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Abstract
Link prediction finds missing links in static networks or future (or new) links in dynamic networks. Its study is crucial
to the analysis of the evolution of networks. In the last decade, lots of works have been presented on link prediction in
social networks. Link prediction has been playing a pivotal role in course of analyzing complex networks including social
networks, biological networks, etc. In this work, we propose a new approach to link prediction based on level-2 node
clustering coefficient. This approach defines the notion of level-2 common node and its corresponding clustering coefficient
that extracts clustering information of level-2 common neighbors of the seed node pair and computes the similarity score
based on this information. We performed the simulation of the existing methods (i.e. three classical methods viz., common
neighbors, resource allocation, preferential attachment, clustering coefficient-based methods (CCLP and NLC), local naive
based common neighbor (LNBCN), Cannistrai-Alanis-Ravai (CAR), recent Node2vec method) and the proposed method
over 11 real-world network datasets. Accuracy is estimated in terms of four well-known single point summary statistics
viz., area under the ROC curve (AUROC), area under the precision-recall curve (AUPR), average precision and recall. The
comprehensive experiment on four metric and 11 datasets show the better performance results of the proposed method. The
time complexity of the proposed method is also given and is of the order of time required by the existing method CCLP. The
statistical test (The Friedman Test) justifies that the proposed method is significantly different from the existing methods in
the paper.

Keywords Link prediction · Level-2 node clustering coefficient · Similarity measures · Social network

1 Introduction

A social network is a standard approach to model communica-
tion in a group or community of persons. Such networks can
be represented as a graphical model in which a node maps
to a person or social entity and an edge maps to an asso-
ciation or collaboration between corresponding persons or
social entities. The relationships among individuals are con-
tinuously changing, so addition and/or deletion of several
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nodes and edges take place. It results in social networks to
be highly dynamic and complex. Lots of issues arise when
we study about a social network; some of which are chang-
ing association patterns over time, factors that drive those
associations, and the effects of those associations to other
nodes. Here, we address a specific problem termed as Link
Prediction. Formally, the link prediction is stated as [1]:
suppose a graph Gt0−t1(V, E) represents a snapshot of a net-
work during time interval [t0, t1] and Et0−t1 , a set of edges
present in that snapshot. The task of link prediction is to find
set of edges Et ′0−t ′1 during the time interval [t ′0, t ′1] where
[t0, t1] ≤ [t ′0, t ′1].

Link prediction idea is useful in several domains of
application. Examples include automatic hyperlink creation
[2], website hyper-link prediction [3] in the internet and web
science domain and friend recommendation on Facebook.
Building a recommendation system in e-commerce is an
essential task that uses link prediction as a basic building
block [4]. In Bioinformatics, protein-protein interactions
(PPI) have also been implemented using link prediction [5].
In security concern areas, link prediction is used to find
hidden links among terrorists and their organizations.
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Lots of approaches to link prediction have been proposed
in the literature from the last few decades. Similarity-based
approaches are the most common ones especially structural
similarities which are simple and efficient to compute.
For each pair of nodes in the network, an index score
is computed using structural information available around
the node pair which represents the structural similarity
between them. Structural similarity-based methods extract
information about the underlying structures range from
local to global including quasi-local (more than local and
less than global information). Some of which are the
neighborhood-based methods (i.e., Common Neighbors [6],
Jaccard [7], Adamic/Adar [8], Resource Allocation [9],
Preferential attachment [10], etc.) that use local information,
path-based methods (i.e., Katz index [11], Inverse path
distance [1] Average commute time [12], PageRank [13],
Leicht-Holme-Newman Index [14], Random walk with
restart [15], etc.) which explore global information of the
underlying network.

Difference from existing works Recently some works
regarding the effect of clustering coefficient on link predic-
tion task have been introduced. Wu et al. [16] introduces
a new measure (CCLP) that consider the clustering abil-
ity of common neighbors of a given node pair to assign
a similarity score. Liu et al. [17] work show the effect of
low/high degree nodes on the clustering ability of a local
path and penalizes the longer one to reduce their contri-
bution to the similarity score computation. Further, Wu et
al. [18] included link clustering information in addition to
node clustering information in similarity calculation, this is
called node and link clustering based link prediction (NLC).
But, if no common neighbor exists between the seed node
and the common node, the contribution of link clustering
becomes zero and the NLC method generates to the CCLP.
Our work introduces the notion of level-2 common neigh-
bors and level-2 clustering coefficients of a pair of seed
nodes. The proposed work explores a large area of the net-
work in the form of clustering ability of level-2 common
neighbors of the seed node pair which we called level-2
clustering coefficient. Y. Liu et al. explore networks in the
path of length up to three (3) where the proposed work does
not have such restriction and it expands the search area with
the help of level-1 common neighbors as shown in Fig. 2.

Contribution The major contributions of this work is as
follows

• We introduce the notion of level-2 common neighbors
and level-2 node clustering coefficients that explore
large information of networks compared to the level-1
common neighbors and their corresponding clustering
coefficients.

• Based on the above concept, we proposed a novel
framework and its corresponding algorithm viz. level-2
node clustering coefficient for link prediction.

• We also contribute its computational procedure and
complexity in the paper.

• The experiment results on real network datasets show
the superiority of our algorithm against the state-of-the-
art-algorithms.

Organization Section 2 presents related work on link
prediction. The proposed work with the algorithm has been
explained in Section 3. Section 4 discusses experimental
study consisting of an evaluation strategy and results of
several methods against real network datasets. Finally,
Section 5 concludes our work.

2 Literature review

M. E. J. Newman presented a paper on link prediction on
collaboration networks in Physics and Biology [6]. In such
networks, two authors are considered to be connected if they
have at least one paper co-authored by them simultaneously.
In the empirical study, the author demonstrated that the
likelihood of a pair of researchers teaming up increments
with the numbers of different colleagues they have in mutual
relation, and the likelihood of a specific researcher acquiring
new partners increments with the number of his past
teammates. The outcomes give experimental proof in favor
of formerly guessed mechanisms for clustering and power-
law degree distributions in networks. Later, Liben-Nowell
et al. [1] proposed a link prediction models explicitly for
a social network. Each node in the network corresponds to
a person or an entity, and a link between two nodes shows
the interaction between them. The learning paradigm in this
environment can be used to extract the similarities between
two nodes by several similarity metrics. Ranks are assigned
to each pair of nodes based on these similarities, then higher
ranked node pairs are designated as predicted links. Further,
Hasan et al. [19] expanded this work and demonstrated
that there is a significant increase in prediction results
when additional topological information about the network
is available. They considered different similarity measures
as features and performed binary classification task using
a supervised learning approach, which is similar to link
prediction in their framework. In the relational context [20–
22] and in the internet domain [23], refinement graph [24]
is constructed from relational database for useful feature
generation and binary classification (link prediction) is
performed using a regression model. Their framework can
acknowledge any relational dataset where there is a relation
among objects. In such frameworks, modeling paradigms
like probabilistic relational models [25], graphical models
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[26], and stochastic relational models [5, 27, 28] have been
used. The upsides of these methodologies incorporate the
genericity and simplicity where the model can integrate
attributes of the entities. On the downside, they are normally
intricate and able to contain the excessive number of para-
meters; a large portion of which may be complex to the user.

The graph embedding is considered as a dimensionality
reduction technique in which higher D dimensional nodes in
the graphs are mapped to a lower d (d << D) dimensional
representation space by preserving the node neighborhood
structures. Recently, some graph embedding techniques
[29–33] have been proposed and applied successfully in
link prediction problem. The Laplacian eigenmaps [29]
and Logically linear embedding (LLE) [33] are examples
based on the simple notion of embedding. such embedding
techniques are quite complex in nature and face scalability
issues. To tackle the scalability issue, graph embedding
techniques have leveraged the sparsity of real-world
networks. For example, DeepWalk [32] extracts local
information of truncated random walk and embeds the
nodes in representation space by considering the walk as
a sentence in the language model [34, 35]. It preserves
higher order proximity by maximizing the probability of
co-occurrence of random walk of length 2k+1 (previous
and next k nodes centered at a given node). Node2vec
[30] also uses a random walk to preserves higher order
proximity but it is biased which is a trade-off between the
breadth-first search (BFS) and depth-first search (DFS). The
experimental results show that the node2vec performs better
than the Deepwalk.

Continuous growing size of social networks such as
Myspace, Facebook, Linkedin, Flickr, etc., has shown to be
one of the key challenges in link prediction. Prior existing
methodologies may not be implemented to such networks
because of continuous evolving nature and their huge size,
so some other direct methodologies are required to address
these issues. As an example, Tylenda et al. [36] show that
the timestamps of previous affiliations (that expressly use
the genealogy of interactions) can be used to enhance the
performance of link prediction. Song et al. [37] considered a
social network consisting of around 2 million nodes and 90
million edges and compute similarity measures among these
nodes using matrix factorization. Recently, authors Acar
et al. [38] implemented tensor as the extension of matrix
factorization which is more richer and higher-order models.

This paragraph gives an overview of clustering-based
link prediction. Huang [39] presented a paper on graph
topology based link prediction where generalized clustering
coefficient is used as a predictive parameter. The author
introduces a cycle formation model which shows the
relationship between link occurrence probability and its
ability to form different length cycles. Further, Liu et
al. [17] proposed degree related clustering coefficient to

quantify the clustering ability of nodes. They applied the
same to paths of shorter lengths and introduced a new
index Degree related Clustering ability Path (DCP). They
performed the degree of robustness (DR) test for their index
and showed that missing links have a small effect on the
index. Recently, Wu et al. [16] extracted triangle structure
information in the form of node clustering coefficient
of common neighbors. Their experiments on several real
datasets show comparable results to CAR index in [40]. The
same concept of clustering coefficient is also introduced in
the work presented by Wu et al. [18]. Authors introduce
both node and link clustering information in their work
[18]. Their experiments on small, middle and large network
datasets showed better performance results against existing
methods, especially on middle and large network datasets.

Clearly, node and link clustering information play an
essential role in the evolution of complex networks. The
above paragraph shows some research works on link
prediction using this property and still more efforts need to
be applied. Our work is also an effort in this direction.

3 Proposed work

Evidences [41, 42] suggest that many real networks
demonstrate consistent topological features across different
domains viz., small-world [43, 44], clustering, and scale-
free [45]. Their corresponding basic measures are path
length, clustering coefficient, and degree distribution. Most
empirically observed networks’ behavior resembles small-
worlds in which any two nodes can find each other in a few
steps even if the network is large enough, i.e., the diameter
increases logarithmically with the number of nodes in
such networks. Small-world networks are highly clustered
and characterized by the clustering coefficient. Our work
focuses on clustering coefficient measure which is extended
up to next level. This work exploits more local information
as level-2 common neighbors and clustering properties of
such nodes in the network.

This work relaxes the notion of CAR index where only
common neighbors and link information among them (i.e.
local communities) [40] are considered and extends the
notion of clustering information of the CCLP index. Our
work considers level-1, level-2, and level-3 link information
(also higher level links in some cases) to extract level-
2 triangles (clustering information). It selects level-2 and
level-3 link information to a greater extent in the triangle
formation as compared to level-1 links. The proposed
method explores a large portion (global to some extent) of
the underlying network (Figs. 1 and 2).

How it extracts global information (to some extent) While
selecting level-2 common neighbors (CN2), there exist
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Fig. 1 Notion of level-2 clustering coefficient

some possibilities that level-2 common neighbors are also
treated as level-1 common neighbors as shown in Fig. 2. In
such cases, level-2 common neighbors are extended to next
level in the network and continue until further identification
of level-2 common neighbors as level-1 common neighbors.

Definition 1 (Clustering Coefficient) It is a measure of the
degree to which nodes of a graph tends to be clustered. In
graph theory, the clustering coefficient of a node represents
its neighbor’s tendency to become a clique or complete
graph. Mathematically, this measure [42] is expressed as

C(i) = 2|{e jk:v j ,vk∈N (i),e jk∈E }|
ki (ki − 1)

(1)

where ki is the degree of the node, i and N(i) is immediate
neighbors of i. We refer this measure as Level-1 clustering
coefficient, based on which Wu et al. [16] presented a paper
on link prediction.

level-2 
triangle

CN2

CN2

CN2 

=CN1 

CN1

BA

level-2 
triangle 

level-2 
triangle

(A , B) : Seed node pair 

CN1 : Level-1 common neighbor of (A, B) 

CN2 : Level-2 common neighbor of (A, B) 

Fig. 2 Expanding local to global architecture

Definition 2 (Level-2 node clustering coefficient) We
extend the definition of node clustering coefficient [16] to
next level named level-2 node clustering coefficient which
exploits level-2 common neighbors and their clustering
information for every pair of nonexistent nodes in the
network.

Figure 3 represents the best explanation of level-2 node
clustering coefficient. For the seed node pair (A, B), level-
1 common neighbors or simply common neighbors (CNs)
are C, D, and E shown in the right upper part of the
figure. Further, all those pairs are selected in which the first
node is either A or B (one of the seed node pair) and the
second node is one of the level-1 common neighbors. For all
such pairs, level-2 common neighbors are computed based
on common nodes of their respective pair. Based on this
definition nodes F and G are level-2 common neighbors
shown in the right bottom part of the figure. Now, the total
number of triangles passing through each level-2 common
neighbor is computed and summed over all such neighbors
to find level-2 clustering coefficient of the seed node pair.

Link prediction based on Level-2 node clustering coeffi-
cient Our work focuses on level-2 clustering coefficient
that explores clustering information of level-2 common
neighbors which is more informative than the clustering
coefficient used in [16]. We extend the notion of clustering
coefficient of a node the next level (level-2) in the net-
work. We compute the level-2 node clustering coefficient
according to the (2)

CCLP2
(A,B) = ∑

CN2
A∈�(A)∩�(CN1)

CC(CN 2
A)

+ ∑

CN2
B∈�(CN1)∩�(B)

CC(CN 2
B)

= ∑

CN2∈(�(A)∩�(CN1))||(�(CN1)∩�(B))

CC(CN 2)

(2)

where CC(CN 2) is having the usual definition of node (i.e.
CN 2) clustering coefficient value and is computed using the
(1). CN 2

A is the level-2 common neighbor corresponding to
node A and the common node of the pair (A, B). CN 1 is
the level-1 common neighbor defined in the literature and is
computed as

CN 1 = �(A) ∩ �(B).

The pseudo code of the proposed algorithm is presented
in Algorithm 1.

Algorithmdescription For a given simple undirected graph,
the algorithm finds top-L missing links. The main crux of
the algorithm is to find level-2 common neighbors from
which level-2 clustering coefficient can be calculated.

For each pair of nodes (seed node pair (A, B)) having
no edge between them, the algorithm finds all common
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Fig. 3 Computing level-2 node clustering coefficient

neighbors (level-1 CNs) [Line: 1-2]. Level-2 common
neighbors are then computed for all those node pairs
(pi , qi ) in which first node pi belongs to {A, B} while
second node in level-1 common neighbors of (A, B) [Line:
3-4]. Now for all nodes in level-2 common neighbors,
clustering coefficient values are computed and added to
get final similarity score for the seed node pair (A, B)
[Line: 5-6]. Once scores of all non-existent node pairs have
been computed, the next step [Line: 7] arranges them in
descending order, and finally, top-L node pairs are returned
as predicted links [Line: 8].

4 Experimental study

4.1 Evaluationmetrics

The link prediction problem is treated as a binary
classification task [19] so most of the evaluation metrics of
any binary classification task can be used in link prediction
evaluation. The evaluation of a binary classification task
having two classes can be represented as a confusion matrix
[46].

In the confusion matrix,

. True Positive (TP): positive data item predicted as
positive

. True Negative (TN): negative data item predicted as
negative

. False Positive (FP): negative data item predicted as
positive

. False Negative (FN): positive data item predicted as
negative

Based on the confusion matrix, several metrics can be derived
as follows [46].

True Positive Rate (TPR)/Recall/Sensitivity

T PR = #T P

#T P + #FN
(3)

False Positive Rate (FPR)

FPR = #FP

#FP + #T N
(4)

True Negative Rate (TNR)/Specificity

T N R = #T N

#T N + #FP
(5)

Precision = #T P

#T P + #FP
(6)

Our approach is evaluated on four metrics viz., Area
under the ROC curve (AUROC) [47, 48], Area under the
precision-recall curve (AUPR) [49], Average precision [46]
and Recall [46].

Area under the Receiver Operating Characteristics Curve
(AUROC) A roc curve is a plot between the true positive
rate (sensitivity) on the y-axis and the false positive rate (1-
specificity) on the x-axis. The true positive rate and false
positive rate can be evaluated using (3) and (4) respectively.
The area under the roc curve [48] is a single point summary
statistics between 0 and 1 that can be computed using the
trapezoidal rule which sums all the trapezoids under the
curve. The value of the auroc of a predictor should be greater
than 0.5 which is the value of a random predictor, i.e., higher
the value of auroc better the performance of the predictor.

Area under the precision-recall curve (AUPR) The precision-
recall curve is more useful and informative when applied
to binary classification on imbalanced datasets [50]. So
we have also considered the area under the precision-
recall curve (AUPR). This value is computed based on the
precision-recall curve which is a plot between the precision
values on the y-axis and the recall values on the x-axis. The
precision and recall values can be computed using (6) and
(3) respectively.

Average precision This metric is also a single point
summary value which is computed based on varying
threshold1 values. The average precision value is equal to
the precision averaged over all values of recall between 0
and 1 i.e.,

AveragePrecision =
∫ 1

r=0
p(r)dr (7)

1https://sanchom.wordpress.com/tag/average-precision/

https://sanchom.wordpress.com/tag/average-precision/
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Recall This metric2 intuitively finds all positive samples
(existence of links in this case) in the data and equates to the
metric given in (3).

4.2 Datasets

This work used 11 network datasets from various fields to
study the performance of our approach. Macaque3 [51]: is
a biological network of cerebral cortex of Rhesus macaque.
Football4 [52]: American football games network played
between Division IA colleges during regular season Fall
2000. Celegansneural [42]: A neural network of C. Elegans
compiled by D. Watts and S. Strogatz in which each node
refers a neuron and, an edge joins two neurons if they are
connected by either a synapse or a gap junction. USAir975 is
an airline network of US where a node represents an airport
and an edge shows the connectivity between two airports.
Political blogs [53] is a directed network of hyperlinks
in political blogs leaning towards the conservatives and
the democrats preceding the US election 2004. Yeast6

[54] is also a biological network of proteins in a cell
where a node represents a protein and edge denotes the
interaction between two proteins. Amazon web graph [55] is
an informational network of web pages of Amazon.com and
its sister companies. Power grid [42] is an undirected and
unweighted network of power grid located in western states
of the United States. ca-GrQc,7 ca-HepTh, and ca-HepPh
are collaboration networks of arXiv General Relativity,
High Energy Physics Theory, and High Energy Physics
respectively.

Table 1 shows some basic topological properties of
the considered networks datasets. N and E are the total
numbers of nodes and edges of the networks respectively.
D represents node pairs average shortest distance, K, the
average degree and C, the average clustering coefficient of
the network.

4.3 Baselinemethods

1. Common Neighbor (CN). [6]

This is an intuitive notion of formulating similarity
between any two nodes in the underlying network where

2https://ils.unc.edu/courses/2013 spring/inls509 001/lectures/
10-EvaluationMetrics.pdf
3https://neurodata.io/project/connectomes/
4http://www-personal.umich.edu/∼mejn/netdata/
5http://vlado.fmf.uni-lj.si/pub/networks/data/
6https://icon.colorado.edu/#!/networks
7https://snap.stanford.edu/data/

Table 1 Topological informations of real-world network datasets

Datasets N E D K C

Macaque 91 1401 1.658 30.791 0.742

Football 115 613 2.486 10.661 0.403

Celegansneural 297 2148 2.447 14.456 0.308

USAir97 332 2126 2.738 12.807 0.749

Political blogs 1490 16718 2.738 22.440 0.361

Yeast 2361 7182 4.376 6.084 0.271

Amazon web graph 2880 3904 3.433 2.711 0.818

Power grid 4941 6594 18.989 2.669 0.107

ca-GrQc 5242 14496 6.049 5.531 0.687

ca-HepTh 8361 15751 7.025 3.768 0.636

ca-HepPh 12008 118521 4.673 19.74 0.699

the similarity score is computed based on the number of
mutual/common friends.

S(a, b) = |�(a) ∩ �(b)| (8)

where, �(a) and �(b) are the size of the neighbors of the
node a and b respectively and S(a, b) is the similarity score
of the node pair (a, b).

2. Preferential Attachment (PA). [10]

Preferential attachment is considered as the basis of
network growth model [56] in which the number of edges
evolving from a node depends on the degree of that node.
Newman [6] and Barabasi et al. [10] have extended this
basic notion of preferential growth to a pair of nodes and
state that the probability of co-authorship between two
nodes is related to the product of the degrees of both nodes.
i.e.,

S(a, b) = ka ∗ kb (9)

where ka and kb are the degrees of nodes a and b
respectively.

3. Resource Allocation (RA). [9]

Motivated by the resource allocation process [57] in
complex networks, Zhou et al. [9] introduced resource
allocation index for link prediction. This work suggests that
the penalization imposed to larger degree nodes are not
sufficient to the existing work of the Adamic/Adar index.
The authors imposed a heavy penalty for larger degree
nodes to improve the accuracy. The similarity score between
two nodes a and b based on this approach is given by

S(a, b) =
∑

c∈�(a)∩�(b)

1

kc
(10)

https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf
https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf
https://neurodata.io/project/connectomes/
http://www-personal.umich.edu/~mejn/netdata/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://icon.colorado.edu/#!/networks
https://snap.stanford.edu/data/
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4. Node and Link Clustering Coefficient (NLC). [18]

It is based on the clustering property of nodes and
edges of the network. It considers both node and link
clustering coefficients for the score computation. For any
non-observed node pair in the graph, the NLC score can be
computed as follows

S(a, b) =
∑

c∈�(a)∩�(b)

CN (a, c)

kc − 1
×C(c)+ CN (b, c)

kc − 1
×C(c)

(11)

where kc is the degree of the node c, CN(a,c) is the number
of common neighbors of the nodes a and c, C(c) is the
clustering coefficient of the node c.

5. Local Naive Bayes based Common Neighbor (LNBCN).
[58]

This method is based on the Naive Bayes theory and
arguments that different common neighbors play different
role in the network and hence contributes differently to the
score function computed for non-observed node pairs.

S(a, b) =
∑

c∈�(a)∩�(b)

[log(
C(c)

1 − C(c)
) + log(

1 − ρ

ρ
)] (12)

where ρ is the network density expressed as]

ρ = E

N (N − 1)/2

6. CAR Index. [40]

The CAR method [40] is based on the intuition that
the two nodes are likely to be connected if their common
neighbors are members of a local community (LC). Such
common neighbors are weighted more in this method.
Cannistraci et al. proposed CAR variants of Common
neighbors, Adamic/Adar, Resource allocation etc.

S(a, b) = CN (a, b) × LCL(a, b)
= CN (a, b) × ∑

c∈�(a)∩�(b)

|γ (c)|
2

(13)

where LCL(a, b) refers to local community links defined
in [40]. γ (c) is the subset of neighbors of node c that are
also common neighbors of a and b.

7. Clustering Coefficient based Link Prediction (CCLP).
[16]

The method selects the common neighbors of the seed
node pair and considers the clustering coefficients of these
common neighbors to compute the similarity score of
the pair. This method shows good performance on the
networks with low correlation between the number of

common neighbors and the number of links among them.
The similarity score between two disconnected seed node
pair can be computed as follows

S(a, b) =
∑

c∈�(a)∩�(b)

C(c) (14)

C(c) = t (c)

kc(kc − 1)

where kc is the degree of node c and t(c) is the total triangles
passing through the node c.

8. Node2vec. [30]

Node2vec is a low dimensional feature representation
technique in which nodes are mapped in lower space
such that the network neighborhood of the nodes are
preserved. It can also be referred to as network embedding
technique which tries to preserve the neighborhood structure
by mapping similar nodes in the input space to nearby
in the representation or embedding space. It is a semi-
supervised algorithm that uses the flexible notion of a biased
random walk (sampling strategy) to explore the diverse
neighborhood of nodes. The sampling strategy accepts 4
inputs viz., number of walks, walk length, return (p) and
in-out (q) hyperparameter. The hyperparameter p controls
the probability of revisiting the initial node and q explores
the undiscovered part of the network. Thus, the algorithm
outputs node embedding of length walk length for each
node.

The parameter setting for the node2vec algorithm is as
follows: the return (p) and in-out (q) hyperparameters are
set the default to 1. The window size is 10 and the number
of walks per source 10, each of length 80. Finally, the
embedding dimension is set to 128.

4.4 Results analysis

This section investigates the effectiveness of our proposed
work on different network datasets against the baseline
methods. Our method is tested on four well-known accuracy
measures of link prediction namely area under the ROC
curve (auroc), area under the precision-recall curve (aupr),
average precision, and recall as explained in the Section 4.1.
Five sets of probe links (i.e., percentage of removed links =
10, 20 ,30 ,40 ,50) (sparsification levels) are used to evaluate
each performance metric. Increasing the percentage of
removed links beyond 50% may disconnect the graph, so
we consider the sparsification level up to 50% only. The
fraction of removed links and the individual metric are
displayed on x-axis and y-axis respectively. We demonstrate
our results (Figs. 4, 5 6, and 7) based on the clustering
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(a) Power grid (b) Yeast (c) Celegansneural

(d) Political blogs (e) Football

(f) ca-HepTh (g) ca-GrQc (h) ca-HepPh

(i) Macaque (j) USAir97 (k) Amazon web graph

Fig. 4 AUROC results
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(a) Power grid (b) Yeast (c) Celegansneural

(d) Political blogs (e) Football

(f) ca-HepTh (g) ca-GrQc (h) ca-HepPh

(i) Macaque (j) USAir97 (k) Amazon web graph

Fig. 5 AUPR results
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values of the networks. First, three of each figure (i.e.
figure (a), figure (b), and figure (c)) with low clustering,
next two figures (figure (d) and figure (e)) having medium
clustering values, and last six figures are shown with high
clustering values. The proposed method entitled ”Level-2
node clustering-coefficient” is abbreviated as ”CCLP2” and
other baseline methods are also abbreviated in accordance
with the abbreviation given in Section 4.3.

AUROC Figure 4 shows the auroc results of different
methods (proposed+baseline) on 11 real-world network
datasets. The x-axis represents the five sets of probe links
(or fraction of removed links), and auroc is shown on the y-
axis. With low clustered (C ≤ 0.3) networks, the proposed
method (CCLP2) shows comparable results with CN, and
NLC on power grid (Fig. 4a), CCLP, CN, and RA on
yeast (Fig. 4b), and CCLP, and LNBCN on celegansneural
data (Fig. 4c). Our method performs better than remaining
methods accordingly. The CCLP2 performs overall best on
political blogs (Fig. 4d) and football (Fig. 4e) networks
(networks with medium clustering values (0.3 < C ≤ 0.5)).
The Node2vec and the NLC perform best on the power
grid and celegansneural data respectively. The NLC method
also shows good results on these networks but slightly lags
CCLP2. For large clustered networks (C > 0.5), the CCLP2
performs overall best on collaboration network ca-GrQc
(Fig. 4g), macaque (Fig. 4i), and usair97 (Fig. 4j) datasets.
Our method outputs comparable results with CCLP and CN
on ca-HepTh (Fig. 4f)and ca-HepPh (Fig. 4h). Moreover,
it is significantly better than the remaining methods. The
Node2vec shows best results on ca-HepTh (Fig. 4f) and
amazon web graph (Fig. 4k) where our method is the
second-best performer on amazon web graph.

AUPR Most of the real-world networks are sparse, i.e., the
number of existing links are less compared to the number of
non-existing links. In other words, these networks are highly
imbalanced, and the literature suggested that the precision-
recall curve (aupr) [50] is more informative than the roc
curve for the evaluation of such networks. Hence, AUPR is
also considered as one of the evaluation approaches of the
link prediction.

Figure 5 shows the result of the area under the precision-
recall curve (aupr). From the figure, we observe that the
Node2vec is the best performing method against all datasets
except the macaque where CCLP2 and PA are best when
the fraction of removed links are 40% and 50%. After
Node2vec, the proposed method (CCLP2) performs best on
power grid (at sparsification levels 10%, 20%, 30%) and
yeast networks (except at 20%). The CCLP2 also performs
best on medium clustered networks (political blogs Fig. 5d
and football 5e) and high clustered networks (ca-GrQc
Fig. 5g, macaque Fig. 5i, and amazon web graph Fig. 5k).

Moreover, it beats all methods except CN on ca-HepTh and
CAR on ca-HepPh as depicted in Fig. 5f and h respec-
tively. On celegansneural and usair97 datasets, our method
shows average performance compared to others. With the
high clustering value of the usair97, our method performs
average because of the lower number of common neighbors
between the pairs (local airports (LAs), local centers(LCs)),
(local airports (LAs), hubs), and between two local airports
[58]. The lower performance of common neighborhood-
based methods also due to the same reason. Note that we
have used sparsification levels and the fraction of removed
links interchangeably.

Average precision Figure 6 shows the average precisions
results on 11 real-world network datasets. Similar to the
aupr result, Node2vec shows outstanding performance on
all datasets. The considered methods except for Node2vec
show very low average precision results on all datasets.
Our methods performs best after Node2vec on power grid
(Fig. 6a) and football (Fig. 6e) networks. The CCLP2 and
other methods show comparable results on yeast (Fig. 6b),
political blogs (Fig. 6d), and amazon web graph (Fig. 6k).
On collaboration networks (i.e. ca-HepTh (Fig. 6f) and ca-
Grqc (Fig. 6g)), our method show equivalent results as that
of the NLC with some fluctuation. The same results are
obtained on the macaque network (Fig. 6i), but, the two
equivalent methods are CCLP2 and PA. On ca-HepPh, the
CCLP2 lags behind the CAR method. Finally, our method
shows average performance on celegansneural (Fig. 6c) and
usair97 (Fig. 6j) datasets. The average performance of the
CCLP2 and other common neighbor based methods are due
to the same reason explained for AUPR in the previous
paragraph.

Recall Figure 7 shows recall results for all methods
(proposed+baseline). With the low clustered networks, the
CCLP2 shows its best on yeast (Fig. 7b) network after
Node2vec and on celegansneural (Fig. 7c) after CAR
method and comparable results with CN and NLC on power
grid data (Fig. 7a). It also best performs on political blogs
(Fig. 7d) but average performance on football (Fig. 7e).
With high clustered networks, our method overall works best
on usair97 network (Fig. 7i) and amazon web graph (Fig. 7j),
while second-best performing method on macaque and
ca-HepPh networks after Node2vec and CN respectively.
On amazon web graph and macaque networks, PA shows
good results over the CCLP2 when sparsification level is
increased to 40% and 50%. On arXiv networks (i.e., ca-
HepTh and ca-GrQc), the CCLP2 result is comparable to
CN, CCLP, and NLC. Our results in Fig. 7 shows that the
Node2vec method is the best performing method on power
grid, yeast, ca-HepTh, and macaque networks, and CAR is
overall best on the ca-GrQc dataset.
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(a) Power grid (b) Yeast (c) Celegansneural

(d) Political blogs (e) Football

(f) ca-HepTh (g) ca-GrQc (h) ca-HepPh

(i) Macaque (j) USAir97 (k) Amazon web graph

Fig. 6 Average precision results
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(a) Power grid (b) Yeast (c) Celegansneural

(d) Political blogs (e) Football

(f) ca-HepTh (g) ca-GrQc (h) ca-HepPh

(i) Macaque (j) USAir97 (k) Amazon web graph

Fig. 7 Recall results
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Concluding remarks By analyzing the auroc results, we
observe that the proposed method (cclp2) shows comparable
results on low clustered networks while best prediction
results on medium clustered networks. With high clustered
networks, it is best on three datasets (ca-GrQc, macaque,
and usair97) and second-best performer on the remaining
three datasets (ca-HepTh, ca-HepPh, and amazon web
graph). When observing the aupr results, we find that the
Node2vec gives best results on all datasets. The proposed
method is second best performing one on all networks
except the celegansneural, ca-HepPh and usair97. On ca-
HepTh, the CN beats our method only on 30% and 40%,
lags on 10%, and comparable on 20% and 50% of removed
links. Further, Node2vec also performs overall best on
average precision metric against 11 network datasets. Our
method is the second-best performer on power grid and
football, and comparable on high clustered networks except
for usair97 where CCLP2 show average performance. The
recall result shows that Node2vec is best on 4 datasets
(power grid, yeast, ca-HepTh, and macaque). The CCLP2 is
overall best on political blogs and usair97 networks while
second-best performer on yeast, celegansneural, ca-HepPh,
macaque, and amazon web graph. It shows comparable
results on power grid, football, ca-HepTh, and ca-GrQc
datasets.

Finally, we observe that Node2vec is the best performing
method on all datasets with some exception. The CCLP2
shows better performance after the Node2vec method on
average and high clustered networks except USAir97.
Though USAir97 is having high clustering coefficient value,
our method performs average (after CAR, and NLC) on
AUPR and average precision metrics. The possible reason
may be because there is the least number of common neigh-
bors between two local airports (LAs), between local airports
(LAs) and local centers (LCs), and between local airports
(LAs) and hubs [58]. This results in the least probability
of such links to present in the top of the list and hence
the precision gets reduced of our method and the common
neighborhood-based methods. As a result, there is low per-
formance in AUPR and average precision.

Complexity analysis Here, we estimate the efficiency of
the proposed method as well as the baseline predictors
(algorithms). Only off-line parts of all algorithms are
considered for the time estimation where off-line refers to
the similarity matrix computation for all pair of nodes. The
time needed to compute level-2 common neighbors is the
same as the normal common neighbor of a pair of nodes, i.e.,
O(n2) when the data structure is the adjacency matrix and
O(n) in case of the adjacency list. The clustering coefficient
of a node takes O(n3) in the worst case and O(nk2)

after applying some optimization, although an approximate

algorithm of O(n) time by Schank and Wagner [59] also
exists.

The main crux of our algorithm is the computation of the
level-2 clustering coefficient in Steps 3-6 where the loop of
Step 3 iterates to 2k times. Line 4 costs O(n) to compute
CNs for a given pair and O(nk) for computing clustering
coefficients, resulting in total 2k × (O(n) + O(nk)) time
for 4 steps. The outer for loop iterates to O(n2) in the
worst case, so the total time complexity of the proposed
algorithm is O(n3k2) which is comparable to the O(n3k)
of existing CCLP. The computational complexity of the
NLC and the LNBCN are O(n4k) and O(n.O( f (z)+nk3))

where f(z) is the influence function. The CAR costs O(nk4)

which is more complex as it computes time-consuming local
community links (LCL). Other methods like CN, AA, RA
estimates O(nk3) while PA costs O(nk2) where k is the
average degree of the network. The Node2vec [30] method
is based on a random walk sampling which is efficient
compared to pure BFS/DFS. The effective time complexity
of the node2vec is O( l

k′(l−k′) ) per sample where l is walk
length and k′ is neighborhood size.

Statistical test In this paragraph, we conduct a statistical
test [60] to show the significant difference of the proposed
method with the baseline methods. We perform the
Friedman test [61, 62] to analyze whether there is a
significant difference among multiple methods. It is a non-
parametric counterpart of the repeated measures ANOVA.
If the test result showed a significant difference, we further
applied post hoc analysis to check the degree of rejection
of each hypothesis. For the post hoc analysis, several
methods are available in the literature and we applied post
hoc counterpart of the Friedman test known as Posthoc
Friedman Conover method. The proposed method CCLP2 is
considered as the control algorithm in the posthoc analysis.
We select the level of confidence αc = 0.05 and the degree
of freedom D f = 8.

The Friedman test result for the metric area under the
ROC curve (AUROC) is tabulated in the Table 2. The
table shows the computed Friedman test values Ff on
different percentage (10, 20, 30, 40, and 50) of removed
links (or sparsification levels). The Friedman test rejects
the null hypothesis H0 if the test value Ff is greater than
χ2(αc, D f ), i.e. Ff > 15.51. We have performed the same
test for remaining 3 metrics viz., AUPR, Recall and Average
Precision where we found that the null hypothesis is rejected
for each of the metrics. We have not shown the remaining
here.

Since this test rejects the null hypothesis on each
percentage of removed links so we go for the post hoc
analysis. The results of the post hoc analysis are shown
in Table 3 for all 4 metrics used in this paper. With the
confidence level αc = 0.05, we observe that the proposed
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Table 2 The Friedman test on Area under the ROC Curve (AUROC)

Removed Dataset IS-value Test State

links value result

(%)

Node2vec CCLP CCLP2 CN RA PA CAR NLC LNBCN Ff Is Ff > χ2 ?

10 Macaque 0.63199 0.79209 0.91921 0.7875 0.79259 0.91732 0.78093 0.84349 0.49197 47.466 Null Hypothesis
Rejected

Football 0.84021 0.83049 0.86067 0.8281 0.32826 0.00474 0.61076 0.84617 0.83241

Celegansneural 0.78599 0.80817 0.80028 0.77269 0.26587 0.00527 0.49472 0.84701 0.81955

USAir97 0.83602 0.86762 0.89145 0.85007 0.32958 0.03225 0.80266 0.89348 0.8508

Political blogs 0.87281 0.85881 0.91166 0.88962 0.38327 0.17453 0.7436 0.90752 0.89255

Yeast 0.77971 0.85077 0.85354 0.85065 0.84938 0.78088 0.83494 0.83562 0.71119

Amazon web 0.60775 0.5995 0.64935 0.58821 0.45291 0.08295 0.59378 0.63773 0.59335

graph

Power grid 0.89143 0.48755 0.58843 0.5872 0.49946 0.02824 0.48755 0.58948 0.58129

ca-GrQc 0.95144 0.91962 0.96748 0.92301 0.49802 0.02237 0.59494 0.92142 0.89244

ca-HepTh 0.94038 0.88902 0.88972 0.88813 0.49917 0.02237 0.42399 0.89102 0.84927

ca-HepPh 0.97528 0.9801 0.98051 0.98051 0.90737 0.91754 0.84623 0.89102 0.84927

20 Macaque 0.58817 0.77075 0.91119 0.7742 0.78123 0.91188 0.77379 0.82347 0.50015 41.541 Null Hypothesis
Rejected

Football 0.81396 0.83259 0.85578 0.82336 0.35586 0.0047 0.46912 0.83809 0.84206

Celegansneural 0.78504 0.79719 0.79833 0.75735 0.28911 0.01219 0.45128 0.83489 0.80416

USAir97 0.82055 0.85718 0.88811 0.85534 0.35042 0.04408 0.77034 0.87852 0.85176

Political blogs 0.86617 0.87417 0.90649 0.88584 0.39449 0.18029 0.68585 0.88432 0.88852

Yeast 0.78944 0.85339 0.84905 0.84859 0.84942 0.78592 0.83401 0.83678 0.68717

Amazon web 0.67059 0.59935 0.63993 0.59964 0.46255 0.16024 0.54331 0.63223 0.59926

Power grid 0.9043 0.49376 0.57517 0.57715 0.49957 0.06411 0.49376 0.57362 0.56606

ca-GrQc 0.94598 0.89122 0.96368 0.89782 0.49833 0.05681 0.59172 0.8945 0.87084

ca-HepTh 0.93529 0.85119 0.85012 0.85396 0.4993 0.05681 0.43903 0.85024 0.81001

ca-HepPh 0.97136 0.97089 0.97213 0.9714 0.8955 0.91742 0.83615 0.85024 0.81001

30 Macaque 0.5915 0.76278 0.90004 0.75815 0.75693 0.90442 0.76048 0.80546 0.4882 44.904 Null Hypothesis
Rejected

Football 0.80292 0.8125 0.82345 0.78719 0.37782 0.00465 0.45868 0.81644 0.81101

Celegansneural 0.74513 0.77752 0.78369 0.74319 0.32566 0.019 0.43761 0.80986 0.77897

USAir97 0.81677 0.85996 0.88998 0.83981 0.36812 0.07017 0.70941 0.8636 0.85032

Political blogs 0.86271 0.88731 0.89981 0.87817 0.4072 0.19667 0.60622 0.86517 0.88266

Yeast 0.79004 0.84402 0.84603 0.84651 0.84519 0.78042 0.83386 0.83471 0.67703

Amazon web 0.73707 0.60955 0.64005 0.59175 0.47066 0.23873 0.5268 0.62252 0.59947

graph

Power grid 0.93327 0.49698 0.56191 0.55913 0.49966 0.10937 0.49698 0.56015 0.5482

ca-GrQc 0.93761 0.8644 0.95637 0.86322 0.49862 0.09151 0.58845 0.8608 0.84441

ca-HepTh 0.91689 0.80546 0.80138 0.80254 0.49943 0.09151 0.45759 0.80022 0.77299

ca-HepPh 0.97038 0.96051 0.96084 0.96084 0.89339 0.9169 0.82919 0.80022 0.77299

40 Macaque 0.61685 0.73003 0.8832 0.75282 0.74258 0.9028 0.74629 0.76991 0.50097 42.62 Null Hypothesis
Rejected

Football 0.77291 0.77777 0.79831 0.76483 0.40681 0.0046 0.43195 0.76349 0.78828

Celegansneural 0.74764 0.75169 0.75133 0.72846 0.35868 0.0189 0.44974 0.77997 0.74867

USAir97 0.81444 0.85122 0.87774 0.84676 0.38865 0.09531 0.62982 0.84167 0.83187

Political blogs 0.86056 0.89142 0.89165 0.87088 0.42104 0.21101 0.5276 0.84148 0.87017
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Table 2 (continued)

Removed Dataset IS-value Test State

links value result

(%)

Node2vec CCLP CCLP2 CN RA PA CAR NLC LNBCN Ff Is Ff > χ2 ?

Yeast 0.80769 0.84003 0.84286 0.84217 0.84236 0.78319 0.83267 0.83036 0.64939

Amazon web 0.81067 0.60829 0.63898 0.60711 0.47841 0.30388 0.48793 0.62335 0.59182

graph

Power grid 0.97994 0.49685 0.54597 0.54742 0.49974 0.15502 0.49685 0.54368 0.53582

ca-GrQc 0.94134 0.82526 0.94552 0.8224 0.4989 0.13022 0.57193 0.82966 0.80411

ca-HepTh 0.90694 0.75157 0.75261 0.75634 0.49957 0.13022 0.47881 0.75659 0.72636

ca-HepPh 0.96875 0.93794 0.94639 0.94741 0.89036 0.91561 0.80858 0.75659 0.72636

50 Macaque 0.56126 0.71594 0.85942 0.72602 0.72339 0.88796 0.7159 0.75059 0.52559 44.876 Null Hypothesis
Rejected

Football 0.74172 0.69971 0.75182 0.71695 0.42341 0.00456 0.44407 0.75167 0.74535

Celegansneural 0.7037 0.7108 0.71897 0.66977 0.39684 0.02219 0.47157 0.73282 0.7257

USAir97 0.81418 0.84813 0.86302 0.82049 0.41003 0.13808 0.49573 0.77795 0.8365

Political blogs 0.85452 0.8967 0.87475 0.8587 0.43442 0.22092 0.47083 0.8047 0.85456

Yeast 0.82299 0.83725 0.84017 0.83749 0.83697 0.77849 0.83032 0.83232 0.61378

Amazon web 0.86576 0.58945 0.60367 0.58361 0.4849 0.35637 0.48466 0.59915 0.59714

graph

Power grid 0.98211 0.5 0.53698 0.53492 0.49982 0.21136 0.5 0.53272 0.52725

ca-GrQc 0.93511 0.7897 0.93304 0.78912 0.49914 0.17413 0.53079 0.78822 0.76549

ca-HepTh 0.894 0.69597 0.6987 0.69777 0.49968 0.17413 0.4804 0.7012 0.67221

ca-HepPh 0.96589 0.92157 0.93042 0.92844 0.88683 0.9142 0.77064 0.7012 0.67221

method (CCLP2) is significantly different from all the
baseline methods except NLC method on AUROC and
Average precision. Our method is insignificant on AUROC
against 10% of removed links and insignificant on average
precision against 30%, 40%, and 50% of removed links.

Moreover, the CCLP2 shows its significance on recall
against CCLP (except 50%), RA, PA, CAR, NLC (except
10% and 40%), and LNBCN methods. It is insignificant
from the CN and the Node2vec (except 10% and 20%).
With AUPR, our method is significantly different from the

Table 3 The Posthoc Friedman Conover Test (Control method = CCLP2)

Metric Removed links (%) p-value

Node2vec CCLP CN RA PA CAR NLC LNBCN

AUROC 10 0.00219 0.00126 0.00039 3.60E-09 1.00E-11 9.70E-10 0.17335 2.40E-06

20 0.01193 0.00551 0.06079 3.00E-07 5.70E-10 3.60E-08 0.06079 5.70E-05

30 0.01079 0.02287 0.00242 5.00E-09 4.90E-11 1.10E-08 0.01468 4.40E-06

40 0.0346 0.01283 0.0346 5.50E-08 2.40E-10 7.00E-08 0.00811 5.60E-06

50 0.04009 0.00571 0.00927 6.60E-09 6.50E-11 5.10E-09 0.00673 2.10E-05

Recall 10 0.04495 0.02078 1.37E-01 4.30E-08 1.70E-08 7.40E-05 0.05717 8.93E-03

20 0.0344 0.03045 0.18656 7.20E-07 5.60E-08 1.07E-02 0.00526 1.54E-03

30 0.05862 0.02915 0.07288 6.60E-07 1.90E-07 2.58E-02 0.00284 3.30E-03

40 0.25412 0.04778 0.44606 1.10E-04 9.20E-06 3.06E-02 0.05914 3.84E-02

50 0.1836 0.0724 0.1292 1.90E-05 9.00E-06 1.89E-02 0.0304 3.82E-02
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Table 3 (continued)

Metric Removed links (%) p-value

Node2vec CCLP CN RA PA CAR NLC LNBCN

AUPR 10 0.00923 0.00092 2.30E-05 1.60E-12 7.20E-11 3.25E-02 0.00276 1.50E-06

20 0.01215 0.00024 7.20E-05 2.30E-11 2.60E-10 2.05E-02 0.00578 9.60E-06

30 0.01221 0.00019 0.00024 2.40E-10 3.70E-08 7.23E-03 0.02358 9.70E-05

40 0.0245 0.00812 0.00034 4.60E-09 7.50E-07 2.84E-02 0.01323 9.80E-05

50 0.01669 0.01435 0.00332 3.40E-08 1.00E-05 1.05E-02 0.05125 7.80E-04

Avg. Precision 10 0.01492 0.00088 1.40E-04 6.60E-11 1.60E-12 8.20E-06 0.01244 8.30E-05

20 0.01115 0.00131 6.90E-05 1.70E-09 1.50E-11 8.80E-05 0.02223 1.31E-03

30 0.01046 0.00126 2.70E-05 6.70E-09 2.10E-10 5.50E-05 0.11963 6.70E-04

40 0.00881 0.00515 0.00089 4.00E-08 2.50E-09 2.00E-05 0.16345 1.00E-04

50 0.01434 0.00051 0.00041 1.00E-08 1.80E-09 1.30E-07 0.13366 4.00E-05

baseline method except for NLC, where it is insignificant
only for 50% of the removed links.

5 Conclusion and future works

Motivated by the intuition that more local information
of topology of a network may improve the accuracy
of link prediction, we extracted common neighbors and
clustering information up to next level. The proposed
method computes clustering coefficients of level-2 common
neighbors of the seed node pair. The similarity score
sums over all such common neighbors for the seed node
pair. The experiments have been conducted on 11 real-
world networks and results are organized as low, medium,
and high clustered networks. The comprehensive results
show that the proposed method performs better than the
baseline methods except for the Node2vec with medium
and large average clustering coefficients. Recently, some
sophisticated methods like Node2vec [30] and SPM [63]
have been proposed which show outstanding performance.
Although the prediction performance of these methods are
significantly better, however, in the case of large networks
the proposed method (CCLP2) should be considered with
these methods at least.

In this work, we have considered simple undirected
and unweighted networks (datasets) i.e., only one type of
relationship between two nodes have been selected. If we
consider multiple relationships into account, the prediction
performance can be enhanced [64]. In the future, we will try
to explore such an idea in a supervised setting. Moreover,
we will also validate our method with the networks having
negative links (Signed network) like Epinions and Slashdot
networks.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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