

Complex Network Theory

Lecture 2-1

Basic network concepts and metrics

Instructor: S. Mehdi Vahidipour (Vahidipour@kashanu.ac.ir)

Thanks A. Rezvanian A. Barabasi, L. Adamic and J. Leskovec

Outline

Overview of class topics

- Basic definitions
- Basic concepts
- Representation
- Metrics
- Measures
- Centralities

Next class:

Network centralities and metrics

Understanding large graphs

- What are the statistics of real life networks?
- In which terms we can describe the networks?
- How we can measure a large network?
- Can we explain how the networks were generated?
- Can we make models for network construction?
- To how much extent do the artificially
- constructed networks describe real networks?

First step: Introducing network metrics

Networks became hot topic !

Around 1999

- Watts and Strogatz, Collective dynamics of small-world networks
- Faloutsos³, On power-law relationships of the Internet Topology
- Kleinberg et al., The Web as a graph
- Barabasi and Albert, The emergence of scaling in real networks

History: Graph theory

- Euler's Seven Bridges of Königsberg one of the first problems in graph theory
- Is there a route that crosses each bridge only once and returns to the starting point?

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

Image 1 – GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License Image 2 – GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License Image 3 – GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Network elements: edges

- Directed (also called arcs)-asymmetrical relations
 - $\blacksquare A \to B$
 - A likes B, A gave a gift to B, A is B's child,
 - A call B, A follows B

- $A \leftrightarrow B \text{ or } A B$
 - A and B like each other
 - A and B are siblings
 - A and B are co-authors
 - A and B are friend

Edge attributes

- weight (e.g. frequency of communication)
- ranking (best friend, second best friend...)
- type (friend, relative, co-worker)
- properties depending on the structure of the rest of the graph: e.g. betweenness

Directed networks

- **girls' school dormitory dining-table partners** (Moreno, *The sociometry reader*, 1960)
- first and second choices shown

Complex Network Theory, S. Mehdi Vahidipour.

Edge weights can have positive or negative values

- One gene activates/inhibits another
- One person trusting/distrusting another
 - Research challenge: How does one 'propagate' negative feelings in a social network? Is my enemy's enemy my friend?

Transcription regulatory network in baker's yeast

Adjacency matrices

- Representing edges (who is adjacent to whom) as a matrix
 - A_{ij} = 1 if node i has an edge to node j
 = 0 if node i does not have an edge to j
 - A_{ii} = 0 unless the network has self-loops
 - A_{ij} = A_{ji} if the network is undirected, or if i and j share a reciprocated edge

Example:

$$A = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{array} \right)$$

Adjacency lists

Adjacency list

- is easier to work with if network is
 - large
 - sparse
- quickly retrieve all neighbors for a node
 - 1:
 2: '
 - 2:34
 3:24
 - **4**:5
 - 5:12

More types of graphs

Weighted

(undirected)

Examples: Collaboration, Internet, Roads

More types of graphs

Examples: Proteins, Hyperlink

Examples: Communication, Collaboration

Weighted Graph

- For weighted directed network the in-strength and outstrength are defined
- The strength distribution of the graph is also correspondingly defined

23	5	2;3; 5
24	5	2;4; 5
32	5	3;2; 5
34	7	3;4; 7
45	3	4;5; 3
52	9	5;2; 9
51	5	5;1;5

Weighted network

bipartite (two-mode) networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
 - directors and boards of directors
 - customers and the items they purchase
 - metabolites and the reactions they participate in

A hypergraph and corresponding bipartite graph

- (a) Hypergraph representation: groups are represented as hyper-edges (loops circling sets of vertices).
- (b) Bipartite representation

going from a bipartite to a one-mode graph

Two-mode network

- One mode projection
 - two nodes from the first group are connected if they link to the same node in the second group
 - some loss of information
 - naturally high occurrence of cliques

Now in matrix notation

n

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Collapsing to a one-mode network

i and *k* are linked if they both link to *j*

• $A_{ik} = \sum_{j} B_{ij} B_{kj} \rightarrow A = B.B^T$

 B^T swaps B_{xy} and B_{yx} if B is an $n \times m$, B^T is an $m \times n$

A_{ii} is equal to the number of groups to which vertex *i* belongs

A'=B^TB ?

Matrix multiplication

general formula for matrix multiplication Z_{ij}= ∑_k X_{ik} Y_{kj}
 let Z = A, X = B, Y = B^T

Complex Network Theory, S. Mehdi Vahidipour.

Collapsing a two-mode network to a one mode-network

- Assume the nodes in group 1 are people and the nodes in group 2 are movies
- The diagonal entries of A give the number of movies each person has seen
- The off-diagonal elements of A give the number of movies that both people have seen
- A is symmetric

Complex Network Theory, S. Mehdi Vahidipour.

Readings

- Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. (Ch.1-2)
- Newman, Mark. Networks: an introduction. Oxford University Press, 2010. (Ch. 6)
- L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167 – 242, 2007.