
Neurocomputing 359 (2019) 395–407

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Classification using link prediction

Seyed Amin Fadaee, Maryam Amir Haeri ∗

Department of Computer Science and Information Technology, Amirkabir University of Technology, Iran

a r t i c l e i n f o

Article history:

Received 21 February 2019

Revised 24 May 2019

Accepted 5 June 2019

Available online 13 June 2019

Communicated by Prof. H. Zhang

Keywords:

Classification

Link prediction

Graph representation

Local similarity measure

Similarity-based techniques

a b s t r a c t

Link prediction in a graph is the problem of detecting the missing links or the ones that would be formed

in the near future. Using a graph representation of the data, we can convert the problem of classification

to the problem of link prediction which aims at finding the missing links between the unlabeled data

(unlabeled nodes) and their classes. To our knowledge, despite the fact that numerous algorithms use

the graph representation of the data for classification, none are using link prediction as the heart of their

classifying procedure. In this work, we propose a novel algorithm called CULP (C lassification U sing L ink

P rediction) which uses a new structure namely Label Embedded Graph or LEG and a link predictor to

find the class of the unlabeled data. Different link predictors along with Compatibility Score - a new link

predictor we proposed that is designed specifically for our settings - has been used and showed promis-

ing results for classifying different datasets. This paper further improved CULP by designing an extension

called CULM which uses a majority vote (hence the M in the acronym) procedure with weights propor-

tional to the predictions’ confidences to use the predictive power of multiple link predictors and also

exploits the low level features of the data. Extensive experimental evaluations shows that both CULP and

CULM are highly accurate and competitive with the cutting edge graph classifiers and general classifiers.

© 2019 Elsevier B.V. All rights reserved.

1

r

a

t

g

o

i

e

a

l

i

t

d

fi

s

p

g

H

i

a

o

m

b

u

[

[

a

U

s

w

s

l

c

s

f

a

h

0

. Introduction

Classification is an old problem in machine learning and pattern

ecognition that aims at finding a correct mapping between data

nd their corresponding labels. This mapping would then be used

o derive the class of the unlabeled data [1] .

This field is still highly active in the literature and a lot of al-

orithms have been proposed to correctly classify the data. Most

f the classification algorithms aim at finding a decision boundary

n the feature space for distinguishing the data belonging to differ-

nt classes; however, as more complex data require more complex

lgorithms, these approaches could fail or not capture the true re-

ations in the data.

One of the new approaches that has recently gained popularity

n the literature is classification of the unlabeled instances using

he graph representation of the data. Data can be represented in

ifferent forms one of which is a graph. In this setting, the data is

rst converted to a graph via a similarity function in the feature

pace, then unlabeled data is classified by incorporating a graph

roperty. These graph properties are called high level feature which

ive more insight to the data compared to the low level features.
∗ Corresponding author.

E-mail addresses: aminfadaee@aut.ac.ir (S.A. Fadaee), haeri@aut.ac.ir (M. Amir

aeri).

w

m

t

b

ttps://doi.org/10.1016/j.neucom.2019.06.026

925-2312/© 2019 Elsevier B.V. All rights reserved.
Classification using graph representation is studied extensively

n numerous works [2–9] . These works use graph properties such

s clustering coefficient, modularity, importance, PageRank and

thers to classify the unlabeled data and they tend to achieve

ore accurate results compared to the classifiers that classify

ased on the low level features of data. This approach has been

sed in text classification [10] , hyperspectral image classification

11,12] , image classification [2,8] , handwritten digits recognition

3] and other areas.

Link prediction is the problem of predicting the missing link in

 graph or the ones that would be formed in the near future [13] .

sing the graph representation of the data we can treat the clas-

ification as a link prediction problem in an intuitive way where

e try to find the link between the unlabeled node with it corre-

ponding class. To our knowledge, there are not any work in the

iterature that uses link prediction to solve the problem of classifi-

ation, however, the use of classification to solve link prediction is

tudied extensively [13] .

In this work, we proposed an algorithm called CULP (acronym

or Classification Using Link Prediction) that takes a different look

t the classification problem through a link prediction approach. As

e will elaborate in the paper, CULP uses a graph called LEG that

odels the data in an intuitive and suitable way for link predic-

ion.

Any link predictors can be used to derive the class of the unla-

eled node in CULP and we proposed a new local measure called

https://doi.org/10.1016/j.neucom.2019.06.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.026&domain=pdf
mailto:aminfadaee@aut.ac.ir
mailto:haeri@aut.ac.ir
https://doi.org/10.1016/j.neucom.2019.06.026

396 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

t

t

U

f

λ

n

b

a

λ

n

d

l

(

i

λ

l

d

n

l

g

f

i

2

r

e

u

a

t

t

r

f

s

w

d

‖

a

φ

n

s
Compatibility Score that is designed to improve the accuracy of link

prediction and consequently classification.

As much insight as high level features have for capturing the

patterns present in the data, exploiting the low level feature along-

side them would further improve the predictive power of a graph

classifiers and different researchers incorporate this idea in their

work [2,4] . This is why we further improved CULP and proposed

the CULM extension - a majority vote system (hence the M in the

acronym) with weights proportional to the probabilities of the pre-

dictions, this extension uses multiple link predictors along with a

low level classifier. As we will see both CULP and CULM algorithms

derive highly accurate results which are competitive with low level

classifiers and other graph based classification methods.

The rest of the paper is organized as follows; in the next section

a review of the general domains used in this paper is presented

which is a preliminary section elaborating the problem of link pre-

diction, similarity measures in vector space, method of converting

graph to data and the problem of classification. After that a section

of related works is given which is a summary of recent works

using graph representation of the data for classification. Next, the

CULP algorithm is presented with full details which elaborates

on the LEG (Label Embedded Graph) structure, the classification

procedure which uses link prediction, our novel link predictor

- Compatibility Score, the time complexity and a toy example

to demonstrate CULP. Finally, the CULM extension is presented

which is followed by our extensive experimental results to put our

proposed algorithms into perspective. At the end, the conclusion

to the paper and the aim for future works are presented.

2. Preliminaries

To fully understand CULP, a grounding for the details compris-

ing this algorithm should be set. In this section, a general review

to graph theory concepts and notations along with the definition

of the link prediction problem in complex networks is given. After

that, an overview of some of the most important similarity mea-

sures is presented, following this the different ways of converting

data to graph is discussed. Finally at the end of this section the

problem of classification is defined.

2.1. Link prediction

Given a set of vertices V and a set of edges E containing (i, j)

where i, j ∈ V the data structure G (V, E) can be defined as a graph. If

the elements in E are ordered pairs, G is considered to be a directed

graph . In an undirected graph if (i, j) ∈ E it is implied that (j, i) ∈ E .

Regardless of the directionality of the graph, node j is a neighbor

node to node i if (i, j) ∈ E . For a node i , �i is the set of the neighbor

nodes of i .

For the graph G , adjacency matrix A G or simply A is defined as

an N × N matrix with zero-one elements and N = | V | . For any en-

try in A , A i, j = 1 if and only if (i, j) ∈ E . In an undirected graph by

definition A = A

T . As our focus in this paper is toward undirected

graph, for the sake of simplicity we use graph to state an undi-

rected graph.

The degree of a node i in a graph can be derived using | �i |. For

any graph, the cardinality or | E | can be obtained by summing over

the degree of all nodes using Eq. (1) where N = | V | .

| E| =

1

2

N ∑

i =1

| �i | (1)

The problem of link prediction in a graph arises when the goal

is to predict for the currently absent links (0 entries in A) the prob-

ability of link formation in the future. There are many functions to

predict the link prediction scores. These functions usually compute
he local similarity between the nodes to derive the scores. One of

he simplest techniques is known as common neighbors (CN) [14] .

sing this approach the prediction scores can be derived using the

ollowing:

i, j = | �i ∩ � j | (2)

Eq. (2) simply counts the number of common neighbors of

odes i and j to derive a score for their link formation.

Another approach to find the link formation score is introduced

y Adam and Adar [15] which uses degrees of common neighbors

s features for prediction and it can be written as

i, j =

∑

γ ∈ �i ∩ � j

1

log| �γ | (3)

Eq. (3) is known as the Adamic-Adar score (AA). This score pe-

alizes the features by their logarithm and uses these features for

eriving the prediction scores. Another famous approach for tack-

ing the problem of link prediction is the Resource Allocation Index

RA) [16] that simulates the transition of resources between nodes

 and j . This index is defined as Eq. (4) .

i, j =

∑

γ ∈ �i ∩ � j

1

| �γ | (4)

This index is quite similar to AA, however it does not use the

ogarithm function which reduces the effect of nodes with high

egree. This has the benefit of penalizing high degree common

odes. In a lot of networks, these nodes provide little insight for

ink prediction as they are connected to a lot of other nodes in the

raph.

In this work, we are proposing a new similarity function used

or the purpose of link prediction. called Compatibility Score which

s discussed further in the paper.

.2. Similarity measures

Any data point x with numeric features x f where 1 ≤ f ≤ d can be

egarded as a vector in an d -dimensional space. This view would

nable the measurement of the similarities between data points

sing conventional similarity measures. As we are going to utilize

 similarity measure in converting our data to graph(discussed in

he next segment), we are going to provide overview of some of

hese measures.

Having our data matrix X , with n rows and d columns with each

ow being a data vector, the Cosine similarity can be defined as the

ollowing:

 i, j =

X i .X j

‖

X i ‖ 2

∥∥X j

∥∥
2

(5)

here ‖ x ‖ 2 denotes the Euclidean norm of the vector x which is

erived by the following:

x ‖ 2 =

√ √ √ √

d ∑

f=1

x 2
f

Following the above equation, the Euclidean distance between

ny two d dimensional vectors can be written as:

i, j =

√ √ √ √

d ∑

f=1

(X i, f − X j, f) 2 (6)

Utilizing the Euclidean distance, another similarity measure -

amely Inverse Euclidean can be defined using:

 i, j =

1

φi, j + ε
(7)

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 397

b

i

d

M

φ

2

w

u

a

t

t

a

s

i

s

p

s

A

A

t

b

f

2

f

l

n

T

f

f

p

t

m

c

i

t

o

t

o

c

a

3

n

c

p

t

b

o

b

c

t

n

a

d

t

i

s

b

a

f

s

i

b

h

G

d

a

p

t

s

fi

t

p

r

i

v

s

b

o

w

m

u

A

s

t

c

A

a

i

O

t

b

c

T

t

b

o

m
In Eq. (7) the ε term is a small number used to avoid division

y zero in case of identical vectors. Another prominent distance

n linear algebra is what is known as the absolute or Manhattan

istance (Eq. (8)) and by substituting Eq. (8) in Eq. (7) , the Inverse

anhattan similarity function is defined.

i, j =

d ∑

f=1

| X i, f − X j, f | (8)

.3. Converting data to graph

Any vector based data can be represented as a graph. Doing this

ould result in changing the structure of the data which enables

s to compute high level features.

Two of the most used procedures for converting data to graph

re r -Radius and k NN methods [17] .

Using a similarity measure (e.g. cosine similarity discussed in

he previous segment) s and matrix data X we can use either of

hese two algorithms to convert the data into a graph. In r -Radius,

n edge is created between every pair of data points that have a

imilarity higher than a predefined threshold r . Another approach

s using k -nearest neighbors to form up the graph. If (based on a

) X i is in the k -nearest neighbors of X j the edge (i, j) is created.

Due to the fact that k NN relation is not symmetric this ap-

roach would generally results in a directed graph. However the

ame principle can be used to create an undirected graph as in

lgorithm 1 . Using this approach, if X has N instances, the num-

lgorithm 1 Undirected k NN conversion function for the data ma-

rix X and similarity measure s .

function kNN-Convert (X , s , k)

E = {}
for i, j ∈ X do

if i ∈ kN N (s, j) or j ∈ kN N (s, i) then

E ← E ∪ (i, j)

end if

end for

return E

end function

er of undirected edges | E | in the created graph is bounded by
Nk
2 ≤ | E| ≤ Nk . CULP uses an undirected k NN modeling of the data

or the task of classification.

.4. Classification

Suppose there are two sets of data, X with n instances and d

eatures for each instance which is the set of our labeled data. The

abels of X is denoted by y where y i ∈ 1 , 2 , . . . , C with C being the

umber of classes. Each pair (X i , y i) makes up our training data.

he other set of data is X

(u) with m instances and again d features

or each instance which are the unlabeled or the test data.

The classification problem aims at finding a mapping X (u)
i

→ ˆ y i
or every i ∈ 1 , . . . , m . In other words, we are trying to find a

roper label for each of the unlabeled instance in X

(u) . If C = 2 ,

his is called binary classification and if C > 2, the problem is called

ulti-class classification [1] .

Classifiers like k NN or Decision Tree can naturally handle multi-

lass classification problems, however some classifiers like SVM are

nherently designed for the binary classification task and upgrading

hem to handle multi-class classification requires using One vs. All

r One vs. One approaches [1] .

In one vs. all, C classifiers are trained and each classifier has the

ask of deciding whether an instance belongs to a particular class

r not. The one vs. one approach is done by training C(C − 1) / 2
lassifiers to classify an instance into either of two classes among

ll of the C classes.

. Related works

Using graph classification has recently gained popularity and

umerous works [2–8] focus on using this approach instead of the

lassical methods of classification. These method can capture com-

lex patterns in the data and they can generate high level features

o guide the classification procedure, furthermore they can usually

e modified to utilize the low level features of the data as well.

In [2] a random walker is used to classify unlabeled instances

n the graph embedding of the data. This graph is represented

y a weight matrix of similarities. The random walk process is

ontinued until convergence and the new data receives the label

hrough a weighted majority vote between the labels of the top η
odes with highest probabilities. This method takes the similarity

mong the data points into account with a single network for the

ataset along with structural changes of an unlabeled instance on

he networks created for each class. The complexity of the method

s of O (n 2), however, as the authors claimed, using sparse repre-

entations such as k NN network, and graph construction method

ased on Lanczos bisection [18] , this complexity can be reduced to

 complexity between O (n 1.06) and O (n 1.33).

Another system is proposed in [9] in which a graph is created

or the training instances of each class, then using the proposed

patio-structural differential efficiency measure in the paper, a test

nstance is connected to some of the nodes in each graph. The la-

el of the data would be the class of the graph that the test data

as the highest importance in. The importance is characterized by

oogle’s PageRank measure of the network. The spatio-structural

ifferential efficiency measure in [9] takes considers both physical

nd topological properties of the data and the complexity of the

roposed method is again of O (n 2) which is once more reduced

o a complexity between O (n 1.06) and O (n 1.33) by using graph con-

truction method based on Lanczos bisection.

A hybrid method is proposed in [3] that aids a typical classi-

er (such as kNN, SVM or Naive Bayes) by using high level fea-

ures. These high level features are the difference of some graph

roperties before and after inserting a new instance into the graph

epresentation of the data of each class. The graph of each class

s constructed using combination of r -radius and k NN graph con-

ersion methods. The graph properties used in their work are as-

ortativity, network clustering coefficient and average degree . The la-

el for the test instance is generated by a weighted combination

f low level and high level features. The authors extended their

ork in [4] by using two more high level features namely Nor-

alized Average Distance among vertices and coreness variability and

sing a stacking procedure to learn the weight for each feature.

lso [5] extends the same work by discarding the use of any clas-

ical classifier and using a scheme that takes low level features

echniques into account to filter irrelevant graphs of some of the

lasses.

Authors of [6] proposed a framework for classification using k-

ssociated Optimal Graph for modeling the data and Bayes theorem

nd computing a posterior probability for each class to classify new

nstances. Similar to k NN graph conversion method, k-Associated

ptimal Graph computes the similarity of a data point with all of

he training data, however, it would form an edge only if the points

elong to the same class. This would result in having multiple

omponent (and possibly more than one component for a class).

he method furthermore tries to find a local k for each class so

hat the resulting components get the maximal Purity (a measure

ased on average degree of a component). This way the process

f finding the parameter k is conducted automatically which also

ake the complexity of the framework of O (n 2). Another paper

398 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

m

m

4

L

o

a

V

d

t

d

s

p

r

o

c

g

V

b

i

d

u

t

g

t

i

g

A

y

f

[3] also uses the k-Associated graph in this paper along with the

high level classification method of [3] to classify new instances.

Other methods using different graph measures have been pro-

duced as well. Neto and Zhao [7] uses dynamic entropy for each

weighted graph produced by r -radius where the weights denote

the distance between data points. Cupertino et al. [8] utilizes the

modularity measure for classifying new instance that belongs to a

pattern set of the same object in the training data. The label is de-

rived by creating a k NN graph for each pattern set and choosing

the label of the graph with lowest modularity change after inser-

tion of the new data. Both of the methods in [7,8] have the com-

plexity of O (n 2).

The graph based classification methods in the literature mostly

have three characteristics in common. Firstly they create a differ-

ent graph for each classes of the data; this approach avoids find-

ing meaningful pattern that may form by the similarities between

points in different classes.

The second aspect these algorithms have in common is that

they treat test instances individually and add them to the graph

of each class and measure a graph property before and after the

insertion. This makes the prediction of a new instance inefficient

in presence of large amount of test data.

Lastly, the properties that these algorithms use for finding the

differences before and after the insertion of the unlabeled data

(e.g. clustering coefficient, average path etc.) are time consuming

and their computation times are usually dependent on the graph

size which can make them infeasible for large datasets.

Our proposed algorithm CULP and it’s extension CULM solves

the first and second issue by employing a novel graph representa-

tion called LEG which treats classes as nodes along with training

and test instances as a unified object and is discussed further in

the paper. As for the third problem, since the label of a test in-

stance is derived using link prediction measures (as discussed in

the previous section), the classification of the unlabeled data is

faster than the similar methods.

4. CULP algorithm

CULP (C lassification U sing L ink P rediction) is a classification

method aimed to gain a higher accuracy in mulit-class classifi-

cation task by exploiting the similarity among the data points.

This algorithm employs the powers of graph representation and

link prediction methods in complex networks to deal with this

problem. 1 The overall structure of CULP is consisted of 2 stages:

1. Creating the LEG structure G from the data

2. Classifying the test data using G

In the first step we model our data into an augmented graph

data structure called LEG (L abel E mbedded G raph) which we call

G. G is a heterogeneous graph which incorporates the data, the

classes and the similarity between them as a unified object.

LEG essentially contains 3 sets of nodes and 2 sets of links. The

different type of nodes in G are training nodes, testing nodes and

class nodes, also a link between two data nodes denotes similarity

between them and a link between a training node and a class node

denotes the class membership of that node.

After creating G , we can convert the classification problem to

the problem of predicting the class membership link of a test-

ing node. By utilizing a link prediction algorithm in the next step,

membership score for every testing-class pair of nodes is com-

puted.

Each of the membership scores acts as a posterior probability.

A label is chosen for a testing node based on these scores.
1 The complete code of CULP in python can be found in github.com/aminfadaee/

culp .

T

p

o

CULP procedure is depicted in Algorithm 3 . In the next seg-

ents each of the steps of the proposed algorithm is covered in

ore detail.

.1. LEG representation

The first step toward classification using CULP is creating the

EG representation. LEG is a heterogeneous graph with three sets

f nodes:

• Training nodes (V l)

• Testing nodes (V u)

• Class nodes (V c)

nd two sets of edges:

• Similarity edges (E s)

• Class membership edges (E c)

Each set of nodes correspond to their analogous set of data i.e.

 l contains n nodes, V u contains m nodes and V c contains C nodes.

The class membership edges are created based on the labeled

ata. E c contain edges (i, j) where i ∈ V l and j is the node represen-

ation of y i , meaning that each training node is connected (without

irection) to its corresponding class node. It should be noted that

ince the labels for the test data is not available, E c contains only

air of nodes from V l and V c .

Unlike E c , the members of E s are not obtained so trivially. E s is

esponsible for incorporating the similarities between instances of

ur data and the edges in this set are obtained by using a graph

onversion algorithm. In this work the undirected version of k NN

raph conversion (Algorithm 1) is used.

Edges in E s primarily connect two nodes in V l or a node from

 u to one in V l . However, there is no constraint on having an edge

etween two nodes in V u , meaning that we can find the similar-

ty between unlabeled data and connect them as well (as we have

one in this work).

If the unlabeled data is not available at first or in case of a new

nlabeled node x (u) this node is first added to the set V u , after

hat the similarity edges between this node and other nodes of the

raph is created through a linear similarity computation.

After creating all of the sets of nodes and edges, we can define

he LEG G (V, E) where V = V l ∪ V u ∪ V c and E = E s ∪ E c . Although G

s inherently heterogeneous, we can treat it as a simple undirected

raph. The procedure for creating G is summarized in Algorithm 2 .

lgorithm 2 LEG construction function for the data X

(l) , the labels

 and the unlabeled data X

(u) with parameter k and the similarity

unction s .

function LEG (X (l) , X (u) , y , s , k)

X = X (l) ∪ X (u)

V l ← { 1 , 2 , . . . , n } //Nodes are represented by numbers

V u ← { n + 1 , n + 2 , . . . , n + m }
V c ← { n + m + 1 , n + m + 2 , . . . , n + m + C}
E c ← {}
for i ∈ { 1 , 2 , . . . , n } do

E c ← E c ∪ (i, n + m + y i)

end for

E s ← kNN-CONVERT (X, s, k)

V ← V l ∪ V u ∪ V c
E ← E s ∪ E c
return G (V, E)

end function

his algorithm takes the labeled and unlabeled data along with the

arameter k and the similarity measure s and produces G as the

utput.

https://github.com/aminfadaee/culp

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 399

i

b

o

∀

t

m

n

n

l

o

i

s

t

o

s

p

o

4

X

p

p

s

t

c

A

i{

a

l

t

i

d

A

4

w

n

Fig. 1. Using AA or RA for predicting the formation of (i, j 1) in both LEG’s would

result in the same score, however node γ in the first case is more valuable for the

prediction.

A

m

i

g

t

I

a

f

m

f

t

t

n

p

n

c

a

p

c

δ

d

a

t

λ

f

T

t

p

There are always n edges belonging to E c . The number of edges

n E s however, has an upper and lower bound. The minimum num-

er of possible edges in E s is obtained when the k NN procedure

f each pair of points in X (X

(u) ∪ X

(l)) is symmetric - meaning that

 i ∀ j, i ∈ kNN (j) ↔ j ∈ kNN (i). The maximum number of edges in E s on

he other hand is obtained when the k NN procedure is not sym-

etric for any pair of nodes in X . Using these, the bounds on the

umber of edges in a LEG can be derived as Eq. (9) .

 +

k

2

(n + m) ≤ | E| ≤ n + k (n + m) (9)

By the bounds in Eq. (9) , it can be stated that G gives us a new

ow memory cost representation of the data. The memory for the

riginal data is of O (n × d + m × d + n) for X

(l) , X

(u) and y , but since

t is usually the case that k < < d for high dimensional data, LEG

aves a lot of memory compared to using the original data for the

ask of classification.

Another aspect of LEG is the fact that we are incorporating all

f our labeled and unlabeled data and class labels in a unified

tructure that enables us to find the labels of the test data via sim-

le and efficient graph properties, specifically link prediction meth-

ds which is covered in the next segment.

.2. Classification

As stated before, in classification, the goal is to find a mapping

(u)
i

→ ˆ y i for every i ∈ 1 , . . . , m . Using the LEG representation, this

roblem can be reformatted as finding j ∗ for ∀ i ∈ V U so that the

robability of (i, j ∗) ∈ E c is maximized.

The new formulation means that edges will be added to the

et E c by predicting the most probable membership link for every

est node. This can be easily done via link prediction methods dis-

ussed before.

Using a local similarity measure λ for link prediction (e.g.

damic-Adar index), this problem can be solved using the follow-

ng:
 ∀ i ∈ V u , E c ← E c ∪ (i, j ∗)
j ∗ = argmax

j∈ V c
(λi, j) (10)

Although more complex link prediction methods (random walk,

verage path length etc.) can be used to solve the problem, the

ocal similarity measures are not only extremely fast and efficient

o compute but they also derive competitively accurate results as

t will be discuss in the experiments. The pseudocode of CULP is

epicted in Algorithm 3 .

lgorithm 3 CULP Algorithm.

function CULP (X , X (u) , y , s , k , λ)

G ← LEG (X, X (u) , y, s, k)

ˆ y ← {}
for i ∈ V u do

j ∗ ← argmax
j∈ V c

(λi, j)

ˆ y i ← j ∗ − (n + m)

end for

return ˆ y

end function

.3. Compatibility score

In this work a novel local score for link prediction is formed

hich is designed specifically for the task of classification. This

ew similarity function is called Compatibility Score and like
damic-Adar and Resource Allocation scores penalizes the com-

on neighbors, however, this penalization is done differently.

Both AA and RA scores can be unfair in some instances, mean-

ng that they can over-penalize a valuable common neighbor or

ive the same score to two inherently different nodes. Take the

wo LEGs in Fig. 1 for example (i ∈ V u , γ , a, b, c ∈ V l and j 1 , j 2 ∈ V c).

n both cases the goal is to find the score for the (i, j 1) link. AA

nd RA would both penalize node γ in the same way (penalty of 5

or RA and log (5) for AA); however, in the first LEG the node γ is

ore valuable than that of the second LEG and this is due to the

act that three neighbors of this node (a, b, c) are also connected

o node j 1 .

When trying to predict the score for the formation of link be-

ween nodes i and j with a common neighbors between them

amely γ , two sets of edges can be defined starting from γ : com-

atible edges and incompatible edges .

Compatible edges for node γ are the ones connecting γ to

odes which are by themselves connected to the destination of the

andidate link (j in this case). We can define incompatible edges as

ll the other edges which are not compatible.

Now the cardinality of incompatible edges or the incompatibility

enalty for node γ which is a common neighbor of nodes i and j

an be defined as the following:

(i, j, γ) = | �γ | − | �γ ∩ � j | (11)

Using Eq. (11) the Compatibility Score (CS for short) is formally

efined as Eq. (12) . In this equation both δ(i, j, γ) and δ(j, i, γ)

re used for the prediction of (i, j) to make the score symmetric so

hat λi, j = λ j,i .

i, j =

∑

γ ∈ �i ∩ � j

1

δ(i, j, γ)
+

1

δ(j, i, γ)
(12)

Using the Compatibility Score for the cases of Fig. 1 the score

or link (i, j 1) in LEG 1 can be computed as 0.7 and in LEG 2 as 0.4.

his is the desired outcome as the score in LEG 1 is now higher. In

he experiments, a more detailed comparison of CS with other link

rediction methods is done.

400 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

Fig. 2. Toy example demonstrating CULP. A- The set of data belonging to 2 classes

and a test point in red B- LEG graph of the data.

4

i

T

r

c

(

t

t

t

s

b

o

b

t

t

a

a

s

t

p

4.4. Time complexity analysis

In this subsection, the time complexity of finding the class

membership edge of a test node will be analyzed. The main com-

ponent in finding the correct link is the local similarity measure

λ which is used for link prediction. These local measures find the

score in time proportional to the degree of their source and des-

tination nodes. In CULP, the source node i belongs to V u and the

destination node j belongs to V c . So the first step in analyzing the

time of finding a class membership edge is finding the average de-

gree of nodes in V u and V c .

The degree of node j is the number of labeled nodes connected

to it or more specifically n j which is the number of data points

with class of node j ; however, for the degree of i a more de-

tailed analysis is needed. As stated before, in any undirected graph

Eq. (1) holds. Eq. (1) can be rewritten as the following:

| E| =

1

2

(∑

i ∈ V c
| �i | +

∑

i ∈ V l
| �i | +

∑

i ∈ V u
| �i |

)

(13)

Since the degree of the class nodes sums up to the number of

labeled data n , it can be substituted in the above equation; on the

other hand, if we treat each node in V u to have average degree D ,

we can state that nodes in V l would have average degree of D + 1

(since each of them has also a membership edge). Using all these,

the above formula can be rewritten in the following manner:

| E| =

1

2

(n + n (D + 1) + mD)

| E| = n +

nD

2

+

mD

2

(14)

As stated before the number of edges in a LEG is bounded by an

upper and lower bound which is derived in Eq. (9) . Now using

Eqs. (14) and (9) the upper bound of D can be defined as:

n +

nD

2

+

mD

2

= k (n + m) + n

D = 2 k (15)

and its lower bound as:

n +

nD

2

+

mD

2

=

k

2

(n + m) + n

D = k (16)

Consequently, the average degree for labeled and unlabeled nodes

is of O (k) and for class nodes is of O (n). The Common Neigh-

bor, Adamic-Adar and Resource Allocation all have the complexity

of finding the common neighbors between source and destination

which is the intersection of the neighborhoods of the two nodes.

The Compatibility Score however, first finds the common neighbors

and does two intersection for each of the nodes in the common

neighbor set.

If done efficiently, the intersection of two sets with sizes a and

b can be obtained in order of O (min (a, b)) in average. Using this,

the complexity of finding the score in LEG for the formation of

links between i and j is of O (k) when Common Neighbor, Adamic-

Adar or Resource Allocation is used and is O (k 2) when Compati-

bility Score is used. Since k is usually small (in our experiments

1 ≤ k ≤ 35), it is safe to state that the link prediction is done in

constant time; also as there are C nodes in V c , predicting the label

of m instances would take time of O (mC) after creating the LEG.
.5. Toy example

In this subsection a simple classification problem is solved us-

ng CULP to demonstrate the steps involving in this algorithm.

he data is presented in Fig. 2 -A as two classes. The white points

epresent the data of class 1 and the dark points belong to

lass 2. The problem is finding the correct label of the red point

point i).

The first step is choosing a similarity function s and a value for

he parameter k for forming the graph. Here we chose k = 2 and

he Euclidean similarity (discussed in the preliminaries section).

Now the node sets can be defined as V c = j 1 , j 2 , V u = i and all

he other points as the set V l . By creating the edges in E c and E s as

hown in Algorithm 2 the LEG in Fig. 2 -B can be derived. As can

e seen, in this graph every node except for i is connected to one

f the class nodes j 1 and j 2 (white nodes) by dotted links and the

lack links represents the edges of E s .

Looking at the graph, it can be seen that the node i is connected

o nodes a, b and c . This means these nodes would assist in finding

he label for node i . Using these nodes, the scores for edges (i, j 1)

nd (i, j 2) can be obtained with each of the scores discussed before

s λ. The results of computing these scores are depicted in Table 1 .

The results of all the link predictors in Table 1 show that the

core for the link (i, j 2) is higher. This prediction matches the pat-

ern perceived by looking at the data in Fig. 2 -A and is the correct

rediction.

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 401

Table 1

Scores computed by 4 different link predictor for

the toy example of Fig. 2 .

λ (i, j 1) (i, j 2) Prediction

CN 1 2 2

AA 1/ log (4) 2/ log (3) 2

RA 1/4 2/3 2

CS 1 / 2 + 1 / 4 2(1 / 2 + 1 / 3) 2

5

d

L

s

i

u

p

n

d

t

r

t

C

l

C

t

v

P

o

t

e

c

c

p

r

t

v

m

t

o

A

A

e

a

f

u

a

t

t

u

w

t

d

w

w

b

m

l

v

d

p

c

c

A

t

b

t

A

i

d

t

a

t

p

g

f

. CULM extension

As we stated in the time complexity analysis subsection and

emonstrated in the toy example of the previous section, once the

EG structure is formed, the prediction of links can be done in-

tantly; knowing this and the fact that there are different options

n choosing the link predictor λ, the question arises as to why not

se all of our predictors and somehow combine their predictive ca-

abilities to assist us in finding the best membership link for a test

ode?

The next question arises after we analyze the related works

one in the field of classification using complex network represen-

ations. A good portion of these methods are capable of incorpo-

ating or exploiting the low level features of the data to enhance

he classification performance. How can we modify our framework

ULP to exploit the low level features of the data as well as the high

evel features?

The answer to both of these questions lies in our extension to

ULP algorithm which we call the CULM extension. CULM increases

he predictive capabilities of CULP by using a weighted majority

ote procedure (hence the M as in M ajority in the end instead of

).

Instead of using only one link predictor λ, we will use an array

f link predictors 	. Each link predictor λ when used, gives a score

o the links (i, j) for all j ∈ V c . We can use all of these scores to

stimate the probability p of our prediction correctness as Eq. (17) .

p ˆ y =

λi, j ∗∑

j∈ V c λi, j

(17)

In this equation ˆ y is the label corresponding to j ∗ and j ∗ is

omputed using Eq. (10) of the previous section. Using Eq. (17) we

an assign confidence to the prediction of λ. When using multiple

redictors, it is obvious that a λ with higher confidence is more

eliable. We are going to use these probabilities to assign weights

o each of the λs in 	. This way instead of using a simple majority

ote, a weighted voting procedure can be used. In a weighted

ajority vote procedure, few predictions are aggregated. Each of

hese prediction has an individual weight which states the value

f their vote; finally the voting in this setting would be done as

lgorithm 4 .

lgorithm 4 Weighted Majority Voting Algorithm.

function VOTE (Y , W)

L ← { 0 } C
for y ∈ Y and w ∈ W do

L y ← L y + w

end for

ˆ y ← argmax (L)

return ˆ y

end function

In Algorithm 4 , Y is the set containing the predicted labels of

ach of the predictors, W is the respective weights of the labels

nd L is a set with C elements which keeps track of the weight

or each of the classes. Using this algorithm enables us to not only
se multiple link predictors’ predicted labels, but also incorporate

rbitrary any classical classifier ψ with suitable weights. This way

he low level features of the data is exploited as well.

The next step is to define the weights for each of our predic-

ors and ψ . If ˆ y λ is the predicted label of the predictor λ for the

nlabeled data x (u) and p λ
ˆ y

is the probability of this prediction, the

eight of predictor λ for x (u) can be defined as Eq. (18) . Also for

he prediction of ψ on x (u) which can be denoted as ˆ y ψ

, we can

efine the weight as Eq. (19) .

λ
ˆ y =

αp λ
ˆ y ∑

λ′ ∈ 	
p λ

′
ˆ y

(18)

ψ

ˆ y
= 1 − α (19)

The α parameter which is used in both equations is provided

y the user. This parameter controls the trade-off that CULM will

ake between the link predictors’ labels and the prediction of the

ow level classifier.

The parameter α is chosen in the range 0 to 1; however any

alue below 0.5 would result in neutralizing the vote of CULM pre-

ictors. Also if α = 1 , the prediction is completely done by CULM

redictors and the low level classifier is ignored; so in general it

an be stated that 0.5 ≤α ≤ 1.

Now the CULM extension can be formally defined as the pro-

edure captured in Algorithm 5 . In this algorithm, after creating

lgorithm 5 CULM Algorithm.

function CULM (X , X (u) , y , s , k , 	, ψ , α)

G ← LEG (X, X (u) , y, s, k)

ˆ y ← {}
for i in V u do

P ← {}
ˆ Y ← { ψ(X (u)

i
) }

W ← { 1 − α}
for λ in 	 do

j ∗ ← argmax
j∈ V c

(λi, j)

P ← P ∪

λi, j∗∑

j∈ V c
λi, j

ˆ Y ←

ˆ Y ∪ j ∗ − (n + m)

end for

for p ∈ P do

W ← W ∪

α×p ∑

p ′ ∈ P
p ′

end for

ˆ y i ← VOTE (̂ Y , W)

end for

return ˆ y

end function

he LEG, each of the predictors in 	 produce a label and a proba-

ility. These probabilities and labels are then merged with that of

he low level classifier ψ to form up Y and W which are passed to

lgorithm 4 to produce the final label for the test instance.

As analyzed, the time complexity of predicting the labels of m

nstances using CULP is O (mC). CULM inherently repeats the pre-

iction l times with l being the number of link predictors in 	 and

hen uses a majority vote. The predictions complexity is O (lmC)

nd the voting has the complexity of O (l); Therefore, we can iden-

ify CULM time complexity to be of O (lmC + l + O (ψ)) with O (ψ)

art being the complexity of the low level classifier. Clearly the

eneral time for CULM could be majorly different upon using dif-

erent classifiers.

402 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

Table 2

Datasets used in deriving the results for CULP and

CULM.

Dataset Instances Attributes Classes

Zoo 101 16 7

Hayes 132 4 3

Iris 150 4 3

Teaching 151 5 3

Wine 178 13 3

Sonar 208 60 2

Image 210 19 7

Glass 214 9 6

Thyroid 215 5 3

Ecoli 336 7 8

Libras 360 90 15

Balance 625 4 3

Pima 768 8 2

Vehicle 846 18 4

Vowel 990 10 11

Yeast 1,484 8 10

RedWine 1,599 11 6

Segment 2,100 19 7

Optical 5,620 64 10

Poker 25,010 10 10

A

(

e

p

C

c

o

t

t

o

b

e

B

s

E

a

b

T

A

w

d

V

d

e

I

t

6

t

0

s

f

s

d

O

a

i

T

C

(

u

(

r

t

u

g

i

b

C

a

t

r

s

W

w

b
6. Experimental results

In this section, we are presenting the result of our proposed

algorithms CULP and CULM on 20 different real datasets and com-

paring it to classical classification methods as well as best clas-

sifiers of the related works in the domain of classification using

complex networks.

The datasets used for our experiments are all obtained from

UCI machine learning repository [19] . These datasets include Zoo,

Hayes-Roth (Hayes), Iris, Teaching Assistant Evaluation (Teaching),

Wine, Sonar Mines vs. Rocks (Sonar), Image Segmentation training set

(Image) and testing set (Segmentation), Glass Identification (Glass),

Thyroid Disease (Thyroid), Ecoli, Libras Movement (Libras), Balance

Scale (Balance), Pima Indians Diabetes (Pima), Statlog Vehicle Silhou-

ettes (Vehicle), Vowel Recognition (Vowel), Yeast, Wine Quality Red

(RedWine), Optical Recognition of Handwritten Digits (Optical), Poker

Hand (Poker). Each of these datasets along with the number of in-

stances, attributes and classes is listed in Table 2 .

6.1. CULP analysis

The reason behind choosing these datasets is the variety of both

structure and domain between them. The size of these data is be-

tween 101 to 25,010 which test the practicality of our algorithms

on both small and large datasets; the number of attributes vary

from 4 to 90 which test the proposed algorithms against both low

and high dimensional datasets and finally there is a lot of variety

in the number of classes in the datasets which ranges from 2 up

to 10.

This section is organized as follows: first, the experiment on

CULP and different predictors as λ is presented, after that the

CULM algorithms is analyzed with 3 different low level classifier,

the following subsection will discuss the effects of α parameter, af-

ter that a comparison of CULP and CULM with classical classifiers

will be demonstrated and finally CULP and CULM will be compared

along all the classical approaches and the similar works around

classification using complex networks.

As the first experiment, different link predictors are used in

CULP to compare the performance of each one on the datasets. For

this experiments the predictor λ is one of the CN, AA, RA and CS

which are respectively defined in Eqs. (2) , (3), (4), (12).

The parameters used in CULM are k (1 ≤ k ≤ 35), λ (the link pre-

dictor which is Common Neighbors, Resource Allocation, Adamic
dar or Compatibility Score), the vector similarity function s and α
0.5 ≤α ≤ 1). For each link predictor and each dataset, the param-

ters are tuned. This tuning is done via a 10-Fold Cross Validation

rocedure. After finding the best parameters, 30 runs of 10-Fold

ross Validation is done that amount to total of 300 runs. Table 3

aptures the results obtained by these settings.

In each cell of Table 3 , the first number is the mean accuracy

f the runs and the second number is the standard deviation of

hem. The number in the parentheses represent the best k ob-

ained for each cell and the bold cell are the best result obtained

n a dataset.

As can be seen in Table 3 , the Compatibility Score achieved the

est results among the predictors, this is due to the fact that CS

xclusively got the highest accuracy on 6 datasets of Glass, Libras,

alance, Pima, Yeast and RedWine. In the second place is the Re-

ource Allocation Index that obtained the top accuracy for Zoo, Iris,

coli, Optical and Poker exclusively and achieved an identical best

ccuracy with Adamic-Adar Score on the Vowel dataset. The third

est predictor is the Common Neighbor with 5 datasets of Hayes,

eaching, Sonar, Thyroid and Vehicle on top and finally Adamic-

dar f or Wine, Image and Segment and the shared best results

ith RA for Vowel.

Analyzing the k s in this experiments, we can see that for 10

atasets of Zoo, Hayes, Iris, Teaching, Wine, Image, Thyroid, Libras,

ehicle and Poker the best k is identical for each predictor on a

ataset; in Balance and Pima however; the k s are noticeably differ-

nt with Common Neighbor having the highest k in both of them.

n the rest of the datasets the choice of k among different predic-

ors are at most different by 1 (for Yeast it is 2).

.2. CULM analysis

As the next experiment, the CULM algorithm is run on each of

he datasets. The parameter α is tuned over the set {0.6, 0.7, 0.8,

.9, 1}. All the values below 0.6 for α is not used to keep the re-

ults and comparisons fair (as stated before, any value below 0.5

or α zeros the effect of CULP predictors also experimentally the

ame holds for α = 0 . 5), this way we are sure that the link pre-

ictors is not completely overshadowed by the low level classifier.

ther parameters of the algorithm and the tuning is done as before

nd again each cell is the result of 300 runs.

For a low level classifier to accompany the link predictors

n CULM, three different algorithms have been chosen and used.

hese low level classifiers are LDA (Linear Discriminant Analysis),

ART (Classification And Regression Trees) and multi-class SVM

Support Vector Machine) with RBF kernel.

Table 4 captures the results of this experiments. The first col-

mn is the best results for each of the datasets using CULP

 Table 3); the next three columns are the results of CULM with

espectively LDA, CART and SVM as φ and in each of the cells in

hese column the numbers in parentheses represent the k and α
sed in runs. The last column in this table represents the accuracy

ain achieved by using CULM instead of CULP. Each of the numbers

n this column is obtained by comparing the best result obtained

y CULM with the best result obtained by CULP for each dataset.

Looking at Table 4 it is clear that in the Thyroid dataset, using

ULM achieved no change in the accuracy and in the datasets Iris

nd Optical the accuracy deteriorates; however, taking into account

he other 17 datasets, CULM almost achieved a completely higher

esult.

CULM with SVM as its low level classifier achieved the best re-

ults on 6 datasets of Sonar, Thyroid, Libras, Balance, Vowel, Red-

ine and Poker exclusively and shares the best result on Thyroid

ith CULM-LDA and CULP. As the next best classifiers we have

oth CULM-CART and CULM-LDA with exclusively 5 best accuracy

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 403

Table 3

Accuracy of CULP on the dataset with different link predictors. The number in parentheses represent the k used in runs.

Dataset CN AA RA CS

Zoo 95.567 ± 5.8 (2) 96.567 ± 5.3 (2) 96.833 ± 5.4 (2) 96.767 ± 5.4 (2)

Hayes 73.949 ± 12.0 (1) 73.718 ± 12.1 (1) 73.718 ± 12.1 (1) 73.667 ± 12.1 (1)

Iris 98.467 ± 3.0 (11) 98.467 ± 3.0 (11) 98.489 ± 3.0 (11) 98.378 ± 3.2 (11)

Teaching 63.756 ± 11.3 (1) 63.356 ± 11.1 (1) 63.356 ± 11.1 (1) 63.622 ± 11.2 (1)

Wine 98.549 ± 2.8 (12) 98.745 ± 2.6 (12) 98.725 ± 2.7 (12) 98.137 ± 3.2 (12)

Sonar 87.467 ± 7.4 (2) 87.250 ± 7.3 (3) 86.900 ± 7.3 (3) 87.100 ± 7.5 (3)

Image 88.333 ± 6.7 (3) 89.317 ± 6.3 (3) 89.175 ± 6.3 (3) 89.063 ± 6.4 (3)

Glass 71.857 ± 9.1 (3) 73.540 ± 9.2 (3) 73.397 ± 9.3 (2) 74.048 ± 9.1 (2)

Thyroid 97.540 ± 3.1 (4) 97.413 ± 3.2 (4) 97.413 ± 3.2 (4) 97.333 ± 3.3 (4)

Ecoli 86.798 ± 6.1 (9) 87.010 ± 6.0 (8) 87.141 ± 6.1 (9) 87.030 ± 6.0 (8)

Libras 79.935 ± 6.5 (2) 82.472 ± 6.3 (2) 81.713 ± 6.4 (2) 82.750 ± 6.2 (2)

Balance 93.753 ± 2.9 (6) 96.446 ± 2.2 (2) 96.446 ± 2.2 (2) 96.780 ± 2.2 (2)

Pima 76.061 ± 4.5 (34) 76.154 ± 4.4 (28) 76.211 ± 4.4 (28) 76.355 ± 4.3 (7)

Vehicle 73.611 ± 4.4 (5) 73.091 ± 4.7 (5) 73.198 ± 4.7 (5) 72.512 ± 4.7 (5)

Vowel 97.603 ± 1.6 (3) 98.242 ± 1.5 (2) 98.242 ± 1.5 (2) 97.886 ± 1.5 (2)

Yeast 59.682 ± 3.9 (22) 59.971 ± 3.7 (20) 60.032 ± 3.6 (20) 60.365 ± 3.8 (22)

RedWine 60.501 ± 3.9 (1) 60.166 ± 3.9 (2) 60.036 ± 3.9 (2) 60.574 ± 3.8 (2)

Segment 96.333 ± 1.3 (3) 96.535 ± 1.2 (4) 96.525 ± 1.2 (4) 96.281 ± 1.3 (4)

Optical 98.805 ± 0.4 (5) 98.905 ± 0.4 (5) 98.918 ± 0.4 (5) 98.851 ± 0.4 (4)

Poker 58.518 ± 0.9 (32) 58.604 ± 0.9 (32) 58.625 ± 0.9 (32) 58.520 ± 0.9 (32)

Table 4

Accuracy of CULM on the dataset with different link predictors. The first column is the best results obtained using CULP on each of the

datasets. The number in parentheses represent the k and α used in runs.

Dataset CULP CULM - LDA CULM - CART CULM - SVM Gain

Zoo 96.833 ± 5.4 (RA,2) 97.467 ± 5.3 (1,0.6) 97.500 ± 5.0 (1,0.6) 97.0 0 0 ± 5.9 (1,0.6) + 0.667

Hayes 73.949 ± 12.0 (CN,1) 74.513 ± 11.6 (1,0.7) 76.949 ± 11.1 (1,0.6) 76.487 ± 11.1 (1,0.6) + 3.0 0 0

Iris 98.489 ± 3.0 (RA,11) 98.467 ± 3.0 (11,0.7) 98.467 ± 3.0 (11,0.7) 98.467 ± 3.0 (11,0.7) −0.022

Teaching 63.756 ± 11.3 (CN,1) 65.667 ± 11.6 (1,0.6) 64.200 ± 12.0 (1,0.6) 65.622 ± 11.7 (1,0.6) + 1.911

Wine 98.745 ± 2.6 (AA,12) 98.843 ± 2.9 (12,0.7) 98.706 ± 2.7 (12,0.7) 98.745 ± 2.6 (12,0.7) + 0.098

Sonar 87.467 ± 7.4 (CN,2) 87.233 ± 7.2 (2,0.6) 87.050 ± 7.4 (3,0.7) 87.817 ± 7.3 (2,0.6) + 0.350

Image 89.317 ± 6.3 (AA,3) 90.349 ± 6.2 (3,0.6) 90.333 ± 6.0 (3,0.6) 89.571 ± 6.3 (3,0.7) + 1.032

Glass 74.048 ± 9.1 (CS,2) 74.095 ± 9.1 (2,0.6) 74.952 ± 8.8 (2,0.6) 74.365 ± 9.4 (2,0.6) + 0.904

Thyroid 97.540 ± 3.1 (CN,4) 97.540 ± 3.1 (4,0.6) 97.492 ± 3.1 (4,0.6) 97.540 ± 3.1 (4,0.6) 0

Ecoli 87.141 ± 6.1 (RA,9) 87.475 ± 5.8 (8,0.6) 87.495 ± 5.9 (8,0.6) 87.293 ± 5.8 (9,0.6) + 0.354

Libras 82.750 ± 6.2 (CS,2) 82.843 ± 6.0 (2,0.6) 82.370 ± 5.8 (2,0.6) 82.944 ± 5.9 (1,0.6) + 0.194

Balance 96.780 ± 2.2 (CS,2) 97.016 ± 2.0 (2,0.6) 96.694 ± 2.1 (2,0.7) 97.946 ± 1.7 (2,0.6) + 1.166

Pima 76.355 ± 4.3 (CS,7) 76.535 ± 4.5 (7,0.6) 76.461 ± 4.5 (7,0.6) 76.373 ± 4.6 (7,0.6) + 0.180

Vehicle 73.611 ± 4.4 (CN,5) 74.829 ± 4.6 (5,0.6) 73.897 ± 4.5 (5,0.6) 74.167 ± 4.6 (5,0.6) + 1.218

Vowel 98.242 ± 1.5 (AA,2) 98.461 ± 1.3 (2,0.9) 98.508 ± 1.4 (2,0.9) 98.620 ± 1.3 (2,0.8) + 0.378

Yeast 60.365 ± 3.8 (CS,22) 60.360 ± 3.6 (20,0.6) 60.288 ± 3.7 (20,0.6) 60.113 ± 3.7 (20,1) −0.005

RedWine 60.574 ± 3.8 (CS,2) 64.170 ± 3.7 (1,0.6) 63.453 ± 3.7 (1,0.6) 64.447 ± 3.6 (1,0.6) + 3.873

Segment 96.535 ± 1.2 (AA,4) 96.673 ± 1.3 (2,0.6) 96.922 ± 1.2 (2,0.6) 96.651 ± 1.3 (2,0.6) + 0.387

Optical 98.918 ± 0.4 (RA,5) 98.905 ± 0.4 (4,0.9) 98.890 ± 0.4 (4,0.9) 98.890 ± 0.4 (4,0.9) −0.013

Poker 58.625 ± 0.9 (RA,32) 58.581 ± 0.9 (32,1) 58.695 ± 0.9 (32,0.6) 58.760 ± 0.9 (32,0.6) + 0.135

e

T

g

t

w

a

w

C

a

f

a

r

f

L

t

c

w

a

6

e

d

T

α

f

(

s

F

T

fi

o

t

C

f

i

a

ach (Zoo, Hayes, Glass, Ecoli and Segment for CULM-CART and

eaching, Wine, Image, Pima and Vehicle for CULM-LDA).

Datasets Hayes and RedWine achieved the highest accuracy

ain (more than 3%) using CULM which is a noticeable boost. In

he next level are datasets Teaching, Image Balance and Vehicle

ith more than 1% gain. In general, the collective amount of gain

chieved using CULM is the average of 0.8% through all datasets

hich is another proof that CULM achieves a better results than

ULP.

As for the parameter k , more robustness can be observed

mong different CULM classifiers than variations of CULP. Except

or the datasets Sonar, Ecoli and Libras, the choice of k in all vari-

tions of CULM are identical, also in these three datasets this pa-

ameter is different by at most 1 on each classifier.

The other parameter α in this experiments reveals interesting

acts as well. Except for the CULM-SVM on Yeast data and CULM-

DA on Poker dataset, we can observe α < 1 in all the experiments;

his shows that using the low level features through the low level

lassifier did indeed help the classification accuracy. Saying this,

e still need a more detailed analysis on the effect of α on the

ccuracy which is the main discussion of the next segment.
.3. α analysis

To analyze the α parameter further, six datasets were chosen,

ach with a single configuration to run with different α values. The

atasets are Zoo with k = 1 , Hayes with k = 1 , Iris with k = 11 ,

eaching with k = 1 , Wine with k = 12 and Sonar with k = 2 and

∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} in each experiment. The choices

or α is to demonstrate the effect of zeroing the effect of predictors

 α ≤ 0.5), zeroing the effect of low level classifier (α = 1) or picking

omething in between.

The results of this experiment are depicted in the charts of

ig. 3 . Each chart represents the experiments done on a dataset.

hese charts capture the accuracy of each of the 3 CULM classi-

ers for each value of α. Red lines are demonstrating the accuracy

f CULM-LDA, black lines are CULM-CART and the gray lines depict

he results of CULM-SVM.

As stated before, any value below 0.5 for α zeros the effect of

ULP predictors, we also noted that experimentally the same holds

or α = 0 . 5 . This is evident by looking at the plots of Fig. 3 because

n all datasets and classifiers the accuracies obtained for α = 0 . 4

nd α = 0 . 5 are identical.

404 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

Fig. 3. Results of experimenting different values of α on 6 datasets. Each chart depicts accuracy on y axis and alpha on the x axis. Red lines are demonstrating the accuracy

of CULM-LDA, black lines are CULM-CART and the gray lines depict the results of CULM-SVM.

c

fi

s

r

e

s

i

i

t

s

C

k

e

i

t
As can be seen from the figure, for all classifiers of the datasets

Zoo, Iris, Teaching and Sonar, using the predictors improved the ac-

curacy of the low-level classifier; on the other hand, in all datasets

zeroing the effect of the low-level classifier (α = 1) had not helped

(if not worsened) the accuracy of the prediction. The other notable

detail in these plot is the plateau of accuracy for roughly the val-

ues of α between 0.6 and 0.9. This means that a less fine-grained

set of values can be also used for tuning this parameter.

For the next experiment, the results of CULP and CULM is com-

pared with 4 classical classifiers. These classifiers include k NN clas-

sifier, LDA, CART and multi-class SVM with RBF kernel.

6.4. Comparison to classical classifiers

The results of this experiment is captured in Table 5 . In this

table the first column represent the best result of CULP for each

dataset, the second column is the best result of CULM for each

dataset and the other 4 columns are the results obtained by the
lassical classifier. The number in the parentheses in the cells of

rst three column represent k and the bold cells are the best re-

ults obtained on the dataset.

Comparing the k values in the first 3 columns of Table 5 , we can

ealize that except for Ecoli and Yeast, this parameter is smaller (or

qual) for CULP and CULM than that of the k NN algorithm and in

ome cases like Wine and Balance this difference is quite high. This

s due to the fact that the undirected version of k nearest neighbor

s used to form up the LEG graph which consequently enables us

o capture the similarity features with less neighbors.

It is evident from the results that CULP and CULM achieved

uperior results compared to the classical algorithms. CULP and

ULM collectively obtained the best results on 13 datasets. The

 NN and LDA algorithms achieved the highest results on 3 datasets

ach, SVM got the best results only on the Hayes dataset and CART

s completely outperformed by the other algorithms on all datasets.

One thing that can be noted is the fact that CULM could obtain

he best results on the datasets Hayes, Wine, Pima and Vehicle

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 405

Table 5

Accuracy of comparing CULP and CULM with 4 different classical classifiers. The number in the parentheses in the cells of first three column represent k and

the bold cells are the best results obtained on the dataset.

Dataset CULP CULM k NN LDA CART SVM

Zoo 96.833 ± 5.4 (2) 97.500 ± 5.0 (1) 97.500 ± 12.7 (1) 92.033 ± 8.2 94.867 ± 6.8 90.233 ± 10.0

Hayes 73.949 ± 12.0 (1) 76.949 ± 11.1 (1) 72.590 ± 14.6 (1) 53.282 ± 13.0 81.667 ± 9.5 85.103 ± 8.4

Iris 98.489 ± 3.0 (11) 98.467 ± 3.0 (11) 97.222 ± 5.4 (17) 98.0 0 0 ± 3.5 94.556 ± 5.6 97.533 ± 3.8

Teaching 63.756 ± 11.3 (1) 65.667 ± 11.6 (1) 62.511 ± 12.7 (1) 53.044 ± 13.2 64.333 ± 11.4 54.378 ± 12.7

Wine 98.745 ± 2.6 (12) 98.843 ± 2.9 (12) 97.0 0 0 ± 5.6 (24) 98.941 ± 2.4 90.294 ± 6.9 98.392 ± 3.0

Sonar 87.467 ± 7.4 (2) 87.817 ± 7.3 (2) 86.383 ± 8.0 (1) 74.117 ± 9.1 70.850 ± 9.7 83.767 ± 7.8

Image 89.317 ± 6.3 (3) 90.349 ± 6.2 (3) 85.667 ± 8.3 (4) 89.635 ± 6.1 88.222 ± 6.8 87.317 ± 6.4

Glass 74.048 ± 9.1 (2) 74.952 ± 8.8 (2) 72.683 ± 10.4 (1) 62.381 ± 10.0 66.698 ± 9.1 70.190 ± 9.8

Thyroid 97.540 ± 3.1 (4) 97.540 ± 3.1 (4) 96.206 ± 5.8 (1) 91.397 ± 5.7 93.857 ± 5.4 95.921 ± 4.0

Ecoli 87.141 ± 6.1 (9) 87.495 ± 5.9 (8) 86.909 ± 6.3 (7) 86.869 ± 5.6 79.515 ± 6.8 86.828 ± 6.0

Libras 82.750 ± 6.2 (2) 82.944 ± 5.9 (1) 85.880 ± 8.0 (1) 64.620 ± 8.4 68.713 ± 8.2 80.306 ± 6.6

Balance 96.780 ± 2.2 (2) 97.946 ± 1.7 (2) 90.140 ± 5.5 (15) 86.747 ± 3.9 81.306 ± 5.9 90.489 ± 3.6

Pima 76.355 ± 4.3 (7) 76.535 ± 4.5 (7) 74.171 ± 4.8 (9) 77.320 ± 4.3 70.289 ± 5.1 76.013 ± 4.4

Vehicle 73.611 ± 4.4 (5) 74.829 ± 4.6 (5) 72.206 ± 5.2 (6) 78.052 ± 4.3 71.282 ± 4.9 76.675 ± 4.8

Vowel 98.242 ± 1.5 (2) 98.620 ± 1.3 (2) 98.983 ± 2.3 (1) 59.556 ± 4.7 81.192 ± 4.2 94.852 ± 2.3

Yeast 60.365 ± 3.8 (20) 60.360 ± 3.6 (20) 59.586 ± 3.8 (19) 58.923 ± 3.8 51.205 ± 4.0 60.124 ± 3.7

RedWine 60.574 ± 3.8 (2) 64.447 ± 3.6 (1) 64.662 ± 3.8 (1) 59.172 ± 3.9 63.390 ± 3.8 62.637 ± 3.7

Segment 96.535 ± 1.2 (4) 96.922 ± 1.2 (2) 95.829 ± 1.8 (1) 91.446 ± 1.9 95.459 ± 1.4 93.825 ± 1.6

Optical 98.918 ± 0.4 (5) 98.905 ± 0.4 (4) 98.823 ± 0.5 (3) 95.278 ± 0.8 90.532 ± 1.3 98.681 ± 0.5

Poker 58.625 ± 0.9 (32) 58.760 ± 0.9 (32) 58.517 ± 1.0 (34) 49.952 ± 0.9 4 8.94 8 ± 1.7 58.617 ± 0.5

Table 6

Accuracies of CULP and CULM, classical classifiers, HLCRW [2] and PgRkNN [9] algorithms.

Dataset CULP CULM Classical HLCRW PgRkNN

Zoo 96.833 ± 5.4 97.500 ± 5.0 97.500 ± 12.7 97.00 ± 0.1 99.03 ± 2.9

Hayes 73.949 ± 12.0 76.949 ± 11.1 85.103 ± 8.4 61.70 ± 2.3 73.09 ± 11.7

Iris 98.489 ± 3.0 98.467 ± 3.0 98.0 0 0 ± 3.5 98.00 ± 0.6 97.20 ± 3.7

Teaching 63.756 ± 11.3 65.667 ± 11.6 64.333 ± 11.4 65.30 ± 2.0 62.08 ± 13.4

Wine 98.745 ± 2.6 98.843 ± 2.9 98.941 ± 2.4 87.10 ± 1.6 93.95 ± 5.3

Sonar 87.467 ± 7.4 87.817 ± 7.3 86.383 ± 8.0 81.79 ± 7.8 82.00 ± 7.5

Image 89.317 ± 6.3 90.349 ± 6.2 89.635 ± 6.1 75.60 ± 0.8 86.13 ± 7.2

Glass 74.048 ± 9.1 74.952 ± 8.8 72.683 ± 10.4 72.80 ± 1.1 71.75 ± 7.9

Thyroid 97.540 ± 3.1 97.540 ± 3.1 96.206 ± 5.8 97.57 ± 3.0 97.55 ± 3.0

Ecoli 87.141 ± 6.1 87.495 ± 5.9 86.909 ± 6.3 85.50 ± 0.6 85.11 ± 5.4

Libras 82.750 ± 6.2 82.944 ± 5.9 85.880 ± 8.0 85.00 ± 0.8 87.16 ± 9.8

Balance 96.780 ± 2.2 97.946 ± 1.7 90.489 ± 3.6 97.20 ± 0.6 90.86 ± 3.4

Pima 76.355 ± 4.3 76.535 ± 4.5 77.320 ± 4.3 75.54 ± 4.6 74.85 ± 4.9

Vehicle 73.611 ± 4.4 74.829 ± 4.6 78.052 ± 4.3 67.70 ± 0.6 70.26 ± 4.1

Vowel 98.242 ± 1.5 98.620 ± 1.3 98.983 ± 2.3 97.50 ± 0.3 98.49 ± 1.2

Yeast 60.365 ± 3.8 60.360 ± 3.6 60.124 ± 3.7 57.20 ± 0.5 56.50 ± 3.6

RedWine 60.574 ± 3.8 64.447 ± 3.6 64.662 ± 3.8 61.60 ± 0.5 66.68 ± 3.5

Segment 96.535 ± 1.2 96.922 ± 1.2 95.829 ± 1.8 93.20 ± 0.2 95.63 ± 1.5

Optical 98.918 ± 0.4 98.905 ± 0.4 98.823 ± 0.5 95.09 ± 2.1 98.94 ± 0.4

Poker 58.625 ± 0.9 58.760 ± 0.9 58.617 ± 0.5 55.42 ± 0.9 53.78 ± 0.8

w

t

C

c

p

6

d

a

t

c

P

t

w

a

c

T

t

a

C

n

t

e

p

w

f

s

l

r

B

b

P

P

b

w

a
ith α ≤ 0.5 but as stated before we decided to forgo these values

o give a fair comparison; however, in general we can state that

ULM can outperform or achieve the same result of any classical

lassification algorithms given the right configuration for the α
arameter.

.5. Complete comparison

As the final experiment of this paper, a complete comparison is

one to analyze the results of CULM, CULP, the classical algorithms

nd two of the similar works that use complex network represen-

ation of the data to classify the unlabeled instances. These two

lassifiers which were discussed in the related work sections are

gRkNN [9] and HLCRW [2] (short for High Level data Classifica-

ion using Random Walk)

The results of PgRkNN and HLCRW algorithms on datasets

hich were already provided in their papers are used here without

 change, for other cases we implemented and run both of them

ompletely by the details provided in those papers.

Table 6 captures these results along with the summaries of

ables 3 –5 . For each of the rows in this table the bold cell is
he best result for classifying the instances of the dataset through

ll of the algorithms. The best result for each of the cases where

ULP/CULM obtained the higher average accuracy, is tested for sig-

ificance against the second best accuracy using the Welch’s t -

est with confidence level of 0.95. In this test, the null hypoth-

sis is that the averages are the same and the alternative hy-

othesis is that they are different. Except for the Teaching dataset

hich the bold and underlined values are not significantly dif-

erent all the other bold values in CULP and CULM columns are

uperior.

In the first glance at Table 6 it can be realized that CULM is the

eader with 8 best results on the datasets among different algo-

ithms. These datasets include Teaching, Sonar, Image, Glass, Ecoli,

alance, Segment and Poker.The next best algorithm in case of the

est results is the Classical group with 5 dataset of Hayes, Wine,

ima, Vehicle and Vowel in lead. As the third algorithm we have

gRkNN with datasets Zoo, Libras, RedWine and Optical. The one

efore last is CULP with Iris and Yeast on top and finally HLCRW

ith only Thyroid with the best result.

In order to give a more thorough view on the ranking of the

lgorithm of Tables 6 and 7 is formed. In this table the best

406 S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407

Table 7

Rankings of the algorithms of Table 6 .

Dataset CULP CULM Classical HLCRW PgRkNN

Zoo 5 2 2 4 1

Hayes 3 2 1 5 4

Iris 1 2 4 3 5

Teaching 4 1 3 2 5

Wine 3 2 1 5 4

Sonar 2 1 3 5 4

Image 3 1 2 5 4

Glass 2 1 4 3 5

Thyroid 3 3 5 1 2

Ecoli 2 1 3 4 5

Libras 5 4 2 3 1

Balance 3 1 5 2 4

Pima 3 2 1 4 5

Vehicle 3 2 1 5 4

Vowel 4 2 1 5 3

Yeast 1 2 3 4 5

RedWine 5 3 2 4 1

Segment 2 1 3 5 4

Optical 2 3 4 5 1

Poker 2 1 3 4 5

Average 2.925 1.9 2.675 3.9 3.6

m

m

s

t

D

e

c

o

p

w

m

h

e

t

i

l

p

t

r

m

r

R

[

result on a dataset gets 1 and the worst gets a 5. In case of ties

the algorithms get the same value and when computing the av-

erage rankings, the ties effect their averages as the mean of their

respective ranks (if 2 algorithms are both ranked 3, they sum up

as 3.5 to compute the average rank).

As can be seen in Table 7 , CULM has the best rank of 1.9 which

is far better than the second ranked Classical algorithms (rank

2.675). The third rank belongs to CULP with 2.925 and after that

comes PgRkNN and HLCRW with 3.55 and 3.95, respectively. These

are evidence that CULP and CULM are highly accurate classifiers

and competitive with classical and similar works.

7. Conclusion

In this work, we proposed a novel way to look at the prob-

lem of classification using a link prediction scope. Our proposed

memory efficient graph data structure LEG enabled the use of any

link predictor to assist the classification procedure and captured

not only the unlabeled and labeled data, but also the classes in a

unified manner.

Our proposed algorithm CULP can be used with any link predic-

tor to derive the class of the unlabeled data. In this work Common

Neighbors, Adamic-Adar Index and resource allocation were used

along with our own local link predictor called Compatibility Score

as the predictors for CULP. Our algorithm demonstrated superiority

to similar algorithms which use graph representations to classify a

data point and our Compatibility Score was also one of the best

predictors in our experiments.

We also extend CULP by a weighted majority vote with weights

proportional to the probabilities of the predictions. CULM is the

name of our extension which not only uses multiple predictors but

it also exploits the low level features of the data as well.

Our experiments on both CULM and CULP showed high accu-

racy on 20 different datasets and superiority on all the classical

approaches and similar graph based methods.

8. Future works

There are a lot to be done with all the proposed methods and

algorithms elaborated in this paper. We are going to test our Com-

patibility Score on graph datasets and test its accuracy on ex-

plicit link prediction problems. Another idea in our agenda is test-

ing both CULP and CULM algorithms with other link prediction
ethods, possibly more complex ones such as random walk or

atrix factorization to analyze any further improvement. Finally, a

tacking approach to find the weights of CULM is under construc-

ion which hopefully be discussed in another work.

eclaration of competing interest

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signifi-

ant financial support for this work that could have influenced its

utcome. We confirm that the manuscript has been read and ap-

roved by all named authors and that there are no other persons

ho satisfied the criteria for authorship but are not listed.

We further confirm that the order of authors listed in the

anuscript has been approved by all of us. We confirm that we

ave given due consideration to the protection of intellectual prop-

rty associated with this work and that there are no impediments

o publication, including the timing of publication, with respect to

ntellectual property. In so doing we confirm that we have fol-

owed the regulations of our institutions concerning intellectual

roperty.

We understand that the Corresponding Author is the sole con-

act for the Editorial process (including Editorial Manager and di-

ect communications with the office). She is responsible for com-

unicating with the other authors about progress, submissions of

evisions and final approval of proofs.

eferences

[1] K.P. Murphy , Machine Learning: A Probabilistic Perspective, The MIT Press,
2012 .

[2] T.H. Cupertino , M.G. Carneiro , Q. Zheng , J. Zhang , L. Zhao , A scheme for high
level data classification using random walk and network measures, Expert Syst.

Appl. 92 (2018) 289–303 .
[3] T.C. Silva , L. Zhao , Network-based high level data classification, IEEE Trans.

Neural Netw. Learn. Syst. 23 (6) (2012) 954–970 .

[4] T.F. Covões , Z. Liang , Low and high level classification using stacking, in: Pro-
ceedings of the International Joint Conference on Neural Networks (IJCNN),

IEEE, 2017, pp. 2525–2532 .
[5] M.G. Carneiro , L. Zhao , High level classification totally based on complex net-

works, in: Proceedings of the 11th Brazilian Congress on Computational Intel-
ligence (BRICS-CCI & CBIC), IEEE, 2013, pp. 507–514 .

[6] J.R. Bertini Jr , L. Zhao , R. Motta , A. de Andrade Lopes , A nonparametric

classification method based on k-associated graphs, Inf. Sci. 181 (24) (2011)
5435–5456 .

[7] F.A. Neto , L. Zhao , High level data classification based on network entropy,
in: Neural Networks (IJCNN), The 2013 International Joint Conference on, IEEE,

2013, pp. 1–5 .
[8] T.H. Cupertino , T.C. Silva , L. Zhao , Classification of multiple observation sets via

network modularity, Neural Comput. Appl. 23 (7–8) (2013) 1923–1929 .

[9] M.G. Carneiro , L. Zhao , Organizational data classification based on the im-
portance concept of complex networks, IEEE Trans. Neural Netw. Learn. Syst.

(2017) .
[10] R. Angelova , G. Weikum , Graph-based text classification: learn from your

neighbors, in: Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, ACM, 2006,

pp. 4 85–4 92 .

[11] J. Bai , S. Xiang , C. Pan , A graph-based classification method for hyperspectral
images, IEEE Trans. Geosci. Remote Sens. 51 (2) (2013) 803–817 .

12] G. Camps-Valls , T.V.B. Marsheva , D. Zhou , Semi-supervised graph-based hyper-
spectral image classification, IEEE Trans. Geosci. Remote Sens. 45 (10) (2007)

3044–3054 .
[13] V. Martínez , F. Berzal , J.-C. Cubero , A survey of link prediction in complex net-

works, ACM Comput. Surv. (CSUR) 49 (4) (2017) 69 .

[14] D. Liben-Nowell , J. Kleinberg , The link-prediction problem for social networks,
J. Assoc. Inf. Sci. Technol. 58 (7) (2007) 1019–1031 .

[15] L.A. Adamic , E. Adar , Friends and neighbors on the web, Soc. Netw. 25 (3)
(2003) 211–230 .

[16] T. Zhou , L. Lü, Y.-C. Zhang , Predicting missing links via local information, Eur.
Phys. J. B 71 (4) (2009) 623–630 .

[17] M. Belkin , P. Niyogi , Laplacian Eigenmaps for dimensionality reduction and
data representation, Neural Comput. 15 (6) (2003) 1373–1396 .

[18] J. Chen , H.-r. Fang , Y. Saad , Fast approximate KNN graph construction for high

dimensional data via recursive Lanczos bisection, J. Mach. Learn. Res. 10 (Sep)
(2009) 1989–2012 .

[19] D. Dua, C. Graff, UCI Machine Learning Repository, Irvine, CA, 2017 . University
of California, School of Information and Computer Science. http://archive.ics.

uci.edu/ml .

http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30853-7/sbref0018
http://archive.ics.uci.edu/ml

S.A. Fadaee and M. Amir Haeri / Neurocomputing 359 (2019) 395–407 407

Seyed Amin Fadaee born in 1994 is a Persian Msc. Artifi-

cial Intelligence student at Amirkabir University of Tech-
nology with major in complex network analysis. His B.Sc.

degree was in software engineering, graduated in 2017.

He is currently working as a data science researcher in
Amirkabir University of Technology.
Maryam Amir Haeri received the B.Sc. degree in Software

Engineering, and the M.Sc. degree in Information Tech-
nology from the Sharif University of Technology, Tehran,

Iran, in 2007 and 2009, respectively. She also received

the Ph.D. degree in Artificial Intelligence from the Amirk-
abir University of Technology, Tehran, Iran, in 2014. Since

September 2015, she is assistant professor in the Com-
puter Engineering and Information Technology Depart-

ment, Amirkabir University of Technology, Tehran, Iran.
Her research interests include Big Data Analytics, Com-

plex Networks Analysis, Soft Computing, Machine Learn-

ing and Data Mining.

	Classification using link prediction
	1 Introduction
	2 Preliminaries
	2.1 Link prediction
	2.2 Similarity measures
	2.3 Converting data to graph
	2.4 Classification

	3 Related works
	4 CULP algorithm
	4.1 LEG representation
	4.2 Classification
	4.3 Compatibility score
	4.4 Time complexity analysis
	4.5 Toy example

	5 CULM extension
	6 Experimental results
	6.1 CULP analysis
	6.2 CULM analysis
	6.3 α analysis
	6.4 Comparison to classical classifiers
	6.5 Complete comparison

	7 Conclusion
	8 Future works
	Declaration of competing interest
	References

