed for each pair of nodes x and y as

s(x, y) = 1

1 + exp(−−→
lx

T F
−→
ly − −→ax

T Wn
−→ay − −→wl

T −→
bx,y)

.

Latent vectors, the scaling factor, and the weights are obtained in a training stage
that optimizes the following function:

min
l,F,Wn,

−→wl

∑
ex,y∈E

�(Ax,y, s(x, y)) + (l, F, Wn,
−→wl )),

where � is a loss function and  is a regularizer term to prevent overfitting. These
terms can be selected to customize the model [Koren et al. 2009]. This training stage
is performed using Stochastic Gradient Descent (SGD) until convergence.

6. PREPROCESSING METHODS

Preprocessing methods are also known as higher-level approaches or meta-approaches,
since they are intended to be used in conjunction with other methods. The main goal of
preprocessing approaches is to reduce the noise present in the networks as “weak” or
“false” links, in order to improve the performance of the methods described previously.

6.1. Low-Rank Approximation

This method simplifies the structure of the network to reduce its noise using the
adjacency matrix A representation of the graph by solving the low-rank approximation
problem [Kunegis and Lommatzsch 2009]. This optimization problem tries to minimize
a cost function that measures the fit between the original matrix and an approximation
matrix of reduced rank. The rank of the approximated matrix is usually set to a
relatively small number. This problem can be algorithmically solved in an efficient way
using the SVD of the original matrix, which is a factorization of the form

A = U
V T ,

where U and V T are unitary matrices and 
 is a diagonal matrix with no negative
elements. There are different techniques to compute the SVD. The most basic approach
relies on the fact that singular values are the square roots of the eigenvalues of AAT .
Indeed, given the expression of the decomposition, it can be stated that

AAT = (U
V T )(V
U T ) = U
2U T .

Since the columns of U are eigenvectors of A, it can be obtained using a technique
to compute the eigenvectors of a matrix, therefore allowing one to obtain the 
 matrix
using simple linear algebra calculations. Unfortunately, this technique is not practical
for large matrices due to lack of numerical accuracy. One of the most commonly used
SVD algorithms, which shows a better accuracy, is given by Demmel and Kahan [1990].

Given the SVD of A, the low-rank matrix A′ can be approximated by

A′ = U1:|V |,1:k
1:k,1:kV T
1:k,1:|V |,

where k is the desired rank. The first eigenvectors explain most of the variance, so
the low-rank approximated matrix maintains the overall structure of the graph but
removes its less significant links.
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6.2. Unseen Bigrams

A bigram is a sequence of two adjacent elements in a string composed of tokens or
words. The frequency distribution of bigrams has been extensively studied in many
applications such as linguistics, speech recognition, or cryptography. Unseen bigrams
are valid bigrams not observed in a given string set. It has been observed that the
same tokens in different bigrams with similar appearance distributions are likely to be
interchangeable and to form unseen bigrams. For example, if we observe the bigrams
“a house,” “the house,” “a tree,” “the tree,” and “a car,” then we can infer that “the car”
is an unseen bigram. The idea of “substitution” presented by unseen bigrams can be
adapted to link prediction in order to reduce noise by replacing a node by its most
similar nodes [Liben-Nowell 2005]. For example, the common neighbors similarity can
be rewritten as

S(x, y) = |Sδ
x ∩ �y|,

where Sδ
x is a set with the δ most similar nodes to x. The similarity method employed to

obtain the set Sδ
x could also be the common neighbors similarity or any other similarity-

based technique.

6.3. Filtering

Originally called clustering [Liben-Nowell 2005], we refer to it as filtering in order to
avoid any ambiguity. Removing the weakest links (usually, those observed between
nodes with a small number or no shared neighbors) could help improve the results
obtained by link prediction methods due to the associated noise reduction. Most of the
techniques presented in this survey assign a score S(x, y) to nonobserved links, but
they can be applied to observed links in order to estimate their strength. Therefore,
the filtering approach consists of applying any link prediction technique that assigns
a score to each pair of nodes between connected nodes to weigh the observed link and
remove the fraction γ of weakest links to obtain a cleaned-up network.

7. LINK PREDICTION IN DIFFERENT KINDS OF NETWORKS

In this work, a large number of proposed techniques focusing only on undirected un-
weighed networks without attributes have been discussed. However, an increasing
number of link prediction techniques for other types of networks and the consideration
of nontopological additional information is also of interest in practice. The role of weak
ties in weighted networks remains an open question [Lü and Zhou 2010]. Heteroge-
neous networks with different types of nodes and links require different approaches
to those used in homogeneous networks [Sun et al. 2012]. Predicting not only a link
but also its source and its destination in directed networks has recently started to be
under study [Zhao et al. 2013]. Link prediction in signed networks, where links can be
positive or negative, is another active area of research [Symeonidis and Tiakas 2014].
Time-aware methods can be proposed for networks with links labeled with their time
of formation [Tylenda et al. 2009]. Aligned networks are sets of different networks
partially matched by anchor nodes and links, and sets of networks representing the
same agent in different domains are available, so specific techniques to exploit this
additional information are being developed [Lu et al. 2010]. Most of the presented
methods in our survey can be adapted to the characteristics of these real-world usage
scenarios.

8. CONCLUSIONS

In this survey, we have performed, as far as we know, the most comprehensive study
about the link prediction methods that have been proposed in terms of the number
of methods and networks employed. These methods have been classified according to
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a custom taxonomy based on their theoretical approach. The most important results
that support specific link prediction techniques and network formation models have
also been described.

A comprehensive experimentation has been performed for a large number of fun-
damental and state-of-the-art methods using a varied set of networks with different
properties. It has been observed that new links can be better predicted using only lo-
cal or quasi-local information in most networks. Considering indirect connections only
adds noise and computational complexity to the link prediction problem.

Link prediction is a relatively young research area and many open challenges remain.
Further studies are required in order to understand why some methods work better
or worse than others depending on the network they are applied to. Studying which
network structural properties lead to better performance for each technique is an open
research problem. In addition, very few techniques adapt to the global structure of the
network and no technique adapts to the local structure of networks. The main difficulty
when dealing with complex networks in practice is their size, which limits the kinds of
techniques that can be applied.

Link prediction remains an open research problem, given its importance in many
applications. New techniques with better accuracy and performance tradeoffs are ex-
pected to be proposed in the forthcoming future.
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