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ABSTRACT

Link prediction is the problem of predicting the location of either unknown or fake links from uncertain structural information of a network.
Link prediction algorithms are useful in gaining insight into di�erent network structures from partial observations of exemplars. However,
existing link prediction algorithms only focus on regular complex networks and are overly dependent on either the closed triangular structure
of networks or the so-called preferential attachment phenomenon. The performance of these algorithms on highly sparse or treelike networks
is poor. In this letter, we proposed a method that is based on the network heterogeneity. We test our algorithms for three real large sparse
networks: a metropolitan water distribution network, a Twitter network, and a sexual contact network. We �nd that our method is e�ective
and performs better than traditional algorithms, especially for the Twitter network. We further argue that heterogeneity is the most obvious
de�ning pattern for complex networks, while other statistical properties failed to be predicted. Moreover, preferential attachment based link
prediction performed poorly and hence we infer that preferential attachment is not a plausible model for the genesis of many networks. We
also suggest that heterogeneity is an important mechanism for online information propagation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5107440

Traditional link prediction algorithms aim to predict the likely
existence and location of unobserved links or edges in regular
complex networks. These algorithms are strongly dependent on
assumptions concerning the structure of networks—either the
closed triangular structure or the so-called preferential attach-
ment phenomenon (the new nodes preferential link to popular
or high-degree nodes). However, many real-world systems are
naturally represented as treelike networks with almost no closed
triangular structure. Conversely, we note that the degrees or
popularity of network nodes are often heterogeneous—so-called
network heterogeneity. We propose a method that is based on
network heterogeneity, and we show that our method is e�ec-
tive and performs better than traditional algorithms in three real
large sparse networks. The technique appears to be particularly
powerful for our archetypal social network—derived from twit-
ter interactions. We further argue that heterogeneity is the prime
rule for all kinds of complexnetworks,while other statistical prop-
erties failed to be predicted. Moreover, preferential attachment
based link prediction performed poorly for all treelike networks

and almost all regular networks. Our results not only broaden the
scope of the link prediction problem, but also further demonstrate
that preferential attachment is not su�cient as an explanatory
model for many complex networks.

I. INTRODUCTION

Link prediction is the problem of predicting the location of
either (unknown) unobserved or fake links1 based on the statisti-
cal properties of the network structure (see Appendix A 1), that is,
either observed links that should not be or unobserved links that
should. Predicting which acquaintances would themselves be friends
is a natural problemboth in human interaction and also in expert rec-
ommender systems. It is at the very core of the famous six-degrees of
separation experiment of Stanley Milgram.2,3 Mathematically, how-
ever, the problem statement is incomplete and, therefore, intractable.
In link prediction, what really should be asked is: given that a par-
tially observed network is presumed to be consistent with some
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clearly articulated “prior,”4 which link modi�cations would make
that network more typical of that hypothesis?

Nonetheless, the existing solutions to the link prediction prob-
lem rely either on the assumption that friendship is assortative
(my friends are more likely to be friends themselves) or the
supremacy of the Barabasi-Albert preferential attachment (BA)
model5 (and its essential consequence that hubs gather in a central
rich club6,7). Coupled to this, it is a simple statistical fact that link pre-
diction becomes increasingly straightforward when links are more
prevalent. Link prediction on denser networks is easier. Existing link
prediction algorithms, therefore, adopt within their prior either a
prevalence of triangles in the network (the assortativity of friendship)
or a strong rich-club core and mild disassortativity on the leaves (a
consequence of preferential attachment realized on a �nite graph).
The algorithms work best when the networks are densest.

In this paper, we propose a solution for when triads of connec-
tions or preferential attachment are insu�cient. Moreover, we �nd
that this method works extremely well in predicting missing links
for the di�cult case when the network is sparse (and links are rare).
We apply this to real world networks and show that our solution
out-performs existing methods when the underlying network struc-
ture deviates from the simplistic ideal. Of course, the limiting case
of an ultimately sparse network is a tree. Ideal trees are not naturally
amenable to link prediction—one would need to predict both links
and “nodes.” Nonetheless, we show that for a large class of treelike
networks (utility distribution or transportation networks being a nat-
ural example), the link prediction schemes proposed here continue to
perform very well.

In addition to �nding hidden structure or identifying false
connections, our method solves a second dual problem. The prior
described above can also be formulated as a null hypothesis. The
e�ectiveness of the link prediction performed on judiciously selected
subsets of the entire network then becomes a statistical test of the
appropriateness of that null hypothesis to describe the observed
data—much as surrogate data methods have found popularity in
nonlinear time series analysis.8Whenwe do so, we are able to provide
direct statistical evidence that preferential attachment is (or perhaps

is not) a poor model of many real systems which otherwise appear
to be scale-free. Of course, a scale-free degree distribution need not
imply preferential attachment as a generative mechanism. What our
results show is that while scale-free degree distributions may still be
common, often the cause is not preferential attachment—or at least
not preferential attachment alone.

In practical applications, link prediction may be applied as a
useful expedient to assist in targeting an otherwise expensive exper-
imental search. In biology, researchers allocate signi�cant expense
to recovering unknown interactions.9,10 Fortunately, link prediction
algorithms can help us identify unknown “potential” interactions
to reduce the cost of experiment.11–13 In social �elds, link predic-
tion algorithms may also aid in analyzing the network evolution.14

On the other hand, link prediction algorithms are helpful for the
algorithm design of recommender systems15 and the spurious links
detection problem.16 In our recent studies, we used link prediction
methods to analyze the triangle structure in several di�erent kinds of
networks.17,18

Moreover, recent studies focus on the so-called novel link pre-
diction structures that are also based on the triangle structure.19

Unfortunately, almost all previous methods rarely consider a spe-
cial but substantial and important case—treelike networks, which are
built by the open triangular structure. As depicted in Fig. 1, there are
two typical treelike networks in the natural world—the engineering
network and the humanpropagation network. Thewater distribution
network is the typical treelike or tree network, and relate to human
livelihood. We employ a metropolitan fresh water distribution net-
work of the state utility provider for Perth, Western Australia,20 to
study the link prediction of the treelike network. Conversely, it is
especially exciting, though challenging, to predict the behavior of
systems as complex as humans, especially when the humans are inter-
acting with each other in complex and unobserved ways.14,21 Here,
we also employ the open social treelike networks—a Twitter network
from the Stanford Large Network Dataset Collection22 and a well-
known sexual contact network from Bearman et al.23—for our study.
In addition, following our previous studies,17,18 we also use the null
model24 to better understand the network characteristics.

FIG. 1. Local structures of the engineering treelike network—Water distribution network (a) and the human propagation networks—Twitter network (b). The network structure
of the Sexual Contact network (c). Almost no closed triangular structure in these networks. For the water distribution network: A node represents one pumping station, one
residence, or one business building, and a link indicates that there is a pipe between them. Water distribution has 330 721 nodes and 343 721 links. For the Twitter network:
A node represents one Twitter user. If one node has retweeted another node, there is a link between them. Twitter network has 256 491 nodes and 328 132 links. And for the
sexual contact network: A node represents one student, a link indicates that there is a sexual contact between them. Sexual contact network has 288 nodes and 291 links.
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In this paper, we analyze the AUC (Area Under Receiver Oper-
atingCharacteristic Curve)25 performance of the local link prediction
algorithms, the quasilocal link prediction algorithms and the global
link prediction algorithms26 for the treelike networks. As we antic-
ipate, the local link prediction algorithm and the quasilocal link
prediction algorithm which are based on the closed triangular struc-
ture or on the preferential attachment principle both fail to predict
the link existence of treelike networks, their performance remains
around 0.5—that is, very similar to the random selection method.
But for the global link prediction algorithm which is based on the
global network structure,27,28 we can achieve a better accuracy. These
results show that the traditional link prediction algorithm which are
based on the closed triangle structure have no e�ect on the treelike
networks. The global link prediction algorithm which are based on
the whole network information can achieve a de�nite e�ect.

However, the e�ciency of global link prediction is accompa-
nied by high computational complexity, and the so-called universal
rules such as the preferential attachment principle5 and the motifs
of complex networks29 both fail to predict. Hence, in turn, we pay
attention to adopt the more universal principle—heterogeneity—to
predict the sparse and treelike networks. Then, we propose a novel
local link prediction algorithm to achieve a higher e�ciency.We �nd
that our heterogeneity algorithm can achieve the best performance
in all treelike networks, especially for the information propagation
network (Twitter). Finally, we use the randomized algorithm to test
robust of the heterogeneity algorithm, and the results show that our
algorithm can assure the robustness of accuracy.

II. METHODS

A. Metric for link prediction algorithm

A graph G can be described by a vertex set V , and an edge set
E: G = (V ,E). Elements of the edge set are unordered pairs of ele-
ments of the vertex set: e = (vi, vj) ∈ E, where vi, vj ∈ V . The pair
(vi, vj) occurs in at most one edge e ∈ E. The standard link predic-
tion problem can be formulated as follows. The edge set E is divided
into two parts: ET and EP, where ET ∪ EP = E and ET ∩ EP = ∅. The
division into EP (typically including 10% of the observed links) and
ET (typically 90% of the observed links) is arbitrary and will be used
for scoring purposes. That is, all the links in E = EP ∪ ET have been
observed and are known, however, links in ET will form a “training
set” and are used to implement a link prediction score, the e�cacy of
which will be evaluated over the “probe set” EP.

The Area under Receiver Operating Characteristic Curve
(AUC),30 originally applied to evaluate communication schemes, has
since been widely applied to measure prediction accuracy25 in a wide
variety of settings. We use AUC as a link prediction accuracy mea-
sure for networks. Only the information of ET is allowed to be used
to compute the performance score Scorexy, we compare the predic-
tion scores of m pairs of nodes from EP and Ē randomly, if there
are m′ times that the score measured from EP is bigger than the
score measured from Ē and m′′ times that the two scores are equal,
then, AUC = (m′ + 0.5m′′)/m (see Appendix A 2). Here, an AUC
value closer to 1 means that the link prediction method is more e�-
cient. Moreover, the AUC values are determined by the relationship
between the network structure and the link prediction algorithm.

B. Link prediction algorithms for treelike networks

Obviously, the higher score that is computed by AUC means
a better link prediction algorithm. Network scientists have pro-
posed around 30 traditional algorithms,26which are based on various
attributes of the network structure. Almost all link prediction algo-
rithms are related to the closed triangular structure. In this paper,
we employ 13 traditional link prediction algorithms as a baseline for
comparison. We then compare these to our proposed heterogeneity
algorithms in view of the weaknesses of the traditional algorithms.
For the networks with more degree heterogeneity and lesser degree
homogeneity, we propose the heterogeneity index (HEI),

SHEIij = |k(i) − k(j)|α , (1)

where k(i) is the degree of node i and k(j) is the degree of node j, α is
a free heterogeneity exponent. Inversely, for the networks with more
degree homogeneity and lesser degree heterogeneity, we propose the
homogeneity index (HOI),

SHOIij =
1

|k(i) − k(j)|α
. (2)

In addition, for the more complex networks, we can further combine
HEI andHOI algorithms, and we named it as heterogeneity adaption
index (HAI),

SHAIij = α|k(i) − k(j)| + (1 − α)
1

|k(i) − k(j)|
, (3)

where 0 ≤ α ≤ 1. In this letter, we only applied HEI for treelike
networks to outline our principle.

C. Traditional link prediction algorithms

The friend of our friend is our friend also, as is �gured by a
closed triangular structure. This common intuition is the basis of all
local link prediction algorithms except the preferential attachment
index. Newman et al. �rstly use this rule to study the cooperation
behaviors of scientists,31 then provide a foundation for link predic-
tion problem.21 Based on these studies, the well-known common
neighbors index (CN) has been proposed,

SCNij = |0(i, j)|, (4)

where 0(i, j) denotes the set of common neighbors of the nodes i
and j. The algorithm indicates that if you have a common friend with
another person, there is a possible relationship between you. That is
to say the friend (common neighbors) of friend is our friend.

Resource allocation index (RA) is based on the principle of the
resource allocation.32,33which also use the closed triangular structure
(common neighbors),

SRAij =
∑

z∈0(i,j)

1

k(z)
, (5)

where k(z) is the degree of the node z.
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Adamic-Adar index (AA)14 improves the e�ect of the lower-
degree common neighbors, which is de�ned as

SAAij =
∑

z∈0(i,j)

1

log k(z)
. (6)

Jaccard index34 is the earliest local link prediction algorithm,
which is proposed by Jaccard in 1901, and also based on the role of
common neighbors,

SJaccardij =
|0(i, j)|

|0(i) ∪ 0(j)|
, (7)

where 0(i) is the set of neighbors of the node i.
Sørensen index35 has been widely applied in the ecological

community data, which is also use the role of common neighbors,

SSørensenij =
2|0(i, j)|

k(i) + k(j)
. (8)

Hub depressed index (HDI)36 is associated with the hub pro-
moted index (HPI),37 both of them are based on the role of common
neighbors. The hub promoted index aims at the improving of hub
nodes e�ects,

SHPIij =
|0(i, j)|

min{k(i) + k(j)}
. (9)

On the contrary, the hub depressed index aims at the decreasing
of hub nodes e�ects,

SHDIij =
|0(i, j)|

max{k(i) + k(j)}
. (10)

Leicht-Holme-Newman index (LHN1)38 directly compare the
number of common neighbors and the possible maximum number
of that

SHDIij =
|0(i, j)|

k(i) × k(j)
. (11)

Preferential attachment index (PAI)5,36 is based on the prefer-
ential attachment principle, the probability of a new link connect to
node i is proportional to ki,5 and the probability of a new link connect
to node j is proportional to kj. Hence, the probability that there is a
link between i and j is proportional to ki × kj, then,

SPAIij = k(i) × k(j). (12)

Local path index (LP)32,39 is a typical quasilocal link prediction
algorithm, which not only adopts the paths between node i and node
j with 2 steps (CN) and further adopts that with 3 steps,

SLPij = A2 + αA3, (13)

where A is the adjacency matrix of the network. (A2)ij is equal to the
number of all paths within 2 steps that connect i and j. Obviously, this
algorithm will be simpli�ed into CN when α = 0.

The Katz index40 is one of the earliest global link prediction
algorithm, which combine the role of common neighbors and global

information,

SKatzij =

∞∑

l=1

αl · |path
〈l〉
ij | = αAij + α2(A2)ij + α3(A3)ij + · · ·, (14)

where α is a free exponent of path weights, and path
〈l〉
ij denotes all

paths with length l that connect i and j. When α is lower than the
reciprocal of the matrix (A) largest eigenvalue, the equation can be
simpli�ed as

SKatzij = (I − αA)−1 − I. (15)

Average commute time index (ACT)27,28 adopt the global infor-
mation and the principle of random walk,

n(x, y) = m(i, j) + m(j, i), (16)

wherem(, i, j)means the average number of steps fromnode i to node
j via random walk. Here, we can use D which denotes the degree
matrix of the network, then the Laplacian matrix L = D − A, and L+

denotes the pseudoinverse of L. Previous studies27,28 deduced that

n(x, y) = M(l+ii + l+jj + 2l+ij ), (17)

where l+ij denotes the entry of L
+, and the entry position is ij. Hence,

the equation can be simpli�ed as

SACTij =
1

l+ii + l+jj − 2l+ij
. (18)

III. RESULTS

A. The failure of traditional algorithms

Research into the accuracy of the link prediction algorithm
has recently attracted increasing attention.13,18,19,21 However, none
directly explore the de�nition, resolution, and boundary of the link
prediction problem. Recently, research on network structures has
provided a new perspective on the nature of the link prediction
problem.17 For real world systems, sparse and treelike networks are
ubiquitous. In this paper, we begin by testing the traditional local
algorithms—with lower computation complexity—for the treelike
networks.

1. Local indices

Obviously, themost famous link prediction algorithm—common
neighbors algorithm CN21—is based on the closed triangle structure.
On the other hand, the earliest link prediction algorithm “Jaccard”
index34 is also based on the closed triangle structure. Actually, all later
local link prediction algorithms for the static network—evolutionary
algorithms of CN or Jaccard—are also based on the closed triangle
structure. Hence, as we expected, all traditional link prediction algo-
rithms fail to predict the water distribution network and the sexual
contact network (Table I), due to their AUC performance that is sim-
ilar to that of the randomly chosen method (around 0.5). Especially
for the PA index26 which is based on the principle of the preferential
attachment, the AUC performance is exceptionally poor. Further-
more, all traditional link prediction algorithms have a bit prediction
e�ect for the Twitter network except the PA index. The PA index also
has the worst performance in other complex networks.26 We argue
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TABLE I. For all networks, the performance of the traditional local link prediction algorithms with the metric of AUC. Bold numbers are the worst performance of all algorithms.

In this letter, we compute the AUC of all algorithms 100 times independently.

AUC CN RA AA Jaccard Salton Sørensen HPI HDI LHN1 PA

Water distribution 0.5011 0.5020 0.5010 0.5012 0.5000 0.5030 0.5021 0.5020 0.5041 0.1400
Twitter 0.5382 0.5291 0.5401 0.5400 0.5332 0.5381 0.5410 0.5210 0.5441 0.4548
Sexual contact 0.4942 0.4984 0.4943 0.4909 0.4978 0.4952 0.4948 0.4960 0.4980 0.3392

that the so-called preferential attachment is not themost popular rule
as we recognized.

2. Quasilocal and global indices

Next, we test the traditional quasilocal and global algo-
rithms—algorithmswith higher computation complexity—for sparse
and treelike networks. In particular, global algorithms which are
based on the global structure information are extremely computa-
tionally expensive. As shown in Table II, the LP32,39 index and the
Katz40 which also associate with the common neighbors (closed tri-
angular structure) cannot predict the all treelike networks well, but
the ACT27,28 index which only associates with the global structure is
signi�cantly better than other traditional algorithms and gets the best
performance for all treelike networks.

B. The heterogeneity index

We now propose to test our novel local algorithms for the
treelike network. Our three novel methods have similar best perfor-
mance, hence we only show the results of HEI to state our algorithm
principle—the heterogeneity network structure. As depicted in Fig. 2,
with the variation of the heterogeneity parameter α,HEI can achieve
a better performance than the traditional link prediction algorithms,
in general, especially for the Twitter network. Here, we infer that the
high performance for the Twitter network is due to a number of hub
nodes attracting most of the links, which then forms a strong hetero-
geneous network. For the water distribution network and the sexual
contact network, the ACT performance is similar to that of HEI.
However, the ACT is infeasible for the large datasets. ACT takes too
much time to get the result, hence we only can get the ACT approx-
imate performance by the sampled data of the water distribution
network. To this end, we suggest that our algorithm is more suitable
for the treelike network than traditional link prediction algorithms.

TABLE II. For all networks, the performance of the traditional quasilocal and global

link prediction algorithms with the metric of AUC. Bold numbers are the best perfor-

mance of all algorithms. Here, we randomly choose a sample set for the Katz and

the ACT every time (see Appendix B 2). For LP and Katz, we only show the best

performance of them.

AUC LP Katz ACT

Water distribution 0.5049 0.5026 0.5509
Twitter 0.6440 0.4551 0.8118
Sexual contact 0.5031 0.4370 0.6450

To evaluate the reliability of our algorithm, we introduce the
randomized edges algorithm (null model)24 to destroy the network
structure. The structure of null model is totally random, while the
node degree is maintained. As depicted in Fig. 3, the HEI still has
the prediction e�ect for the null model, though the performance of it
decrease slightly. Our study suggests that the heterogeneity is still the
popular rule for complex networks while other rules loose e�cacy
for the structure prediction. Especially for the so-called preferen-
tial attachment principle, the heterogeneity will be emerged with the
appearing of that rule, but not vice versa.

C. The limitation of the heterogeneity index

Compare the performance of our methods for three real-world
treelike networks, we �nd that our methods are more suitable for
more heterogeneous treelike network (Twitter network). Moreover,
previous study proposed a scale-free network model with di�er-
ent power law degree distribution exponents41 that also can create
networks with di�erent heterogeneities. On the other hand, Xulvi-
Brunet and Sokolov’s algorithm42 can help us build null models with
di�erent heterogeneities.43 Inspired by previous studies, we test our
algorithms in three networks with di�erent heterogeneities to fur-
ther evaluate the reliability of our algorithm. Here, we built the BA
network5with 100 nodes and 294 links, then adopt simple null model
methods to create the corresponding homogeneity BA network and
the heterogeneity BA network (see Appendix B 1). As depicted in
Table III, we �nd our algorithms only can achieve a good perfor-
mance for the networks with the higher heterogeneity (BA and het-
erogeneityBA) and achieve the best performance in the heterogeneity
BA network. In addition, our algorithms have the worst performance
in the homogeneity BA network though are e�ective (AUC > 0.5) for
the homogeneity BA network. That is to say the performance of all
our algorithms are in positive correlation with the heterogeneity. In
other words, our methods are more suitable for the regular treelike
networks with the higher heterogeneity.

TABLE III. For the homogeneity BA network, the BA network, and the heterogeneity

BA network, the best performance of our link prediction algorithms with the metric of

AUC. Boldface denotes the best performing network for each link prediction algorithm.

Homogeneity BA BA Heterogeneity BA

HEI 0.5956 0.7340 0.8414
HOI 0.5980 0.7379 0.8404
AHI 0.6090 0.7369 0.8331
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FIG. 2. Under the metric of AUC, the performance of HEI for all networks. The heterogeneity will play the main role when α > 0 (b) and (c), and the homogeneity will play
the main role when α > 0 (a).

IV. DISCUSSION

Our study not only broadens the scope of the link prediction
problem, but also argues that heterogeneity is the prime rule formany
complex networks. The network structures of the real world are ever-
changing and abundant due to one key factor—heterogeneity. More-
over, the treelike networks are exceedingly common in real systems.
Consequently, we �nd that many real-world networks with complex
structure and scaling exhibit structure and features that are atypical
of what is provided by the preferential attachment alone. In this let-
ter, we show an example to adopt the network to successfully predict
the link existence. In social networks, automated link suggestions

strongly in�uence the experience of social network users. Better
prediction algorithms can improve ones’ experience of social net-
works by enhancing interaction with the network. Our link pre-
diction algorithm is especially suitable as a model for the online
information propagation network. Hence, we suggest that hetero-
geneity is the driving force for the formation of the news propa-
gation network, and our work will also bene�t understanding and
propagation of information in mass communication systems—the
computational communication. Conversely, all algorithms that are
based on or associated with the closed triangular structure will fail
to predict the link for sparse or treelike networks, and the so-called

FIG. 3. Under the metric of AUC, the performance ofHEI for all original networks and corresponding null models. The bottom right boxes show the best and worst performance
for the original network and the corresponding null model.
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preferential attachment rule can even act against favorable link
prediction.

In addition, traditional link prediction algorithms in complex
networks and our algorithms are only based on the observed net-
work structure and suitable for the single layered network. On the
other hand, the algorithm of community-based recommender sys-
tems can also help us analyze the similarity between two users,44

that is, a special link prediction algorithm. Moreover, techniques
such as Matrix factorization and Singular value decomposition can
help us solve the data sparsity problem.45 However, algorithms of
community-based recommender system usually rely on the relevant
features of users and analyze the relationships between users and
items. We suggest that the algorithm of community-based recom-
mender system is more suitable for the double layer network under
the premise that users’ public pro�les are reliable.
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APPENDIX A: LINK PREDICTION

1. Link prediction problem

A graph G can be described by a vertex set V , and an edge set E:
G = (V ,E). Elements of the edge set are unordered pairs of elements
of the vertex set: e = (vi, vj) ∈ E, where vi, vj ∈ V . The pair (vi, vj)
occurs in at most one edge e ∈ E.

The standard link prediction problem can be formulated as fol-
lows. The edge set E is divided into two parts ET and EP, where
ET ∪ EP = E andET ∩ EP = ∅. The division intoEP (typically includ-
ing 10% of the observed links) and ET (typically 90% of the observed
links) is arbitrary and will be used for scoring purposes. That is, all
the links in E = EP ∪ ET have been observed and are known, how-
ever, links in ET will form a “training set” and are used to implement
a link prediction score, the e�cacy of which will be evaluated over
the “probe set” EP.

With sets ET and EP, the “static” link prediction problem is then
applied where we consider an augmentation of G. Suppose that the
information encapsulated in graph G provides an incomplete picture
of a larger graphG′ = (V ,E′)—the “truth.” This larger graphG′ may
include both edges in E and also additional edges Ē = E′\E. In the
real-world, these are additional edges that have not been observed.
Let U := {(vi, vj)|vi, vj ∈ V , vi 6= vj} be the universal set of all pos-
sible links (links are bidirectional and hence technically U should
contain each link only once, so we will impose some ordering on the
elements of V and insist—for example—that i < j).

For each link in U, we de�ne and compute a prediction mea-
sure Sij which measures—based only on link information contained
in ET—how close are nodes vi and vj. That is, the probability of nodes
vi and vj has a link connecting each other is assessed as Sij using infor-
mation inferred from the links in ET . Using the additional links in EP,

we can compute a performance score for the predictionmeasure (one
can imaginemany possible alternative predictionmeasures)—that is,
based on the known links ofEP (“known structure”)—howwell corre-
lated are the scores Sij with edges (vi, vj,w(i, j)) ∈ ET : are high values
of Sij associatedwithmembership ofEP for edges inE′′ = U\ET? This
step (evaluating the score onET) is not strictly necessary, but provides
a method to test how well our algorithm performs before moving to
the unseen data in Ē. Finally, our predictions of the unknown links
in Ē can be obtained by ranking the scores Sij for all (vi, vj,w(i, j)) ∈

Ē(U\E). Links with highly ranked scores are those predicted to most
likely exist—we expect that these highly ranked links will probably
occur in Ē, and other few lowly ranked linkswill probably occur inEP.

The static link prediction problem can now be stated: given ET

and EP (and also V), predict Ē and some fake links in EP. That is,
if we know some of the links of a network—those links being par-
titioned into the training set ET and the probe set EP—which we
have observed, is it possible to predict the existence (or otherwise) of
unobserved or fake links. The unobserved links are members of E′′

and may be said to either exist (if they are also members of Ē) or be
nonexistent [if they are insteadmembers ofU\(E ∪ Ē)]. Of course, in
general, the link prediction problem is ill-posed. If the links (network
structure) are random and uncorrelated the information in E tells us
nothing about any of the remaining possible pairs E′′ and whether
they are in Ē. However, many real-world networks exhibit correlation
among the links, on the contrary, the link prediction performance
can re�ect the network structural properties. In addition, we can use
the link prediction performance to measure the variation of network
structure.

For a graphG = (V ,E), the vertex set is stationary and does not
evolve. Elements of the edge set are unordered pairs of elements of the
vertex set: e = (vi, vj) ∈ E, where vi, vj ∈ V . The pair (vi, vj) occurs
in at most one edge e ∈ E. The edge set E is divided into two parts
ET and EP, where ET ∪ EP = E and ET ∩ EP = ∅. The division into
EP (typically including 10% of the observed links in Ref. 36) and ET

(typically 90% of the observed links) is arbitrary and will be used for
scoring purposes. The static46 link prediction problem can be stated:
given the training link set ET and the probe link set EP (and also V),
E′′ = U\E, then predict a small part of unobserved links in E′′ and
that of fake links in EP. That is, if we know some of the links of a
network—those links being partitioned into the training set ET and
the probe set EP—which we have observed, is it possible to predict
the existence (or otherwise) of unobserved or fake links. The unob-
served links are members of E′′ and may be said to either exist or be
nonexistent. Generally, the link prediction scores of existence links
are bigger than that of fake links or nonexistent links.

2. A simple example for AUC

As shown in Fig. 4, as our previous study,43we describe a simple
example to explain the AUC schematic. Here, we adopt the link pre-
diction algorithmPA index and only compute theAUC once (m = 1):
First, the observed link set (a) can be divided into a training set (b)
and a probe set (c). Next, we can choose a pair of nodes AB from the
probe set (c) and a pair of nodes from the nonobserved links set (d).
Only the training set (b) can be used to compute the node degree.
If we choose the pair of nodes AD from the nonobserved links set
(d), ScoreAB = kA × kB = 0, ScoreAD = kA × kD = 1, namely, ScoreAB
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FIG. 4. The simple examples of the observed links set E, the nonobserved links

set Ē, the training set ET , and the probe set EP . Reproduced with permission
from K. Shang et al., Phys. A Stat. Mech. Appl. 474, 49–60 (2017). Copyright
2017 Elsevier B.V.

< ScoreAD, hencem′ = 0,m′′ = 0, thenAUC = (0 + 0.5 × 0)/1 = 0.
If we choose the pair of nodes BD from the nonobserved links set
(d), ScoreAB = kA × kB = 0, ScoreBD = kB × kD = 0, namely, ScoreAB
= ScoreBD, hence m′ = 0,m′′ = 1, then AUC = (0 + 0.5 × 1)/1
= 0.5.

APPENDIX B: NULL MODEL AND SAMPLING METHOD

1. Null models

Our aim with the null model is to destroy the original net-
work structure, while maintaining the node degree. We can use the
randomized edges algorithm (RE)24 to rewire links of the original net-
work. As shown in Fig. 5,18 nodes A and B and nodes C and D are
connected, while nodes A and D and nodes B and C are not con-
nected. Then, cut the links AB and CD, and connect nodes A and
D and nodes B and C, respectively. RE changes the structure of the
network and the degree of each node is kept. RE is helpful for us
to analyze the role of structure for link prediction. This is a stan-
dard edge switch, whichwill ensure that the network degree sequence
remains unchanged. In this letter, the number of switches is equal to
the number of nodes.

Furthermore, based on Xulvi-Brunet and Sokolov’s algorithm,42

as shown in Fig. 6,43we can use the disassortativeREmethod (DARE)
and the assortative REmethod (ARE) to change the structure and the
assortativity or heterogeneity of the original BA networks. Obviously,
theDAREwill improve the heterogeneity of the originalBAnetworks,
and the ARE will play the contrary e�ect. The number of switches is
also equal to the number of nodes.

FIG. 5. Nodes A and B and nodes C and D are connected, while nodes A and D
and nodesB andC are not connected. Then, cut the linksAB andCD, and connect
nodesA andD and nodesB andC, respectively. Reproduced with permission from
K. Shang et al., Europhys. Lett. 117, 28002 (2017). Copyright 2017 EPLA.

2. Sampling method

Compared to other two kinds of link prediction algorithms, the
global link prediction algorithm has the highest computational com-
plexity and almost infeasible without a large workstation. Hence, to
reduce computational load, we choose a sample set Esample from orig-
inal networks. Here, to select a suitable sample which has the proper
density and number of nodes, we choose a node randomly, then only
select some of its neighbors and neighbors of neighbors, and the links
between these nodes as the sample set Esample.18 In this letter, the num-
ber of nodes in Esample is 500, and the Esample is only used for Katz
and ATC.

FIG. 6. (a) Nodes A and B and nodes C and D are connected, while nodes A and
D and nodes B and C are not connected. In addition, |kA − kB| < |kA − kD| and
|kC − kD| ≤ |kC − kB|, where ki is the degree of node i. Then, cut the links AB
and CD, and connect the nodes A and D and the nodes B and C, respectively.
(b) Nodes A and B and nodes C and D are connected, while nodes A and D

and nodes B and C are not connected. In addition, |kA − kB| > |kA − kD| and
|kC − kD| ≥ |kC − kB|, where ki is the degree of node i. Then, cut the links AB
andCD, and connect nodesA andD and nodesB andC, respectively. Reproduced
with permission fromK. Shang et al.,Phys. A Stat. Mech. Appl. 474, 49–60 (2017).
Copyright 2017 Elsevier B.V.
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