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Abstract: In recent years, endless link prediction algorithms based on network representation learning
have emerged. Network representation learning mainly constructs feature vectors by capturing the
neighborhood structure information of network nodes for link prediction. However, this type of
algorithm only focuses on learning topology information from the simple neighbor network node.
For example, DeepWalk takes a random walk path as the neighborhood of nodes. In addition,
such algorithms only take advantage of the potential features of nodes, but the explicit features of
nodes play a good role in link prediction. In this paper, a link prediction method based on deep
convolutional neural network is proposed. It constructs a model of the residual attention network to
capture the link structure features from the sub-graph. Further study finds that the information flow
transmission efficiency of the residual attention mechanism was not high, so a densely convolutional
neural network model was proposed for link prediction. We evaluate our proposed method on
four published data sets. The results show that our method is better than several other benchmark
algorithms on link prediction.

Keywords: link prediction; network representation learning; deep learning; residual network;
attention mechanism

1. Introduction

Complex systems in the real world can usually be constructed in the form of networks with nodes
representing different entities in the system and links representing the relationships between these
entities. Link prediction is to predict whether two nodes in a network are likely to have a link [1]. It is
used for diverse applications such as friend suggestion [2], recommendation systems [3,4], biological
networks [5] and knowledge graph completion [6].

Existing link prediction methods can be classified in the similarity-based method and the
learning-based method. The similarity-based method assumes that the more similar the nodes are,
the greater the possibility of links are between them [7,8]. It calculates the similarity between nodes
by defining a function that can use some network information, such as network topology or node
attributes, to calculate the similarity between nodes, and then utilize the similarity between nodes to
predict the possibility of links between nodes. The accuracy of prediction largely depends on whether
the network structure features can be selected well or not. The learning-based method constructs a
model that can extract various features to build a model for the given network, train the model with the
existing information, and finally use the trained model to predict whether there will be links between
the nodes.
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In early works, heuristic scores are used for measuring the proximity of connectivity of two
nodes in link prediction [1,9]. Popular heuristic methods include the similarity method based on local
information and the similarity method based on path similarity. The similarity methods based on
local information only considers the local structure, such as the common neighbors of two nodes,
as a measure of similarity [1,10]. The method based on path similarity utilizes the global structural
information of the networks, including paths [11,12] and communities [13], as a basis to find the
similarity of nodes. However, the structure-based method entirely relies on the topology of the given
network. Furthermore, the structure-based method is not that reliable, and there is such a situation
where different networks may have distinct clusterings and path lengths but have the same degree
distributions [14]. Therefore, it can only show the different performance for each network and is unable
to effectively capture the underlying topological relationship between nodes.

In recent years, more and more learning-based algorithms have been proposed. This method
mainly extracts the features of the network by constructing a model and then predicts the links through
the models. Learning-based methods can be divided into two categories: shallow neural network-based
method and deep neural network-based method. DeepWalk [15] is an algorithm based on the shallow
neural network. It treats the path of a random walk as a sentence to learn the representation vectors
of nodes through the skip-gram model [16], which greatly improves the performance of the network
analysis task. The LINE (Large-scale Information Network Embedding) [17] algorithm based on shallow
neural network and node2vec [16] algorithm based on modified DeepWalk then occur successively.
Since the shallow model does not capture the highly nonlinear network structure, which results in
the non-optimal network representation results, a semi-supervised depth model based on the SDNE
(Structural Deep Network Embedding) [18] deep neural network algorithm, which is composed of
multi-layer non-linear functions, is put up to capture highly non-linear network structure. However,
these two methods only take advantage of the potential features and cannot effectively capture the
structural similarity of links [19].

Depth neural network has made great progress in image classification, target detection and
recognition in recent years because of its powerful feature learning and expression abilities [20].
However, deep neural network has the problem of gradient disappearance when deepening the
depth [21]. The residual network [21] mentioned in CVPR2016 (CVPR2016: IEEE Conference on
Computer Vision and Pattern Recognition) has not only achieved good results in image recognition and
target detection tasks but also solved the degradation problem of network learning ability caused by
network deepening [21]. The residual network is used to further deepen the number of network layers
by introducing an identity mapping [22] into the original network structure. Adding such a short
connection essentially reduces the loss of information between network layers. Dense convolutional
neural network [23] is an improved version of the residual network. By introducing more short
connections, information flow can be transmitted more effectively in the network, thereby achieving
better recognition and detection results. Therefore, this paper proposes a link prediction method based
on deep convolutional neural network to predict missing/unknown links in the network.

To address the above-mentioned problems, we propose a link prediction method based on the
deep convolution neural network. The main contributions of our work can be summarized as follows:

1. To solve the link prediction problem, we transform it into a binary classification problem and
construct a deep convolution neural network model to solve the problem.

2. In view of the fact that heuristic methods can only utilize the network’s topological structure
and represent learning methods can only utilize the potential features of the network, such as
DeepWalk, LINE, node2vec, we propose a sub-graph extraction algorithm, which can better
contain the information needed by the link prediction algorithm. On this basis, a residual
attention model is proposed, which can effectively learn from graph structure features to link
structure features.
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3. Through further research, we find that the residual attention mechanism may impede the
information flow in the whole network. Therefore, a dense convolutional neural network model
is proposed to improve the effect of link prediction.

The remainder of the paper is organized as it follows. In the next section, the related works are
presented. In Section 3 the preliminaries about this paper are introduced. In Section 4 the sub-graph
extraction algorithm and residual attention network are proposed. The performance evaluation results
and discussion are summarized in Section 5, while conclusive remarks are given in the last section.

2. Related Work

In general, the deeper the neural network is, the more it learns. However, simply superimposing
the number of network layers will lead to the problem of network degradation [21], the essential reason
of which is that in the process of network information transmission, there is an over-fitting problem
caused by information loss. By adding a “short cut” design into the original network architecture, the
residual network makes the data of the previous layers directly skip the next layers and act as the
input part of the latter data layer, so that with the reference of the former data information, the latter
network layers can learn more information. However, because the output of the network front layer
and “short cut” are firstly integrated by adding and then as the input of the next layer, this integrated
information will actually hinder the dissemination of information on the whole network [23].

In recent years, many researchers have integrated the attention mechanism into the residual
network in the field of image recognition. As some pictures have complex backgrounds and complex
environments, it is necessary to pay different attention to different places. Therefore, this paper,
inspired by the attention mechanism network [24], also adds a branch of attention on the structure of
the residual network by simulating the design of “short cut.” Several layers in the front of the network
transformed by non-linearity and attention mechanism will be added with the “short cut” to form
the input of the latter layer. The problem of this method is that the information after integration will
hinder the transmission of information on the whole network. In order to improve the propagation of
information flow in the network, Huang [23] proposed a dense convolutional neural network which
takes the features of the front layers directly as the input of the back layers by a deep cascade, i.e.,
combining channels in depth, so as to effectively improve the transmission of information flow in
the network.

The main limitation of traditional similarity-based methods is that all their features are designed
by hand, which limits the scalability, so they cannot express complex non-linear patterns in graphs.
Based on the shallow neural network model, they only take advantage of some potential features,
and cannot effectively extract the structural features of links. Therefore, this paper proposes a link
prediction method based on a deep convolution neural network, which uses deep learning to learn
link structure from a graph, and finally achieves good results.

3. Preliminaries

3.1. Network Representation Learning

Network Representation Learning [25,26] has been widely used since the pioneering work of
DeepWalk which uses random walks as node sentences and applies skip-gram models to learn the
node representation vector. LINE [17] and node2vec [16] are proposed to improve DeepWalk. The
low-dimensional node representation vector is very helpful for visualization, node classification, link
prediction and other tasks. In particular, node2vec has achieved very good results in link prediction [16].

Representation learning based on Skip-gram model was originally used as a representation vector
of learning words. The objective of Skip-gram model is to maximize the probability of the occurrence
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of the current word in the context, while the optimization objective of the network representation
learning is to maximize the probability of neighbor nodes in the target node of the node sequence.

max
f

∑
u∈V

log P(N(u)
∣∣∣ f (u)) , (1)

where V denotes a set of network node; N(u) denotes the set of neighbor nodes of the node u in the
node sequence; f (·) denotes the mapping relation between nodes and feature space; and f (u) denotes
the corresponding feature representation vector of the node u.

Compared with other network representation learning algorithm, node2vec has stronger scalability
and expressibility. Therefore, we chose the representation vector learned from node2vec algorithm as
the potential feature representation vector of nodes in this paper.

3.2. Residual Attention Mechanism

For the ordinary convolutional neural network and it’s arbitrarily stacked two-layer network, as
shown in Figure 1, we hoped to find the residual element of the expected mapping H(x), that is, x
obtains an actual observation value through non-linear change, and there is a residual element between
the actual observation value and the estimated value (i.e., the expected value).
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Figure 1. Plain convolutional neural network block.

He et al. [21] add a shortcut connection x to the ordinary network architecture, as shown in
Figure 2, so that the residual is described as R(x) := H(x) − x. With the assumption that the residuals
are more easily optimized and fit the residuals mapping with stacked non-linear transformations, the
expected mapping turns to H(x) = R(x) + x, and the problem changes from looking for H(x) to R(x).
Among them, x and R(x) require the same size (dimensions must be equal); if their sizes are different,
a linear map wx is required to make x and R(x) the same size.
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In recent years, the attention model has been widely used in various types of in-depth learning
tasks, such as natural language processing, image recognition and speech recognition. Wang et al. [24]
mentioned that the attention mechanism used in the deep convolutional neural network can not
only help feature selection in forward inference but also act as gradient update filter in backward
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propagation [24], which makes the attention mechanism robust to noise labels. Therefore, we add a
branch of attention mechanism to the structure of the residual network as the model of this paper.

3.3. Densely Connected Convolutional Neural Network

Although the residual attention mechanism has achieved good results in the experiment, it is
found that the model still fails to effectively solve the problem of information flow propagation in
the network.

In order to further improve the transmission of information flow in the network, Huang et al. [23]
proposed a densely convolutional neural network model. In fact, the densely convolutional neural
network is a special case of the residual network, the core idea of which is skipping connection. It allows
some inputs to enter the layers without selection, thus realizing the integration of information flow
and avoiding the loss of information transmission between layers and the disappearance of gradient.
Compared with the residual network, which only introduces a single “shortcut connection,” the densely
convolutional neural network introduces more “shortcut connections,” as shown in Figure 3, and
this reference information is not processed, but directly cascaded in depth, that is, channel merging
in depth.
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4. Methodology

4.1. Problem Formulation

Like most works on link prediction denoted, we considered an unweighted and undirected
network G = (V, E). V and E represent the sets of nodes and links in the network respectively. The
adjacency matrix of the network is denoted as A, if nodes i and j have a link, then Ai j = 1; otherwise
Ai j = 0.

In order to simulate link prediction tasks, 10% of links are randomly removed from the original
network G = (V, E) and recorded as Ep and it shall ensure network connectivity while removing links.
A new network G′ = (V, E′) is generated where Ep

∩ E′ = ∅, E′, Ep are positive classes in the training
set and test set respectively. Then, random additions and positive class equivalents without edges as
negative classes. When negative classes are added, the intersection of the training set and test set is
ensured to be empty.

4.2. Method Overview

The problem of link prediction in a network is simply to predict the possibility of links between
two nodes in a network that have not yet been connected by known or potential information in the
network. In other words, the information in the network can be used to determine whether two nodes



Information 2019, 10, 172 6 of 17

will be connected. Formally, the link prediction problem is transformed into a binary classification
problem, and the classification problem is solved by constructing a learning model. Specifically, in
data pre-processing, we first extracted a sub-graph for each node of the network, and then sorted
the sequence of nodes in the sub-graph. Finally, we reconstructed the ordered sequence of nodes
into matrix pairs (one node corresponds to a matrix, one pair of nodes corresponds to two matrices).
In practice, we first built a two-class residual attention network model to achieve link prediction. After
further research, we found that the densely convolutional neural network can further improve the
information flow from layers, so we adopted it.

4.3. Sub-Graph Extraction

A significant limitation of link prediction heuristics is that they are all handcrafted features, which
have limited expressibility. Thus, they may fail to express some complex nonlinear patterns in the
graph which actually determine the link formations [19]. In order to learn link structure features, we
extracted a corresponding local sub-graph for each node to obtain the local structure of each node. The
sub-graph extraction algorithm is given by Algorithm 1.

Definition 1 (sub-graph): Given undirected graph G = (V, E), where V = {v1, v2, . . . , vn} is the set of nodes
and E ⊆ V ×V is the set of observed links. For node x ⊆ V, the h-hop sub-graph for x is Gh

x induced from G by
the set of nodes

{
y
∣∣∣d(y, x) ≤ h

}
and its corresponding nodes and links. The d(y, x) is the shortest path distance

between x and y.

Algorithm 1 Sub-graph extraction algorithm

input: Objective node x, network G, integer h
output: x corresponding sub-graph Gh

x
1. Vh

x = {x}
2. curr_nb = {x}
3. for i in range(h)
4. if |curr_nb| == 0 then break
5. curr_nb = (∪v∈curr_nbN(v))\Vh

x
6. Vh

x = Vh
x ∪ curr_nb

7. end for
8. return Gh

x = G(Vh
x)

where the h denotes the hop number contained in the sub-graph; N(v) is the 1-hop neighbors of x; G(·)

represents a sub-graph containing a set of target nodes and is generated from the original graph.
Network robustness depends on several factors including network topology, attack mode, sampling

method and the amount of data missing, generalizing some well-known robustness principles of
complex networks [27]. Our proposed sub-graph extraction algorithm is mainly used for sampling, so
we discuss and care about the robustness of sampling.

The sub-graph extraction algorithm describes the h-hop surrounding environment of node x,
since G(·) contains all the nodes within h hops to x and corresponding edges. For example, when h ≥ 2,
the extracted sub-graph will contain all the information needed to calculate the first-order and second
heuristics algorithms, such as CN (Common Neighbors) [10], PA (Preferential Attachment) [28] and AA
(Adamic-Adar) [29]. However, this kind of algorithm only considers the topology of the second-order
path, the time complexity is low, but the prediction effect is also poor. Therefore, the information
obtained from the sub-graph is at least as good as most heuristics, and the robustness is also strong.

4.4. Node Sorting

The key issue for applying the convolutional neural network into the network embedding is how
to define the receptive field on the network structure. Therefore, the first step of the algorithm is to
take the local structure of each node as the input of the receptive field. The way to obtain the local
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structure of the node is described in Algorithm 1. The convolution operator has been shown to be
effective in exploiting the correlation as the key contributor to the success of CNNs (Convolution Neural
Networks) on a variety of tasks [30]. However, for the network topology data form, which is irregular
and unordered, the convolution operator is ill-suited for leveraging spatially-local correlations in the
network structure [31]. Therefore, inspired by this, the second step of the algorithm is to transform the
local structure of each node into an ordered sequence.

To sort the nodes in the sub-graph, the first step is to generate representation vectors for each of
nodes in the network by the node2vec algorithm; the second step is to calculate the similarity scores
between the target node and other nodes in the sub-graph; the last step is to descend sequence of nodes
according to similarity score. It supposes that X = [x1, x2, . . . , xd] represents the d-dimensional vector
representation of any node x and Y = [y1, y2, . . . , yd] represents the d-dimensional vector representation
of any node y. Since the cosine distance is widely used to measure the correlation between two
points in multi-dimensional space, this paper also uses the cosine distance between the nodes in
multidimensional space to represent the similarity of each node in the network structure. Therefore,
the nodes are sorted according to the similarity. The node sorting algorithm is given by Algorithm 2.

Definition 2: The similarity of network structure between any nodes x and y is as follows:

sim(X, Y) = cos(X, Y) =

d∑
i=1

xiyi√
d∑

i=1
x2

i |•|

√
d∑

i=1
y2

i

, (2)

where X, Y represent the representation vector of the node x, y, respectively, and the subscript i represents the
dimension, for a total of d dimensions. The similarity is measured by calculating the cosine distance between
them. The higher the vector similarity of the two nodes, the closer the two nodes are, so they should be in the first
place when ranking.

Algorithm 2 Node sorting algorithm

input: nbb[n], node_vec[N][M]
output: x
1. node_vec_dist[][];
2. for i← 1 to n do
node_vec_dist[nbb[0]][nbb[i]]=cos(node_vec[nbb[0]],node_vec[nbb[i]]);
3. end for
4. seq = Sorted(node_vec_dist, Reverse = True)
5. return seq

Table 1 shows the meaning of the variable names in Algorithm 2.

Table 1. Meanings of the variable names in the node sorting algorithm.

Variable Name Meanings

n Number of nodes in sub-graph
N Number of nodes in network G
M Represents the dimension of feature

Nbb[] x corresponding ordered node sequence seq[n]
node_vec[][] All nodes in the network represent vector

node_vec_dist[][] A temporary variable that holds the cosine distance
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4.5. Node Information Matrix Construction

Link prediction aims to predict the relationship between two nodes. The most intuitive assumption
is that the more similar the two nodes are, the more likely they are to be connected. Therefore, this paper
considers the two nodes as a whole directly. In this paper, we encode the corresponding sub-graph
of the nodes as a k× k× 2 size adjacency matrix, where 2 represents two nodes. The overall meaning
is that two matrices are cascaded in depth. The adjacency matrix A referred to below is the matrix
mentioned in Section 4.1.

The node information matrix for a sub-graph (as shown in Figure 4) is constructed by the
following steps:

(1) For a given graph G = (V, E), corresponding h-hop sub-graph for each node shall be generated
according to Algorithm 1 Sub-graph extraction algorithm;

(2) The nodes in each sub-graph shall be sorted, and the order between sub-graphs does not affect
each other;

(3) If the number of nodes in the sub-graph is greater than or equal to k, the first k nodes are
selected from the ordered sequence nodes, and the k-ordered sequence nodes is mapped to the
adjacency matrix Ak

x, Ak
y; If the number of nodes is less than k, the element 0 shall be filled as

complementary element;
(4) Ak

x and Ak
y are integrated into data with the size of k× k× 2. If the node pair (x, y) has a link in the

original network, it is labeled as 1; otherwise, it is labeled 0.
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4.6. Residual Attention Mechanism

The residual network based on attention mechanism in this paper is composed of stacks of
residual attention modules. The residual attention module (Figure 2) is formed by adding an attention
mechanism branch to the classic residual block (Figure 5). Wang [24] proposed that attention branches
can not only serve as a feature selector during forwarding inference but also as a gradient update filter
during backpropagation.



Information 2019, 10, 172 9 of 17
Information 2019, 10, x 9 of 16 

 

Conv 1x1

Conv 3x3

Conv 1x1

Global 
avgPooling

MLP

Sigmoid

Scale

+

R(x)

R(x)·(A(R(x))+1)

R(x)·(A(R(x))+1)+x

x
identity

 
Figure 5. Residual attention module. 

In the attention mechanism branch, the output of ( )R x  after passing the residual block is 
assumed to be N W H C× × × , and N  of which is the number of input data, W H×  the size of input 
data, and C  the convolution channel. Firstly, the output of the residual block ( )R x  generates the 
average pooling of channel characteristics. The form is defined as follows: 

1 1

1 W H

c c
i j

G( x ) R( x ) ( i, j )
W H = =

=
× 

. 
(3) 

The subscript c  indicates the calculated channel. 
The feature weight of the adaptive learning channel is obtained by the feature redirection of the 

multi-layer perceptron (MLP). The channel attention mask A with the size of 1 1N C× × ×  is obtained 
through the sigmoid activation. The calculation formula is given in Equation (4), and its value is 
normalized to the range of (0, 1). The larger the value, the more important the corresponding channel 
characteristics. 

( ({ }, ))iA f W Gσ= . (4) 

G is the channel characteristic weight distribution calculated by Equation (3); ({ }, )if W G  
denotes the calculation of MLP; and σ  is the sigmoid function. Therefore, A  is clarified into (0, 1). 
Inspired by residual learning, if the attention unit can form the identical mapping, its performances 
should be no worse than its counterpart without attention. Thus, we modify the model H( x )  into: 

1H( x ) R( x ) ( A( R( x )) ) x= • + + , (5) 

where •  is a dot production operation and ( ( ))A R x  is used to represent the channel attention mask 
A . When A  approximates 0, H( x )  will approximate the original feature R( x ) . For ease of 

exposition, the above approach is named AM-ResNet-LP. 

4.7. Densely Connected Convolutional Network Model 

Residual network adds a short cut link connection, that is, adds an identity mapping bypass on 
the basis of non-linear transformation: 

1 1l l l lx x H ( x )− −= + , (6) 

Figure 5. Residual attention module.

In the attention mechanism branch, the output of R(x) after passing the residual block is assumed
to be N ×W ×H ×C, and N of which is the number of input data, W ×H the size of input data, and C
the convolution channel. Firstly, the output of the residual block R(x) generates the average pooling of
channel characteristics. The form is defined as follows:

G(x)c =
1

W ×H

W∑
i=1

H∑
j=1

R(x)c(i, j). (3)

The subscript c indicates the calculated channel.
The feature weight of the adaptive learning channel is obtained by the feature redirection of

the multi-layer perceptron (MLP). The channel attention mask A with the size of N × 1 × 1 × C is
obtained through the sigmoid activation. The calculation formula is given in Equation (4), and its
value is normalized to the range of (0, 1). The larger the value, the more important the corresponding
channel characteristics.

A = σ( f ({Wi}, G)). (4)

G is the channel characteristic weight distribution calculated by Equation (3); f ({Wi}, G) denotes
the calculation of MLP; and σ is the sigmoid function. Therefore, A is clarified into (0, 1). Inspired by
residual learning, if the attention unit can form the identical mapping, its performances should be no
worse than its counterpart without attention. Thus, we modify the model H(x) into:

H(x) = R(x)•(A(R(x)) + 1) + x, (5)

where • is a dot production operation and A(R(x)) is used to represent the channel attention mask A.
When A approximates 0, H(x) will approximate the original feature R(x). For ease of exposition, the
above approach is named AM-ResNet-LP.
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4.7. Densely Connected Convolutional Network Model

Residual network adds a short cut link connection, that is, adds an identity mapping bypass on
the basis of non-linear transformation:

xl = xl−1 + Hl(xl−1), (6)

where Hl(•) represents a non-linear transformation and l indexes the layer. By adding such an identity
mapping in the front layer and back layer of the network, the problem of gradient disappearance has
been greatly reduced. However, the identity mapping and non-linear transformation are combined
by addition, which may hinder the effective transmission of information flow in the network [23].
Similarly, the problem also exists in the residual attention mechanism.

To further improve the information flow between layers, G. Huang [23] propose a new network
architecture, DenseNet, which is a more radical dense connection mechanism. The lth layer of the
network receives the feature-maps of all preceding layers, xl = Hl([x0, x1, . . . , xl−1]) and [x0, x1, . . . , xl−1]

refers to the concatenation of the feature-maps produced in layers 0, . . . , l− 1, that is, the channel is
merged in depth. For ease of exposition, the above approach is named DenseNet-LP.

5. Experimental Results

In this section, the proposed methods have conducted experiments in four real social network
data sets and been compared with the classic and current methods or link prediction. These methods
will be introduced in Section 5.2.2. The results show that the methods adopted have superiority and
robustness for link prediction and performed well on various networks. To evaluate these methods,
four different data sets including USAir line, PoliticalBlogs, Metabolic, and King James are employed,
which are introduced in Section 5.1. The experiment results will be discussed in detail in Section 5.3.

5.1. Data Sets

Four networks from the social field, biological field and information field were employed to
evaluate the performance of the method proposed method in this paper. The networks used in the
experiment are described as follows and the basic statistical features are shown in Table 2. Directed
links are treated as undirected; multiple links are treated as a single unweighted link and the self-loops
are removed. The experimental data involved in this article are all from real networks, so readers can
download them on the websites (http://www.linkprediction.org/index.php/link/resource/data/).

(1) USAir line (USAir): The air transportation network of USA that consists of 332 nodes and 2126
links. The nodes of the network are airports. If there is a direct route between two airports, then
there is a link between the two airports.

(2) Politicablogs (PB): The network of American political blog website that consists of 1222 nodes
and 19,021 links. The nodes of the network are log pages, and each link represents the hyperlinks
between the blog pages.

(3) Metabolic: A metabolic network of nematode that consists of 453 nodes and 2025 links. The node
of the network is metabolite and each link represents a biochemical reaction.

(4) King James: A vocabulary co-occurrence network that consists of 1773 nodes and 9391 links.
The nodes of the network represent nouns and the links indicate that two nouns appear in the
same sentence.

http://www.linkprediction.org/index.php/link/resource/data/
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Table 2. The basic topological features of the networks.

Dataset |V| |E| <k> <CC> r

USAir 332 2126 12.810 0.749 −0.208
PB 1222 16,714 27.360 0.360 −0.221

Metabolic 453 2025 8.940 0.647 0.226
King James 1773 9131 18.501 0.163 −0.0489

Table 2 shows the basic topological features of four real networks studied in this paper. |V| and |E|

are the numbers of nodes and links; <k> is the average degree; CC is the clustering coefficient; r is the
assortative coefficient.

To evaluate the accuracy of the proposed method with others, we used the AUC (Area Under the
receiver operating characteristic Curve) score as the index which can be interpreted as the probability
that the value of a randomly chosen fraction with links is higher than that of a random fraction without
links [9]. In general, the value of AUC will be between 0.5 and 1 and the higher the value of AUC, the
higher the algorithm accuracy and the maximum is. Formulaic definitions are as follows:

AUC =
N′ + 0.5N′′

N
, (7)

where N is the number of independent repeated times; N′ is the number of times that the score with
links in the test set is higher than that without links, and N′′ is the number of times that the score with
links in the test set is equal to that without links.

5.2. Experiment Setup

5.2.1. Parameter Settings

(1) To quantify the performance of the link prediction, the presented links from each data set were
partitioned into a training set (90%) and test set (10%) randomly and independently. At the same
time, the network connectivity of the training set and the test set was guaranteed.

(2) To compare the results with other learning methods, the same parameter settings were adopted.
Please refer to [20] for details. In addition, the node representation vectors generated by the two
models were computed according to Equation (8), and the link eigenvectors were computed by
the Hadamard [20] operation mentioned. The calculation formula is as follows:

F(u,v) = [ f (u) ⊗ f (v)]i = fi(u) ∗ fi(v), (8)

where f (u) denotes the representation vector of the node u; fi(u) denotes the value of the
i-dimension of the representation. Binary regression classifier is used to predict unknown links.

(3) Sub-graph extraction algorithm: it is usually set as h ∈ {2, 3}. Since h = 3 achieved good results in
the experiment, we set h = 3.

(4) Node information matrix construction: the experiment sets k ∈ {32, 64, 128}. Through the
experiment contrast, when k = 64, the prediction accuracy of AUC is relatively good, so we chose
the size of 64× 64, as shown in Figure 6.
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5.2.2. Baseline Algorithms

This method is compared with several well-known methods, including learning methods based on
CN, Jaccard, AA, PA index and other baselines. These methods are denoted as following, respectively.

DeepWalk [15]: DeepWalk is the first algorithm for network embedding, which uses Word2Vec
model to learn structural feature vectors. In DeepWalk, the communities of network are disregarded
during the path generation

Node2vec [16]: The representation learning process of this model is similar to DeepWalk. However,
it employs a more flexible definition of neighborhood to facilitate random walks. Node2vec ignores
the community information and higher order proximities during path generation.

LINE [17]: In the LINE algorithm, the node’s feature vectors are generated by optimizing two
independent functions for the first and second order proximities. Then, combinations of two functions
are employed to provide final structural feature vectors. LINE also neglects the community information
of network topology.

5.3. Experiment Results and Analysis

These methods mentioned above were experimented on four real public data sets. In order to
present the prediction results more accurately, the independent experiments were repeated 20 times
on all data sets, and the AUC average of these 20 experiments was calculated as the final prediction
results. Table 3 is a comparison with the CN-based methods. Table 4 is a comparison with the network
representation learning algorithm.

Table 3. Comparison with CN-based methods (AUC).

Data Set CN AA Jac PA AM-ResNet-LP DenseNet-LP

USAir 0.9368 0.9507 0.9072 0.8876 0.9550 0.9554
Metabolic 0.8448 0.8540 0.8050 0.8229 0.8632 0.8742

PB 0.9218 0.9250 0.8760 0.9022 0.9322 0.9474
King James 0.6543 0.6690 0.6621 0.5195 0.8877 0.8966
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Table 4. Comparison with network embedding algorithms (AUC).

Data Set LINE DeepWalk node2vec AM-ResNet-LP DenseNet-LP

USAir 0.8066 0.7665 0.8349 0.9550 0.9554
Metabolic 0.7733 0.7871 0.7970 0.8632 0.8742

PB 0.7779 0.7783 0.7911 0.9322 0.9474
King James 0.8634 0.8602 0.8895 0.8877 0.8966

5.3.1. Comparison with CN-Based Methods

As shown in Table 3, the algorithm adopted in this paper was compared with some local
neighbor-based algorithms for the link prediction, among which, DenseNet-LP is the best link prediction
method. Firstly, it can be found that sub-graph-based methods generally have better performance
than all CN-based methods, which demonstrates the advantage of learning over handcrafting graph
features. The CN-based algorithms only focus on the first order proximities. While we consider higher
order proximities in our method. In addition, the methods of CN and AA achieve good performance
on the data sets of the USAir and PB, because the average degree, clustering coefficient and other
network properties are relatively high, which indicates that the degree of tightness between nodes is
relatively high. Therefore, it proves that this method can achieve better results. However, when the
clustering coefficient of the network is very small or the assortative coefficient is also low, the degree of
tightness between nodes and the prediction value of the AUC is very low, for instance, King James.
It shows that the prediction effect of CN-based method is closely related to the attributes of network
structure and the generalization performance of this method is relatively weak.

5.3.2. Comparison with Representation Learning Methods

In Table 4, different structural feature vectors can be obtained by the baseline network
representation learning algorithms. As shown in Table 4, AM-ResNet-LP achieves better performance
in contrast to other methods because both latent and explicit features of the network are employed in
our method. Node2vec has a better performance in comparison to DeepWalk, because DeepWalk’s
sampling strategies for nodes is random, resulting in different learned feature representations. While
in node2vec, it overcomes the problem of inflexible sampling of nodes from a network by designing a
flexible objective that is not tied to a particular sampling strategy and providing parameters to tune
the explored search space. Node2vec is able to capture more general information from the graph but
unable to capture the structural similarities of links.

In order to further illustrate the experimental results, we calculated the confidence interval of
the classification accuracy predicted by the proposed method. As we regard link prediction a binary
decision, which may be correct or wrong, we assume that it is general. We are interested in a 95%
confidence interval. The formula is as follows:

Pr(c1 <= µ <= c2) = 1− α, (9)

where α is the significant level (we chose 0.05), µ represents the average value of AUC, Pr is the
abbreviation of probability.

We calculated the confidence intervals of the predicted results of the two methods, in which the
sample we took was the size of the test data set. As can be seen from Table 5, the confidence interval
ranges from 1.5% to 7%, which shows that our experimental results are credible.
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Table 5. Confidence interval of classification accuracy.

Model Dataset Simple Size AUC Interval (c1,c2)

DenseNet-LP

USAir 424 0.9554 0.935~0.975
Metabolic 404 0.8742 0.836~0.902

PB 3342 0.9474 0.940~0.955
King James 1810 0.8966 0.882~0.910

AM-ResNet-LP

USAir 424 0.9550 0.935~0.975
Metabolic 404 0.8632 0.828~0.895

PB 3342 0.9322 0.924~0.941
King James 1810 0.8877 0.873~0.902

We focused on the improvement of the algorithm in this paper, but in the future, we will also
do further research on large networks because the large-scale network has more aspects it needs to
consider, such as the average path length of the network, clustering coefficients of large networks
and other important network indicators. Many large-scale networks have special forms of clustering
coefficients, although the degree varies. Li et al. [32] showed that the average clustering coefficient
of the network with large degree accords with asymptotic expression. This provides a new research
guide for our next research work.

For large-scale network, in theory, better results should be achieved because the more data, the
more references and the more fully trained the network model is, so better results can be achieved, but
the parameters in the network are also very important. At the same time, the larger the network, the
longer the training time, therefore the amount of resources needed to calculate will also increase, and
these are factors that we will need to consider.

5.3.3. Parameter Sensitivity

As previously stated, we concatenated the local and global structural feature vector into node
information matrices for link prediction. The effect of different matrix sizes on data sets in our method
is shown in Figures 6 and 7.
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In Figure 6, the effect of different matrix sizes on the prediction results of the DenseNet model is
investigated. As shown in Figure 6, the best size of the node information matrices is 64. When k is
larger than 64, irrelevant nodes are learned by DenseNet. In other words, each node corresponding
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to the sub-graphs which are generated by Algorithm 1 encloses a set of nodes that are not related to
the source node. Unrelated information thereby is integrated into node information matrices, which
leads to the situation where the prediction efficiency of the model is slightly worse. Similarly, if the
number of nodes in the sub-graph is insufficient, a number of existing links in the network would
not be predicted. The best size in Figure 7 is also 64. However, no matter which value of k is taken,
the overall difference among the three is not significant. The reason is that the attention mechanism
introduced in AM-ResNet model can grasp the main characteristics of the link structure. Therefore, no
matter which value k takes, its prediction effect is not very different.

As can be seen in Figures 6 and 7, the overall effect of DenseNet model is better than that of
AM-ResNet model. The reason was mentioned in Section 4.7, that DenseNet model is a direct connection
of feature maps from different layers which leads to the situation that the transmission efficiency of
information flow is better than that of AM-ResNet, but its stability is not as good as AM-ResNet.

6. Conclusions

Recently, link prediction has attracted more attention of researchers in different disciplines, and
various link prediction algorithms are stacked, which has advantages and disadvantages. The existing
link prediction methods based on similarity cannot better express some non-linear modes which play
a decisive role in the link in the network because they are designed manually. Although the link
prediction method based on the shallow neural network can make good use of the potential features of
the network nodes, it cannot capture the deep non-linear features, such as link structure features. Deep
neural networks, such as deep convolutional neural networks, can capture deep non-linear features
and learn more useful features because of their strong feature learning ability, and thus improve the
accuracy of classification or prediction. Therefore, we use the deep convolutional neural network
to predict the link. Firstly, the link in the network is treated as matrix pairs, and then the structural
similarity of links is captured by deep convolutional neural network. Finally, the experimental results
show that the method proposed in this paper is better than the common benchmark algorithm. There
are still some challenges ahead.

(1) We considered the pure structure of the network for link prediction in this paper, although it can
achieve better prediction results on most networks, but this is obviously not enough. Therefore,
in the future, other information will be added to the network for modeling, in order to achieve
better prediction results.

(2) Modeling with deep convolution neural network can improve the effect of link prediction, but it
is well known that the computational complexity will also increase. Therefore, the use of the
in-depth learning model for large-scale network data is bound to be constrained by efficiency, so
how to improve the efficiency of the model is also a challenge at present.

(3) Network adaptability. In this paper, we adopted some common data sets, which cannot be tested
on large-scale networks, so we will consider this research step by step.

Author Contributions: W.W. and Y.H. discussed and confirmed the idea; Y.H. and L.W. carried out the experiment
and analyzed the data; L.W. wrote the paper; H.W. reviewed the paper; R.Z. carried out project administration.

Funding: This research was funded by The National Natural Science Foundation of China (61772562) and “The
Fundamental Research Funds for the Central Universities”, South-Central University for Nationalities (CZY18014)
and Innovative research program for graduates of South-Central University for Nationalities (2019sycxjj120).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liben-Nowell, D.; Kleinberg, J. The link-prediction problem for social networks. JASIST 2007, 58, 1019–1031.
[CrossRef]

2. Aiello, L.M.; Barrat, A.; Schifanella, R.; Cattuto, C.; Markines, B.; Menczer, F. Friendship prediction and
homophily in social media. ACM Trans. Web 2012, 6, 1–33. [CrossRef]

http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1145/2180861.2180866


Information 2019, 10, 172 16 of 17

3. Tang, J.; Wu, S.; Sun, J.M.; Su, H. Cross-Domain Collaboration Recommendation. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16
August 2012; pp. 1285–1293.

4. Akcora, C.G.; Carminati, B.; Ferrari, E. Network and Profile Based Measures for User Similarities on Social
Networks. In Proceedings of the 2011 IEEE International Conference on Information Reuse& Integration,
Las Vegas, NV, USA, 2–5 August 2011; pp. 292–298.

5. Turki, T.; Wei, Z. A link prediction approach to cancer drug sensitivity prediction. J. BMC Syst. Biol. 2017, 11,
13–26. [CrossRef] [PubMed]

6. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs;
IEEE: New York, NY, USA, 2016; pp. 11–33.

7. Ahn, M.W.; Jung, W.S. Accuracy test for link prediction in terms of similarity index: The case of WS and BA
models. J. Phys. A 2015, 429, 3992–3997. [CrossRef]

8. Hoffman, M.; Steinley, D.; Brusco, M.J. A note on using the adjusted Rand index for link prediction in
networks. J. Soc. Netw. 2015, 42, 72–79. [CrossRef] [PubMed]

9. Lv, L.; Zhou, T. Link prediction in complex networks: A survey. J. Phys. A 2011, 390, 1150–1170.
10. Newman, M.E.J. Clustering and preferential attachment in growing networks. J. Phys. Rev. E Stat. Nonlinear

Soft Matter Phys. 2001, 64, 025102. [CrossRef] [PubMed]
11. Chen, H.-H.; Liang, G.; Zhang, X.L.; Giles, C.L. Discovering Missing Links in Networks Using Vertex

Similarity Measures. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento,
Italy, 26–30 March 2012; pp. 138–143.

12. Lichtenwalter, R.N.; Chawla, N.V. Vertex Collocation Profiles: Subgraph Counting for Link Analysis and
Prediction. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20
April 2012; pp. 1019–1028.

13. Li, R.-H.; Jeffrey, X.Y.; Liu, J. Link Prediction: The Power of Maximal Entropy Random Walk. In Proceedings
of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK,
24–28 October 2011; pp. 1147–1156.

14. Shang, Y. Distinct Clusterings and Characteristic Path Lengths in Dynamic Small-World Networks with
Indentical Limit Degree Distribution. J. Stat. Phys. 2012, 149, 505–518. [CrossRef]

15. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deep Walk: Online Learning of Social Representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, 24–27 August 2014; pp. 701–710.

16. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016; pp. 855–864.

17. Tang, J.; Qu, M.; Wang, M.Z.; Zhang, M.; Yan, J.; Mei, Q.Z. Line: Large-Scale Information Network Embedding.
In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015;
pp. 1067–1077.

18. Wang, D.X.; Cui, P.; Zhu, W.W. Structural Deep Network Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; pp. 1225–1234.

19. Zhang, M.; Chen, Y. Link prediction Based on Graph Neural Networks. In Proceedings of the Thirty-Second
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 2–8 December 2018.

20. Hou, J.H.; Deng, Y.; Cheng, S.M.; Xiang, J. Visual Object Tracking Based on Deep Features and Correlation
Filter. J. South Cent. Univ. Nat. 2018, 37, 67–73.

21. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June
2016; pp. 770–778.

22. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings
of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 630–645.

23. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 4700–4708.

http://dx.doi.org/10.1186/s12918-017-0463-8
http://www.ncbi.nlm.nih.gov/pubmed/28984192
http://dx.doi.org/10.1016/j.physa.2015.01.083
http://dx.doi.org/10.1016/j.socnet.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/30337771
http://dx.doi.org/10.1103/PhysRevE.64.025102
http://www.ncbi.nlm.nih.gov/pubmed/11497639
http://dx.doi.org/10.1007/s10955-012-0605-8


Information 2019, 10, 172 17 of 17

24. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network
for Image Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458.

25. Tu, C.; Yang, C.; Liu, Z.; Sun, M. Network representation learning: An overview. J. Sci. Sin. 2017, 47, 980–996.
[CrossRef]

26. Qi, J.S.; Liang, X.; Li, Z.Y.; Chen, Y.F.; Xu, Y. Representation learning of large-scale complex information
network: Concepts, methods and challenges. Chin. J. Comput. 2018, 41, 2394–2420.

27. Shang, Y. Subgraph Robustness of Complex Networks under Attacks. J. IEEE Trans. Syst. Man Cybern. Syst.
2019, 49, 821–833. [CrossRef]

28. Lada, A.A.; Eytan, A. Friends and neighbors on the web. J. Soc. Netw. 2003, 25, 211–230.
29. Barabási, A.L.; Albert, A. Emergence of scaling in random networks. J. Sci. 1999, 286, 509–512.
30. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution on χ–Transformed Points. Available

online: https://arxiv.org/abs/1801.07791 (accessed on 10 October 2018).
32. Li, Y.; Shang, Y.; Yang, Y. Clustering coefficients of large networks. J. Inf. Sci. 2017, 382–383, 350–358.

[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1360/N112017-00145
http://dx.doi.org/10.1109/TSMC.2017.2733545
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://arxiv.org/abs/1801.07791
http://dx.doi.org/10.1016/j.ins.2016.12.027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Preliminaries 
	Network Representation Learning 
	Residual Attention Mechanism 
	Densely Connected Convolutional Neural Network 

	Methodology 
	Problem Formulation 
	Method Overview 
	Sub-Graph Extraction 
	Node Sorting 
	Node Information Matrix Construction 
	Residual Attention Mechanism 
	Densely Connected Convolutional Network Model 

	Experimental Results 
	Data Sets 
	Experiment Setup 
	Parameter Settings 
	Baseline Algorithms 

	Experiment Results and Analysis 
	Comparison with CN-Based Methods 
	Comparison with Representation Learning Methods 
	Parameter Sensitivity 


	Conclusions 
	References

