
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Combining contextual, temporal and topological information for
unsupervised link prediction in social networks

Carlos Pedro Muniz, Ronaldo Goldschmidt⁎, Ricardo Choren
Military Institute of Engineering, Computer Engineering Department, Praca General Tiburcio 80, Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Link prediction
Social network analysis
Data mining
Graph mining
Temporal and contextual information

2017 MSC:
00-01
99-00

A B S T R A C T

Understanding and characterizing the processes driving social interactions is one of the fundamental problems in
social network analysis. In this context, link prediction aims to foretell whether two not linked nodes in a
network will connect in the near future. Several studies proposed to solve link prediction compute compatibility
degrees as link weights between connected nodes and, based on a weighted graph, apply weighted similarity
functions to non-connected nodes in order to identify potential new links. The weighting criteria used by those
studies were based exclusively on information about the existing topology (network structure). Nevertheless,
such approach leads to poor incorporation of other aspects of the social networks, such as context (node and link
attributes), and temporal information (chronological interaction data). Hence, in this paper, we propose three
weighting criteria that combine contextual, temporal and topological information in order to improve results in
link prediction. We evaluated the proposed weighting criteria with two popular weighted similarity functions
(Adamic-Adar and Common Neighbors) in ten networks frequently used in experiments with link prediction.
Results with the proposed criteria were statistically better than the ones obtained from the weighting criterion
that is exclusively based on topological information.

1. Introduction

With the growth of the Internet and the creation of social media,
people and organizations can engage, interact, and communicate more
easily, establishing a large social network that allows for knowledge
sharing in virtual environments [1]. A social network is a highly in-
terconnected graph in which nodes represent participants and links
represent one or more types of interdependence (association) amid
corresponding participants. It grows and changes quickly over time
through the addition of new links, denoting the appearance of new
interactions in the social structure [2].

Understanding and characterizing the processes driving social in-
teractions is one of the fundamental problems in social network re-
search [3]. In this scenario, link prediction appears as a central problem
of social network analysis, aiming to infer which unobserved links will
appear in the near future by a given snapshot of a network [4]. Link
prediction has many important applications, e.g., recommending
friends in an online social network or inferring whether two authors
will establish coauthor relationship in a bibliographic network [5].

Several studies have been proposed to predict links in social net-
works [6–10]. In general these studies fall into two main approaches
[7,11,12]: supervised and unsupervised. In the supervised approach,

the original graph that represents the social network is converted to a
binary classification problem. Then, algorithms such as decision trees or
probabilistic methods are used to build classification models. The un-
supervised approach (also known as similarity-based approach [10])
uses similarity functions (d: × →V V ) that compute scores to express
some sort of similarity degree between pairs of nodes. A similarity
degree is a numeric value used to concisely describe properties shared
by two nodes. In this sense, nodes are considered similar if they share
common properties observed in the network, e.g. common friends in a
social network. Recently, various similarity functions to explore dif-
ferent properties observed in social networks have been proposed in the
literature [6–10].

Although link prediction state-of-the-art reveals no common sense
about which approach performs better, the supervised approach pre-
sents two important drawbacks, when compared to the unsupervised
alternative: (a) it usually demands high computational complexity to
build the classification models, and (b) once social networks evolve fast,
their classification models may become obsolete as time goes by, re-
quiring model replacement by new and updated versions. Hence, in this
paper, we focus on the unsupervised approach to link prediction.

Most unsupervised link prediction studies compute the similarity
degrees between pairs of non-connected nodes [2,4,6,13–18]. They
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consider that the pair of non-connected nodes that presents the higher
score is the best suited (has more probability) to connect in the future.
Other studies consider the similarity between connected nodes
[16,18–22], also called link strength (i.e. the strength of an existing
connection), to provide useful information to predict new links. For
example, two non-connected nodes strongly linked to their common
neighbors are more likely to connect than the ones weakly linked to
their common neighborhood. Algebraically, these studies consider each
link strength as a numerical weight assigned to the corresponding edge
of the network graph.

Data used for similarity computation can be classified in three major
groups: topological, contextual and temporal. The topological group
encloses the sort of information that is inherently related to the network
structure (or topology). This kind of data is not explicitly available in
the network: it must be calculated from the network structure; hence, it
does not depend on the type of the analyzed network. Examples of
topological data include number of common neighbors, Adamic-Adar
coefficient, preferential attachment and many others. This kind of
feature has been intensively investigated in research on link prediction
[2,11–13,17,19–21,23,24].

The contextual group encompasses the sort of information that de-
scribes the attributes about the social network application domain. The
existence (availability) of such information is directly dependent of the
analyzed network and the set of available contextual data vary from a
network to another since it is context dependent. Examples of con-
textual data include client’s gender, job location, paper’s keywords,
number of co-authored papers, product review, product category, and
others. Several studies on link prediction evaluated this kind of attri-
bute [5,14,15,25–27].

The temporal group encloses the sort of information about important
chronological data related to both topological and contextual aspects of
the social network. Since temporal data traverse both aspects, it is re-
levant to deal with this kind of data separately. Examples of temporal
data include time-stamps associated to network modifications, such as
insertions of nodes and edges (temporal data related to topological
aspect), paper publication year (temporal data related to contextual
aspect), and so on. Recent research has evaluated the influence of the
temporal data on link prediction [16–18,21,23,28].

Link strength computation in most unsupervised link prediction
studies is based exclusively on topological data. They focus on the
frequency of existing interactions between nodes as weighting criterion.
This means that the link strength between nodes that have more in-
teractions is higher than the link strength between nodes with less in-
teractions. Such restriction leads to poor incorporation of other aspects
of the social network. For instance, according to the homophily social
theory [10], actors with similar interests generally connect in common
communities to interact; for this reason, connections between nodes
with similar profiles (described by contextual attributes) should have a
higher link strength. The same is valid for temporal information. Time
unawareness means that old and new interactions have the same in-
fluence in weight calculation. Yet, according to the Weak Ties theory
[29], recent interactions tend to stimulate new interactions in the
network and thus should have higher influence in link prediction. Thus,
we are interested in examining if the combination of topological, con-
textual and temporal information can improve unsupervised link pre-
diction. Our question is hence: given a snapshot of an homogeneous at-
tributed multigraph1 =G V E, ,τ where V is the set of nodes and E is the set
of links, is it still possible to enhance unsupervised link prediction by com-
bining topological, contextual and temporal information in weight calcula-
tion?

In this work, we initially propose a general weighting model that

allows the user to configure different weighting criteria based on
combinations of contextual, temporal and topological aspects observed
in a social network. Then, we configure the proposed model generating
three specific weighting criteria. The first criterion, Temporal-
Topological (TT), combines the frequency of interactions between
connected nodes (topological data) and the age of the most recent in-
teraction (temporal data). The Contextual-Topological criterion (CT)
merges the similarity between the profiles of connected nodes (con-
textual data) and the frequency of interactions between those nodes
(temporal data). At last, the Contextual-Temporal-Topological criterion
(CTT) gathers frequency and age of interactions with similarity between
the profiles of connected nodes. CTT is the article’s main contribution.
It is a new weighting criterion that combines topological, temporal and
contextual information simultaneously. Experimental results with ten
social networks provide statistical evidence that CTT does enhance
unsupervised link prediction when compared to other weighting cri-
teria that do not combine the three aspects, including the current state-
of-the-art criterion that is exclusively based on topological data.

The remainder of the paper is organized as follows. Some back-
ground concepts on link prediction and related work are discussed in
Section 2. We present the proposed general weighting model and spe-
cific weighting criteria in Section 3. In Section 4, we conduct an ex-
perimental study to evaluate the criteria proposed. Section 5 concludes
the work and presents alternatives of future initiatives.

2. Background

2.1. Link prediction

Link prediction is a basic computational problem underlying net-
work evolution and it can be formally stated as follows. Given an
homogeneous attributed multigraph Gτ(V, E), where V is the set of
nodes, E⊆V× V is the set of undirected attributed (with at least one
temporal information) edges (links) and τ a time-stamp, the goal of link
prediction is to foretell whether there will appear a link e∈ E between
arbitrary, non-connected nodes u and v (i.e. =e u v( , )) at a next time-
stamp +τ 1.

The basic process for an unsupervised link prediction method P
follows the sequence of tasks first proposed by Liben-Nowell and
Kleinberg [2] and it did not consider link strength. So it was later al-
tered to accommodate a graph weighting activity for link strength
computation. The modified process can be seen in Fig. 1 and it com-
prises the following activities:

Activity 1: Graph Partition. In this activity, G is divided into a
training (GTrn) and a test (GTst) sub-graphs. The training sub-graph
contains all edges created up to a given time-stamp τ and the test sub-
graph encloses all edges that are present in G after time-stamp τ. EOld
represents the set of edges in GTrn and ENew denotes the set of edges that
are in GTst but were not in GTrn. In other words, ENew indicates the new
interactions we are seeking to predict.

Activity 2: Core Set Identification. This activity identifies the
Core set of nodes. It encloses those nodes that are considered active,
i.e. nodes that frequently interacted with others before and after τ. As
social networks grow through the addition of nodes as well as edges, it
is not reasonable to seek predictions for edges whose endpoints are not
present in GTrn [2]. Thus the Core set is defined to be all nodes incident
to at least kTrn edges in GTrn and at least kTst edges in GTst. Parameters
kTrn and kTst are defined by the user and they typically depend on the
average frequency of interactions in the network.

Activity 3: Graph Weighting. This activity is used to weight the
edges of the social network graph so that the link prediction method
can use link strength. In this activity, artificial edges are created to
represent pairs of nodes that are connected in GTrn. Then, the weight
(link strength) is calculated for each artificial edge, using a weighting
criterion. Weights are calculated using similarity functions such as:

1 A graph G is called: (a) homogeneous iff G has one type of node and one type of edge;
(b) multigraph iff G contains two or more edges between two nodes; and (c) attributed iff
G has attributes in its nodes and/or edges.
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(A) Frequency of Interactions [16,18,19]: computes the number of ex-
isting interactions between two arbitrary nodes u and v. That is: |E
(u, v)|

(B) Age of the Most Recent Interaction [17,23,30]: computes the elapsed
time from the last interaction between two nodes and the current
time (CTime). That is: −CTime max t( )u v( , )

(C) Age of the Oldest Interaction [17,23,30]: computes the elapsed time
from the first interaction between two nodes and the current time.
That is: −CTime min t( )u v( , )

(D) Cosine Similarity (Salton Index) [10,13]: computes the similarity
between the attributes (characteristics) of two nodes u and v. Its
calculation uses an aggregation function (f) that outputs the set of
characteristics that describe a given node [7]. That is: ∩

×
f u f v

f u f v
( ) ( )

( ) ( )

Activity 4: Score Calculation and Ranking. This activity is exe-
cuted to produce a ranked list (LP) in descending order of score between
pairs of non-connected nodes u and v (u, v∈ Core). Score calculation is
done by similarity functions. There are several weighted similarity
functions (usually weighted versions of the non-weighted similarity
functions) such as:

(A) Weighted Common Neighbors – WCN(u, v). It is a weighted variant of
the Common Neighbors similarity function. It computes the
average link strength between two given nodes u and v and their

common neighbors. The higher the strength of the relationship
between them, the bigger is the chance that u and v will connect.
That is:

∑ +

∈ ∩

w u z w z v( , ) ( , )
2z u vΓ( ) Γ( )

(B) Weighted Adamic-Adar – WAA(u, v). It is a weighted variant of the
Adamic-Adar similarity function. It quantifies neighborhood
overlap between two given nodes u and v. Different from WCN, in
this function, common neighbors with smaller degrees (i.e.
common neighbors with fewer neighbors) and stronger connections
with u and v are weighted more heavily when evaluating the
chances of u and v getting connected. That is:

∑
⎜ ⎟

+ ×
⎛
⎝

∑ ′ ⎞
⎠

∈ ∩
′∈

w u z w z v

log w z z

( , ) ( , )
2

1

( , )z u v
z z

Γ( ) Γ( )
Γ( )

(C) Weighted Preferential Attachment – WPA(u, v). It is a weighted var-
iant of the Preferential Attachment similarity function. It indicates
that new links will be more likely to connect nodes with stronger
relationships than the ones with weaker associations. That is:

Fig. 1. Process for weighting-based link prediction: overview.
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∑ ∑′ × ′
′∈ ′∈

w u u w v v( , ) ( , )
u u v vΓ( ) Γ( )

Activity 5: Evaluation. This activity evaluates the link prediction
method P. In this step, we take the ranked list LP of pairs and select the
top n pairs with the highest likelihood to connect at a time-stamp
posterior to τ. The value of n is defined as:

= ∩ ×n E Core Core( )New

Then, the performance of P is compared to the performance of a
baseline random link predictor Prand which simply randomly selects
pairs of nodes that did not interact in the training interval. A random
prediction is correct with probability expressed as:

=
−( )

C E

E
p

New
Core

Old2
rand

The improvement factor of P over random is calculated as (where
|ECorrect| is the number of links correctly predicted by the link pre-
dictor):

=ImpFactor E E
C

/
P

Correct New

Prand

2.2. Related work

In the following, we give an overview of related work that followed
the weighting-based procedure described in Fig. 1. Mostly, studies from
this group differ in the weighting criterion, i.e. the way similarity
functions for link strength calculation are conceived and the kind of
information they use to compute the link weights. None of them in-
vestigated any weighting criterion that considered topological, tem-
poral and contextual data simultaneously.

The work in [19] first investigated the use of link strength to the
link prediction problem. The proposed weighting criterion was based
exclusively on topological data: the frequency of existing interactions
(i.e. the number of edges) between nodes. Formally, this criterion is
defined as follows.

=w u v E u v( , ) ( , ) (1)

The work reported in [20] considers that link strength is already
given by contextual attributes such as: number of flights between air-
ports, weights between neurons in neural networks and number of
common publications of two authors. Hence it does not present any
initiative to combine different kinds of data for link strength compu-
tation. Although no weighting procedure is explicitly indicated, the
work evaluates the effects of a parameter that intensifies/attenuates
link strength.

Time-evolving link data can be modeled as a third order tensor.
Based on this perspective, Dunlavy et al. [21] used a tensor decom-
position method to extract unique three-dimensional components that
represent data in sequential time slices. Then, for each component, the
work applied the outer product of two vectors with contextual in-
formation in order to quantify the relationship (link strength) between
object pairs. Although the proposed weighting criterion used contextual
and temporal information to weight links, it did not consider topolo-
gical data in link strength calculation.

In [16], the authors proposed three different weighting criteria: one
for each kind of data (temporal, topological and contextual) observed in
co-authorship networks. In the temporal-based criterion, the weight
between two nodes was given by the year of the time-stamp of the most
recent link between the nodes. The topological-based one was the fre-
quency of existing interactions between two nodes (Eq. (1)). The con-
textual-based criterion considered the inverse of the minimum number
of co-authors that collaborated in papers written by two nodes. The

weighting criteria were evaluated independently and compared with
each other. No one outperformed the others. The authors suggested
criteria combination as future work.

Based on the principle of homophily, Xiang et al. [22] proposed a
link-based latent variable unsupervised model to estimate relationship
strength from user profile similarity (described by attributes like
gender, marital status, political view, among others) and interaction
activity such as communication and tagging. Although the work ana-
lyzed the weighted graph from different points of view, there was no
direct comparison between the proposed model and any topology-based
weighting criteria. Additionally, the temporal aspect was not taken into
consideration in the weighting process.

The work in [18] investigated a weighting criterion that takes
temporal information into account (see Eq. (2)). It returns the elapsed
time (age) from the most recent interaction between two linked nodes u
and v (given by max(t(u, v))) to the current time (CTime). β is an arbitrary
damping factor (0< β≤ 1). Hence, weights between connected nodes
that interacted recently are higher than the ones whose last interactions
occurred before in the past. Moreover, the strength of a link varies over
time. Links between two nodes that have not interacted with each other
for a long time, with respect to the current time, become weaker. Muniz
et al. [18] used this criterion to extend the topological information-
based criterion described in Eq. (1). The extended criterion was eval-
uated and compared to the topology-based one. Results provided ex-
perimental evidence that the combination of topological and temporal
information to weight links improves link prediction. Yet the proposed
criterion did not take contextual information into account in the
weighting process.

= −w u v β( , ) CTime max t( )u v( , ) (2)

Table 1 presents a comparative summary of the research in this
scenario, indicating what kind of information was used for link strength
calculation.

At last, it is important to emphasize the popularity of the frequency
of existing interactions as a weighting criterion in the unsupervised link
prediction area. We believe that such popularity is mainly due to its
computational simplicity. Yet this criterion is limited to a single topo-
logical aspect of the networks. It does not consider other aspects ob-
served in many social networks such as contextual and temporal in-
formation.

3. Proposed weighting criteria

Although several works on unsupervised link prediction used to-
pological, temporal and contextual data to formulate weighting criteria,
none of them combined these three aspects simultaneously. Hence, in
this section, we initially propose a general weighting model that can be
used to configure different weighting criteria based on combinations of
contextual, temporal and topological information. Then, we configure
the proposed model generating three specific weighting criteria, each
one emphasizing different aspects observed in social networks.

Table 1
Weighting-based unsupervised link prediction–related work summary.

Kind ofdata used in link strength calculation

Reference Topological Temporal Contextual

[19] yes no no
[20] no no yes
[21] no yes yes
[16] yes yes yes
[22] yes no yes
[18] yes yes no
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3.1. General model

Consider a social network represented by a graph G(V, E) as stated
in Section 2.1. Suppose that G may contain attributes (i.e. contextual
data) in nodes as well as in edges. State-of-the-art in unsupervised link
prediction offers a plethora of similarity functions that can be used for
weight calculation in this scenario (Section 2.2). Consider three sets of
those functions: Top, Tem and Con, organized according to the kind of
information used in weight computation. These sets contain topolo-
gical, temporal and contextual-based weighting criteria, respectively.
Given two arbitrary criteria di, dj∈ Top ∪ Temp ∪ Con, a new weighting
criteria d: × →V V can be defined as = ×d u v d u v d u v( , ) ( , ) ( , )i j .
Product between di and dj ensures that both weighting criteria are
considered simultaneously. Hence we propose our general weighting
model as stated in Eq. (3), where top∈ Top, tem∈ Tem, con∈ Con and
xtop, xtem, xcon∈ {0, 1}.

= × ×w u v top tem con* ( , ) x x xtop tem con (3)

The proposed model allows the configuration of different weighting
criteria. This configuration has two levels. In the first, one can choose
what kind of data must be taken into consideration in edge weighting:
topological, temporal and contextual. It is defined by setting the desired
flags (xtop, xtem, xcon) to 1 and the others to 0. In the second level, si-
milarity functions top, tem and con must be chosen. It is important to
emphasize that the product between weighting criteria in model for-
mulation ensures that the selected aspects ( =x 1i ) must be considered
simultaneously.

In face of the great diversity of similarity functions, the above-
mentioned choice is certainly not an easy task to the analyst. She must
be aware of the existing functions and the theories they are based on. In
this sense, this choice depends mostly on her knowledge about the
problem and on what aspects observed in the social network (topolo-
gical/temporal/contextual) she wants to take into account.

In this paper, we are particularly interested in evaluating whether
combining contextual, temporal and topological information in weight
calculation can improve topological exclusive weighting-based link
prediction. Therefore, the next sub-sections describe three weighting
criteria configured from our proposed model: Temporal & Topological,
Contextual & Topological and All Feature.

3.2. Temporal & topological weighting

The temporal-topological weighting criterion (TT) is inspired by the
Weak Ties theory, which states that recent and intense interactions tend
to stimulate new interactions in the network [29]. The idea is to
combine data about the time and the frequency of interactions in order
to predict links. Therefore, recent and recurrent (intense) interactions
must have higher influence than old and seldom ones in link prediction
calculation. In order to implement TT according to the above-men-
tioned rationale, the general weighting model can be configured as
indicated in Table 2.

Hence, the TT weighting criterion for an interacting node pair u and

v is thus defined as follows:

= −w u v E u v β( , ) ( , ) *TT CTime max t( )u v( , ) (4)

where β is an arbitrary damping parameter (0< β≤ 1) used to cali-
brate the importance of time in the weighting criterion. Higher (resp.
lower) values of β intensify (resp. attenuate) influence of time in weight
definition.

Consider the co-authorship network2 example presented in Fig. 2. If
we use: (a) =β 0.8, (b) CTime= 2017, and (c) the weighted similarity
function WCN for score calculation, the weighting step of the un-
supervised link prediction process described in Section 2.1 would
output:

= = =−w Ava Dana( , ) 3*0. 8 3*1 3.0TT (2017 2017)

= = =−w Bob Dana( , ) 3*0. 8 3*0.8 2.4TT (2017 2016)

= = =−w Cal Dana( , ) 3*0. 8 3*0.64 1.9TT (2017 2015)

= + =WCN Ava Bob( , ) (3 2.4)/2 2.70TT

= + =WCN Ava Cal( , ) (3 1.9)/2 2.45TT

= + =WCN Bob Cal( , ) (2.4 1.9)/2 2.15TT

On the other hand, if the weighting criterion was exclusively based
on topological information, there would be no prevalence for link
prediction and the final score would be the same for all pairs of nodes:

= = =w Ava Dana w Bob Dana w Cal Dana( , ) ( , ) ( , ) 3.0T T T

= = =WCN Ava Bob WCN Ava Cal WCN Bob Cal( , ) ( , ) ( , ) 3.0T T T

However, using wTT (i.e. combining temporal and topological in-
formation provided in the network), the pair (Ava, Bob) would be more
likely to connect than the others. Indeed, although the three authors
have the same frequency of interaction with their common neighbor,
Ava and Bob are the authors that most recently interacted with that
neighbor. Hence, they should be more strongly linked to such neighbor
than others. The TT’s temporal-based factor depicted this aspect.
Consequently, (Ava, Bob) received the highest weighted common
neighbor score among all pairs of non-connected nodes.

3.3. Contextual & topological weighting

The CT weighting criterion is inspired by the emergence of the
homophily theory [31] in social networks. This social theory states that
individuals that share interests and/or present similar characteristics
(i.e. have common contextual information) tend to associate with each
other. Hence, the idea of this criterion is to combine similarity between
nodes (homophily) with the frequency (intensity) of their interactions
so that connected nodes that interact frequently and share similar
contextual information have higher link strength. Table 3 presents CT’s
parameter setting.

The CT weighting criterion for a node pair u and v is thus defined as
follows:

= −w u v E u v α( , ) ( , ) *CT cos u v(1 ( , )) (5)

where α is an arbitrary damping parameter (0< α≤ 1) used to cali-
brate the importance of contextual information in the weighting cri-
terion. Higher (resp. lower) values of α intensify (resp. attenuate) in-
fluence of contextual information in weight definition.

Consider again the example from Fig. 2 and that =α 0.5 and
=CTime 2017. Suppose that, in this case, the aggregation function f for

Table 2
TT weighting criterion–parameter configuration.

Parameter Value Comment

xtop 1 —
xtem 1 —
xcon 0 —
top Frequency of existing

interactions between nodes
(Eq. (1)).

It represents the intensity of
interactions between the nodes.

tem Age of the most recent time-
stamp (Eq. (2)).

It distinguishes between nodes with
recent interactions from nodes with
past interplay.

con — —

2 Co-authorship networks are highly dynamic social networks since several papers are
published every year. The frequently upcoming publications are normally associated with
new authors and/or new collaborations [5]. The link prediction problem, in such net-
works, consists of deducing if two authors will establish a coauthor relationship in the
near future.
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the cosine similarity (see Section 3.1) is the union of the keywords from
all papers of a node. Then, we would have:

= ∪ ∪ =f Ava p p p p p p p p p p p( ) { , } { , } { , , } { , , , }1 2 1 5 1 2 6 1 2 5 6

= ∪ ∪ =f Bob p p p p p p p p p( ) { , } { , } { , } { , , }1 2 1 2 1 3 1 2 3

= ∪ ∪ =f Cal p p p p p p p p p p p( ) { , } { , } { , , } { , , , }1 2 1 3 1 2 6 1 2 3 6

= ∪ ∪ ∪ ∪ ∪
∪ ∪ =

f Dana p p p p p p p p p p p
p p p p p p p p p p p p

( ) { , } { , } { , , } { , } { , }
{ , } { , } { , , } { , , , , }

1 2 1 5 1 2 6 1 2 1 3

1 2 1 3 1 2 6 1 2 3 5 6

=
×

=cos Ava Dana
p p p p

p p p p p p p p p
( , )

{ , , , }
{ , , , } { , , , , }

0.891 2 5 6

1 2 5 6 1 2 3 5 6

=
×

=cos Bob Dana
p p p

p p p p p p p p
( , )

{ , , }
{ , , } { , , , , }

0.771 2 3

1 2 3 1 2 3 5 6

=
×

=cos Cal Dana
p p p p

p p p p p p p p p
( , )

{ , , , }
{ , , , } { , , , , }

0.891 2 3 6

1 2 3 6 1 2 3 5 6

= =w Ava Dana( , ) 3*0.93 2.79CT

= =w Bob Dana( , ) 3*0.86 2.57CT

= =w Cal Dana( , ) 3*0.93 2.79CT

= + =WCN Ava Bob( , ) (2.79 2.57)/2 2.68CT

= + =WCN Ava Cal( , ) (2.79 2.79)/2 2.79CT

= + =WCN Bob Cal( , ) (2.57 2.79)/2 2.68CT

As previously observed, using the traditional frequency of existing
interactions weight, there would be no prevalence for link prediction.
Nevertheless, using wCT (i.e. using contextual and topological in-
formation provided in the network), the pair (Ava, Cal) would be more
likely to connect than the others. Indeed, although the three authors
have the same frequency of interaction with their common neighbor,
Ava and Cal are the authors that share the highest number of common

keywords with their common neighbor (i.e. they have similar interests
in research as their common neighbor). Hence, they should be more
strongly connected to such neighbor than others. CT’s contextual-based
factor depicted this aspect. Consequently, (Ava, Cal) received the
highest weighted common neighbor score among all pairs of non-con-
nected nodes.

3.4. All feature weighting

The third weighting criterion (CTT) considers contextual, temporal
and topological aspects of the network simultaneously. It merges TT
and CT criteria. Hence, CTT takes into account principles from the
Weak Ties and the Homophily social theories. The idea is to combine
profile similarity between nodes (homophily) with frequency (in-
tensity) and time (age) of their interactions so that connected nodes
that interacted frequent and recently and share similar profiles (i.e.,
present common interests) have higher link strength. Table 4 contains
the general weighting model’s configuration w.r.t. CTT.

The all-feature weighting score for a node pair u and v is thus de-
fined as follows:

= −
⎜ ⎟− ⎛
⎝

⎞
⎠

−w u v E u v β α( , ) ( , ) * *CTT cos u v1 ( , )

CTime max t u v

CTime min t

( , )

( ) (6)

where α and β are arbitrary damping factors (0< α, β≤ 1) to put
more/less emphasis on the contextual and temporal influences respec-
tively. For scaling purposes, we normalize the age of the most recent
time-stamp with the oldest age ( −Ctime min t( )) among all interactions.

Considering once again the example from Fig. 2 and using: (a)
=β 0.5; (b) =α 0.5; (c) current time = 2017; (d) aggregation function f

= union of keywords, we would have:

= ≈−−
−w Ava Dana( , ) 3*0. 8 *0. 5 2.79CTT 1 0.89max(2017 (2017,2016,2015))

2017 2013

= ≈−−
−w Bob Dana( , ) 3*0. 8 *0. 5 2.16CTT 1 0.77max(2017 (2016,2015,2016))

2017 2013

Fig. 2. A sample co-authorship network represented as an augmented graph with
both structure and attribute information: nodes and continuous edges denote
authors and papers (i.e. collaborations), respectively. Each paper contains two
attributes: year of publication (temporal) and set of keywords (contextual). Each
dashed line is an artificial edge created by the weighting step and contains the
link strength between the corresponding nodes.

Table 3
CT weighting criterion–parameter configuration.

Parameter Value Comment

xtop 1 —
xtem 0 —
xcon 1 —
top Frequency of existing

interactions between nodes
(Eq. (1)).

It represents the intensity of
interactions between the nodes.

tem — —
con Cosine similarity (Section 2.1) It expresses how much two nodes

share contextual information.

Table 4
CTT weighting criterion–parameter configuration.

Parameter Value Comment

xtop 1 —
xtem 1 —
xcon 1 —
top Frequency of existing

interactions between nodes
(Eq. (1)).

It represents the intensity of
interactions between the nodes.

tem Age of the most recent time-
stamp (Eq. (2)).

It distinguishes between nodes with
recent interactions from nodes with
past interplay.

con Cosine similarity
(Section 2.1)

It expresses how much two nodes
share contextual information.
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= ≈−−
−w Cal Dana( , ) 3*0. 8 *0. 5 1, 97CTT 1 0.89max(2017 (2017,2015,2016))

2017 2013

≈ + ≈WCN Ava Bob( , ) (2.79 2.16)/2 2.47CTT

≈ + ≈WCN Ava Cal( , ) (2.79 1.97)/2 2.38CTT

≈ + ≈WCN Bob Cal( , ) (2.16 1.97)/2 2.06CTT

Under the temporal-topological point of view, (Ava, Bob) should be
ranked first (see Section 3.2). Considering the contextual-topological
aspect, (Ava, Cal) should win (see Section 3.2). CTT considers both
points of view simultaneously. In the example, it was configured to
emphasize them equally ( =β 0.5 and =α 0.5). According to this con-
figuration, (Ava, Bob) would reach the top-1 position for link re-
commendation. Indeed, Ava and Bob are the ones that better satisfy the
above-mentioned points of view at the same time: they most frequent
and recently interacted with their common neighbor and also shared
common keywords with him.

4. Experiments

4.1. Datasets

We used two versions of five co-authorship networks, in our ex-
periments. Such networks were used in [2] and describe the authors
and papers from five sections of the physics e-Print arXiv: astro-ph
(astrophysics), cond-mat (condensed matter), gr-qc (general relativity
and quantum cosmology), hep-ph (high energy physic-
s–phenomenology) and hep-th (high energy physics–theory). The first
version covered the same time interval (papers from 1994 to 1999)
used by Liben-Nowell and Kleinberg [2]. That was very important to
help us validate our implementation. The second version covered the
same period (papers from 2000 to 2005) used by Munasinghe and
Ichise [23]. All networks were extracted from arXiv API.3 Both versions
of the networks were homogeneous attributed multigraphs where nodes
and edges represent authors and papers, respectively. All networks
contained two attributes in edges: the paper’s year of publication and its
set of keywords.

4.2. Experimental methodology

Our experiments employed the weighting-based procedure depicted
in Fig. 1. First, we divided each network in two periods of three years.
Hence, networks from the first set were partitioned into

=G [1994, 1996]Trn and =G [1997, 1999]Tst and networks from the
second set were split into =G [2000, 2002]Trn and =G [2003, 2005]Tst .

Then, we proceeded to perform the experiment configuration. In
this configuration, the user can choose the experiment settings and fine-
tune the parameters of the weighting criteria. For score calculation,
WCN and WAA were chosen because they are the similarity functions
most used in weighting-based link prediction studies. Each of them was
combined with the following weighting criteria: T (exclusively topolo-
gical–the frequency of existing interactions), TT (Temporal &
Topological), CT (Contextual & Topological) and CTT (All Feature).
Hence, we considered eight similarity functions in our experiments:
WCNT, WAAT, WCNTT, WAATT, WCNCT, WAACT, WCNCTT and WAACTT.
It is important to emphasize that we used the union of keywords as the
aggregation function f for the cosine similarity in all cases. To calibrate
parameters α and β, we divided GTrn of each network from the first
group into two subsets: =G [1994, 1995]Pre and =G [1996, 1996]Validation
and =k 1. We ranged the values of α and β from 0.1 to 0.9 with step
0.1. We picked up the values that led to the best results in the validation
set (see Table 5 for the complete configuration adopted in the experi-
ment).

To identify the nodes that belong to the Core set (see process for
weighting-based link prediction, activity 2, described in Section 2.1),
we considered =k 3. Hence, Core consisted of all active authors who
had written at least 3 articles during the training period and at least 3
articles during the test period. Three reasons guided this choice: (a)
Training and test periods’ length of all networks was three years; (b) We
considered that one year could be a reasonable frequency interval for
paper publication; (c) It was the same value defined in [2], where si-
milar experiments were performed.

For the graph weighting step, we created artificial edges between
nodes connected in GTrn. Then we calculated four weight values (one for
each weighting criterion) for each artificial edge.

Finally, we executed each similarity function for each pair of non-
connected nodes in each network and compared the performances of all
similarity functions to the performance of the random predictor (see
improvement factor calculation described in Section 2.1).

4.3. Results

Tables 6 and 7 provide some statistics of the networks after the Core
Identification step.4 Tables 8 and 9 show the functions’ performances
on each network with respect to the improvement factor over the
random predictor (prand). Best values are highlighted in bold font. A
preliminary analysis reveals that no function outperformed all the
others in all networks and periods. Nevertheless, it is important to
emphasize that CTT won in 6 out of 10 networks. If we consider criteria
with any kind of combination, the number of victories grows to 8 cases
and 2 ties. The traditional topology-based criterion T never won alone.
When it won, its performances were also achieved by a combination-
based criteria. Hence, in general, the results suggest that combining
topological, temporal and contextual data may, in fact, be an inter-
esting choice to enhance link prediction.

On the other hand, a more rigorous analysis reveals that, in most
cases, the differences of performance among the similarity functions
were not high. Hence, in order to check for statistical significance in
those differences, we applied the Friedman test with significance level

=α 0.05 [32] and null hypothesis stated as H0: “the performance of the
similarity functions are statistically identical”. In the test, we con-
sidered the eight similarity functions and the ten networks. The test
rejected H0, indicating a significant statistical difference among the
functions.

In order to better investigate the differences in performance of the
similarity functions, we decided to run a post-hoc test to compare the
functions with each other. The Nemenyi test with significance level

=α 0.05 [32] was employed. We stated H0 as “performances of func-
tions x and y are statistically identical”. We run the test twenty eight
times, one for each possible pair of functions. Ten out of the twenty
eight tests revealed statistical difference, i.e. H0 was rejected. Table 10

Table 5
Experimental configuration set.

Parameters

Similarity function α β

WCNT – –
WAAT – –
WCNTT – 0.2
WAATT – 0.4
WCNCT 0.5 –
WAACT 0.5 –
WCNCTT 0.7 0.2
WAACTT 0.7 0.4

3 http://export.arxiv.org/api/ .

4 As previously presented in Section 2.1, Core is the set of active nodes and ENew is the
set of edges to be foreseen.
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summarizes them. For each test, the table indicates which function of
the corresponding pair showed higher performance.

In 90% of the tests that presented significant differences, similarity
functions based on combined weighting criteria outperformed the
others. These results confirm our hypothesis that combining contextual,
temporal and topological information can enhance unsupervised link
prediction when it is based exclusively on topological data.

The most prevalent combined weighting criteria in tests with sta-
tistical differences were CTT (tests 6–10) and TT (tests 2–5). Hence, the
combination of temporal and topological information was present in
90% of all tests presented in Table 10. On the other hand, CT was the

only combined weighting criterion that did not outperform any other
significantly. Moreover, it was the only criterion outperformed by a
purely topological weighting criterion (test 1). Despite there is not a
plausible explanation for CT’s poor performance, if we consider all the
results, it seems that temporal information may have played a key role
to determine the outcomes of this experiment (it won 55% of the tests
with statistical differences). This hypothesis is reinforced by two facts.
First, although CT presented a low performance, CTT was the criterion
with the best results. Second, CTT is an extended version of CT where
temporal information is added to the combination of contextual and
topological data.

Another important aspect to be emphasized is that the Weighted
Adamic Adar index (WAA) won 90% of the tests. It seems that the
participants of the co-authorship networks employed in the experiment
were restrictive when choosing their collaborators.

5. Conclusion and future work

Predicting whether a pair of nodes will connect in the future is an
important network analysis task known as the link prediction problem.
One of the major approaches to the this problem computes link weights
between connected nodes and, based on a weighted graph, apply
weighted similarity functions between non-connected nodes in order to
identify potential new links. The weighting criteria commonly adopted
by related studies were based exclusively on topological information,
i.e. information that describes structural aspects of the network ana-
lyzed. Nevertheless, such approach leads to poor incorporation of other
aspects of the social networks, such as context (node and link attri-
butes), and temporal information (chronological interaction data).
Hence, in this article, we investigated whether the combination of
contextual and temporal information with topological data in weight
computation could improve the performance of link prediction
methods. Our proposal includes a general weighting model that allows
the user to configure different weighting criteria based on combinations
of contextual, temporal and topological information. It also includes
three graph weighting criteria configured from the general model in
order to implement such combinations:

• The Temporal-Topological (TT) criterion combines the frequency of
interactions (topological) between connected nodes and the age of
the most recent interaction (temporal).

• The Contextual-Topological criterion (CT) merges the similarity
between the profiles (contextual) of connected nodes and the fre-
quency of interactions (topological) between those nodes.

• The all feature criterion (CTT) gathers frequency (topological) and
age of interactions (temporal) with similarity between the profiles
(contextual) of connected nodes.

Table 6
Statistics about the 1st version of the networks used in the experiments
(1994–1999).

Network Authors Papers Core ENew

astro-ph 19,864 21,290 9616 2087
cond-mat 19,289 21,698 1336 723
gr-qc 5283 8299 390 137
hep-ph 12,658 24,294 1689 1950
hep-th 11,229 20,935 1192 767

Table 7
Statistics about the 2nd version of the networks used in the experiments
(2000–2005).

Network Authors Papers Core ENew

astro-ph 42,771 50,359 6197 37,362
cond-mat 48,298 51,809 4437 7507
gr-qc 8939 13,858 812 463
hep-ph 17,750 31,707 2476 8246
hep-th 14,212 27,444 1893 1293

Table 8
Improvement factor of similarity function over the random predictor–1st ver-
sion of the networks (1994–1999).

Network

Similarity function astro-ph cond-mat gr-qc hep-ph hep-th

RandPred 0.23 0.11 0.18 0.14 0.11
WCNT 27.9 64.9 68.5 44.8 93.9
WAAT 40.0 69.9 64.4 47.5 93.9
WCNTT 34.5 59.9 64.4 45.6 77.1
WAATT 40.2 67.4 68.5 56.4 77.1
WCNCT 39.8 64.9 40.3 48.6 61.4
WAACT 36.3 68.6 56.4 52.7 60.2
WCNCTT 38.7 71.1 64.4 49.7 75.9
WAACTT 41.0 76.1 64.4 50.5 78.3

Table 10
Pairs of similarity functions that revealed a statistically significant difference in
performance (according to the Nemenyi Test)–each row indicates which func-
tion of the corresponding pair showed higher performance.

Similarity function performance

Test Higher Lower

1 WAAT WCNCT

2 WAATT WCNT

3 WAATT WCNCT

4 WAATT WAACT

5 WAATT WCNTT

6 WAACTT WCNT

7 WAACTT WCNCT

8 WAACTT WAACT

9 WAACTT WCNTT

10 WCNCTT WCNCT

Table 9
Improvement factor of similarity function over the random predictor–2nd
version of the networks (2000–2005).

Network

Similarity function astro-ph cond-mat gr-qc hep-ph hep-th

RandPred 0.20 0.08 0.14 0.27 0.07
WCNT 50.2 106.2 45.9 61.2 83.4
WAAT 52.5 116.3 50.5 61.7 83.4
WCNTT 51.2 112.0 49.0 62.3 78.1
WAATT 54.1 118.8 52.1 62.6 86.6
WCNCT 51.5 99.6 33.7 52.8 66.3
WAACT 52.0 107.1 39.8 60.2 72.7
WCNCTT 53.5 116.3 50.5 64.0 86.6
WAACTT 53.5 120.9 53.6 63.7 94.1

C.P. Muniz et al. Knowledge-Based Systems 156 (2018) 129–137

136



CTT was the article’s main contribution. It combines topological,
temporal and contextual information simultaneously. Experimental re-
sults with two popular weighted similarity functions (Adamic-Adar
Index and Common Neighbors) in ten social networks provided statis-
tical evidence that CTT does enhance unsupervised link prediction
when compared to other weighting criteria that do not combine the
three aspects. It confirmed our hypothesis that combining topological,
contextual and temporal aspects of social networks in weight calcula-
tion can, indeed, enhance unsupervised link prediction.

As future work, we consider evaluating other weighting criteria
configured from our general weighting model. We also plan to develop
an optimization procedure to support weighting criteria parameter
configuration. Additionally, it would be interesting to evaluate the in-
fluence of our criteria in the supervised approach to the link prediction
problem. Experiments of our criteria with networks out of the context of
co-authorship would be desirable too.
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