Complex Network Theory

Lecture 2-1

Basic network concepts and metrics

Instructor: S. Mehdi Vahidipour
(Vahidipour@kashanu.ac.ir)

Thanks A. Rezvanian
A. Barabasi, L. Adamic and J. Leskovec

Outline

\square Overview of class topics
\square Basic definitions

- Basic concepts
- Representation
- Metrics

■ Measures
■ Centralities

- Next class:

■ Network centralities and metrics

Understanding large graphs

- What are the statistics of real life networks?
- In which terms we can describe the networks?
- How we can measure a large network?
- Can we explain how the networks were generated?
- Can we make models for network construction?
- To how much extent do the artificially
- constructed networks describe real networks?

First step: Introducing network metrics

Networks became hot topic!

Around 1999

■Watts and Strogatz, Collective dynamics of small-world networks
\square Faloutsos ${ }^{3}$, On power-law relationships of the Internet Topology
\square Kleinberg et al., The Web as a graph
■Barabasi and Albert, The emergence of scaling in real networks

History: Graph theory

- Euler's Seven Bridges of Königsberg - one of the first problems in graph theory
- Is there a route that crosses each bridge only once and returns to the starting point?

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
Image 1 - GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License Image 2 - GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License Image 3 - GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Network elements: edges

- Directed (also called arcs)-asymmetrical relations
$\square A \rightarrow B$
- A likes B, A gave a gift to B, A is B 's child,
- A call B, A follows B
- Undirected (symmetrical, reciprocal relations)

- $A \leftrightarrow B$ or $A-B$
$\square A$ and B like each other
- A and B are siblings
- A and B are co-authors
$-A$ and B are friend

- Edge attributes
- weight (e.g. frequency of communication)

■ ranking (best friend, second best friend...)

- type (friend, relative, co-worker)
- properties depending on the structure of the rest of the graph: e.g. betweenness

Directed networks

- girls' school dormitory dining-table partners (Moreno, The sociometry reader, 1960)
- first and second choices shown

Complex Network Theory, S. Mehdi Vahidipour.

Edge weights can have positive or negative values

- One gene activates/inhibits another
- One person trusting/distrusting another
- Research challenge: How does one 'propagate’ negative feelings in a social network? Is my enemy's enemy my friend?

Transcription regulatory network in baker's yeast

Adjacency matrices

- Representing edges (who is adjacent to whom) as a matrix
- $\mathbf{A}_{\mathrm{ij}}=1$ if node i has an edge to node j
$=0$ if node i does not have an edge to j
- $\mathbf{A}_{\mathrm{ii}}=0$ unless the network has self-loops
- $\mathbf{A}_{\mathrm{ij}}=\mathbf{A}_{\mathrm{ji}}$ if the network is undirected, or if i and j share a reciprocated edge
Example:

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Adjacency lists

- Edge list

\square	23	2,3
\square	$2 ; 3$	
\square	2,4	$2 ; 4$
$\square 2$	3,2	$3 ; 2$
\square	34	3,4
	$3 ; 4$	
$\square 5$	4,5	$4 ; 5$
$\square 2$	5,2	$5 ; 2$
\square	51	5,1

- 51
;3
- 24 2,
;4
- 32 3,2
,
- 34

3,4
4;4
$\begin{array}{lll}-45 & 4,5 & 5 ; 2 \\ & 52 & 5,2\end{array}$
-

- Adjacency list

■ is easier to work with if network is

- large
- sparse
- quickly retrieve all neighbors for a node
- 1:
- 2: 34
- 3:24
- $4: 5$
- 5: 12

More types of graphs

- Unweighted
(undirected)
$A_{i j}=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$

$$
A_{i i}=0 \quad A_{i j}=A_{j i}
$$

$$
E=\frac{1}{2} \sum_{i, j=1}^{N} A_{i j} \quad \bar{k}=\frac{2 E}{N}
$$

Examples: Friendship, Hyperlink

- Weighted
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{cccc}
0 & 2 & 0.5 & 0 \\
2 & 0 & 1 & 4 \\
0.5 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right) \\
A_{i i}=0 \quad A_{i j}=A_{j i} \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
\end{gathered}
$$

Examples: Collaboration, Internet, Roads

More types of graphs

- Self-edges (self-loops)

$$
\begin{gathered}
\text { (undirected) } \\
A_{i j}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}^{N}+\sum_{i=1}^{N} A_{i i}
\end{gathered}
$$

Examples: Proteins, Hyperlink

- Multigraph
(undirected)

$$
A_{i j}=\left(\begin{array}{cccc}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right)
$$

$$
A_{i i}=0 \quad A_{i j}=A_{j i}
$$

$$
E=\frac{1}{2} \sum_{i, j=1}^{N} \text { nonzero }\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
$$

Examples: Communication, Collaboration

Weighted Graph

- For weighted directed network the in-strength and outstrength are defined
- The strength distribution of the graph is also correspondingly defined

23	5	$2 ; 3 ; 5$
24	5	$2 ; 4 ; 5$
32	5	$3 ; 2 ; 5$
347	$3 ; 4 ; 7$	
453	$4 ; 5 ; 3$	
529	$5 ; 2 ; 9$	
51	5	$5 ; 1 ; 5$

Weighted network

bipartite (two-mode) networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
- directors and boards of directors
- customers and the items they purchase
- metabolites and the reactions they participate in

A hypergraph and corresponding bipartite graph

(a)

(b)
(a) And (b) show the same information

The membership of five vertices in four different groups.

- (a) Hypergraph representation: groups are represented as hyper-edges (loops circling sets of vertices).
- (b) Bipartite representation

going from a bipartite to a one-mode graph

- Two-mode network
- One mode projection
- two nodes from the first group are connected if
 they link to the same node in the second group
- some loss of information
- naturally high occurrence of cliques

Now in matrix notation

- B_{ij}
- = 1 if node i from the first group links to node j from the second group
■ = 0 otherwise

- B is usually not a square matrix!
- for example: we have n customers and m products

$$
B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Collapsing to a one-mode network

- i and k are linked if they both link to j
$-\mathrm{A}_{\mathrm{ik}}=\sum_{\mathrm{j}} \mathrm{B}_{\mathrm{ij}} \mathrm{B}_{\mathrm{kj}} \rightarrow \mathrm{A}=\mathrm{B} . \mathrm{B}^{\top}$
- B^{\top} swaps B_{xy} and B_{yx}
- if B is an $n \times m, \mathrm{~B}^{\top}$ is an $m \times n$
- A_{ij} is equal to the number of groups to which vertex i belongs
- $A^{\prime}=B^{\top} B$?

$$
B^{\top}=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Matrix multiplication

- general formula for matrix multiplication $Z_{i j}=\sum_{k} X_{i k} Y_{k j}$
- let $Z=A, X=B, Y=B^{\top}$

Collapsing a two-mode network to a one mode-network

- Assume the nodes in group 1 are people and the nodes in group 2 are movies
- The diagonal entries of A give the number of movies each person has seen
- The off-diagonal elements of A give the number of movies that both people have seen
- A is symmetric

Readings

- Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. (Ch.1-2)
- Newman, Mark. Networks: an introduction. Oxford University Press, 2010. (Ch. 6)
- L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167-242, 2007.

