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Outline

 Overview of class topics

 Basic definitions 

 Basic concepts

 Representation 

 Metrics

 Measures

 Centralities

 Next class:

 Network centralities and metrics
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Understanding large graphs

 What are the statistics of real life networks?

 In which terms we can describe the networks?

 How we can measure a large network?

 Can we explain how the networks were generated?

 Can we make models for network construction?

 To how much extent do the artificially

 constructed networks describe real networks?

 First step: Introducing network metrics
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Networks became hot topic !

Around 1999

Watts and Strogatz, Collective dynamics 

of small-world networks

Faloutsos3, On power-law relationships 

of the Internet Topology

Kleinberg et al., The Web as a graph

Barabasi and Albert, The emergence of 

scaling in real networks
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History: Graph theory

 Euler’s Seven Bridges of Königsberg – one of the first problems in 

graph theory

 Is there a route that crosses each bridge only once and returns to the 

starting point?

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

Image 1 – GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Image 2 – GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Image 3 – GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License
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Network elements: edges

 Directed (also called arcs)-asymmetrical relations
 A  B

 A likes B, A gave a gift to B, A is B’s child, 

 A call B, A follows B 

 Undirected (symmetrical, reciprocal relations)
 A  B or A – B

 A and B like each other

 A and B are siblings

 A and B are co-authors

 A and B are friend

 Edge attributes
 weight (e.g. frequency of communication)

 ranking (best friend, second best friend…)

 type (friend, relative, co-worker)

 properties depending on the structure of the rest of the graph: 
e.g. betweenness
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Directed networks
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 girls’ school dormitory dining-table partners (Moreno, The sociometry reader, 1960)

 first and second choices shown
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Edge weights can have positive or negative values

 One gene 

activates/inhibits 

another

 One person 

trusting/distrusting 

another

 Research challenge: 

How does one 

‘propagate’ negative 

feelings in a social 

network? Is my 

enemy’s enemy my 

friend?

Transcription regulatory network in baker’s yeast
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Adjacency matrices

 Representing edges (who is adjacent to whom) as a 

matrix

 Aij = 1 if node i has an edge to node j

= 0 if node i does not have an edge to j

 Aii = 0 unless the network has self-loops

 Aij = Aji if the network is undirected,

or if i and j share a reciprocated edge

i
j

i

i
j

1

2

3

4

Example:

5

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 0 0 0 1

1 1 0 0 0

A =
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Adjacency lists

 Edge list
 2 3

 2 4

 3 2

 3 4

 4 5

 5 2

 5 1

 Adjacency list
 is easier to work with if network is

 large

 sparse

 quickly retrieve all neighbors for a node
 1:

 2: 3 4

 3: 2 4

 4: 5

 5: 1 2

1

2

3

4
5
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More types of graphs
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More types of graphs
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Weighted Graph

 For weighted directed network the in-strength and out-

strength are defined

 The strength distribution of the graph is also 

correspondingly defined
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Weighted network

2 3  5

2 4  5

3 2  5

3 4  7

4 5  3

5 2  9

5 1  5

2;3; 5

2;4; 5
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4;5; 3

5;2; 9

5;1; 5



bipartite (two-mode) networks

 edges occur only between two groups of nodes, not 

within those groups

 for example, we may have individuals and events

 directors and boards of directors

 customers and the items they purchase

 metabolites and the reactions they participate in
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A hypergraph and corresponding bipartite graph

 (a) Hypergraph representation: groups are represented 

as hyper-edges (loops circling sets of vertices). 

 (b) Bipartite representation

Complex Network Theory, S. Mehdi Vahidipour.

(a) And (b) show the same information 

The membership of five vertices in four different groups.



going from a bipartite to a one-mode graph

 One mode projection

 two nodes from the first 

group are connected if 

they link to the same 

node in the second 

group

 some loss of information

 naturally high 

occurrence of cliques

i ii iii iv

 Two-mode network
group 1

group 2
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Now in matrix notation

 Bij

 = 1 if node i from the first group 

links to node j from the second group

 = 0 otherwise

 B is usually not a square matrix!

 for example: we have n customers and m products

i

j

1 0 0 0

1 0 0 0

1 1 0 0

1 1 1 1

0 0 0 1

B =

Complex Network Theory, S. Mehdi Vahidipour.
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Collapsing to a one-mode network

 i and k are linked if they both link to j

 Aik= j Bij Bkj  A= B.BT

 BT swaps Bxy and Byx

 if B is an n  m, BT is an m  n

 Aii is equal to the number of groups to 

which vertex i belongs

 A’=BTB ?

i

j=1

k

j=2

B =

1 0 0 0

1 0 0 0

1 1 0 0

1 1 1 1

0 0 0 1

1 1 1 1 0

0 0 1 1 0

0 0 0 1 0

0 0 0 1 1
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Matrix multiplication

 general formula for matrix multiplication Zij= k Xik Ykj

 let Z = A, X = B, Y = BT

1 0 0 0

1 0 0 0

1 1 0 0

1 1 1 1

0 0 0 1

A =

1 1 1 1 0

0 0 1 1 0

0 0 0 1 0

0 0 0 1 1

=

1 1 1 1 0

1 1 1 1 0

1 1 2 2 0

1 1 2 4 1

0 0 0 1 1

1 1

1 2

1

1 1 1 1 1

1

0

0

= 1*1+1*1

+ 1*0 + 1*0

= 2
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Collapsing a two-mode network to a one mode-network

 Assume the nodes in group 1 are people and the nodes 

in group 2 are movies

 The diagonal entries of A give the number of movies 

each person has seen

 The off-diagonal elements of A give the number of 

movies that both people have seen

 A is symmetric

A =

1 1 1 1 0

1 1 1 1 0

1 1 2 2 0

1 1 2 4 1

0 0 0 1 1

1 1

1 2

1
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Readings

 Easley, David, and Jon Kleinberg. Networks, crowds, 

and markets: Reasoning about a highly connected 

world. Cambridge University Press, 2010. (Ch.1-2)

 Newman, Mark. Networks: an introduction. Oxford 

University Press, 2010. (Ch. 6)

 L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. 

Villas Boas. Characterization of complex networks: A 

survey of measurements. Advances in Physics, 

56(1):167 – 242, 2007.
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