Genetics Algorithm

Javad Salimi

Fall 2019

GA Quick Overview

- Developed: USA in the 1970's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete optimization
- Attributed features:
 - not too fast
 - good heuristic for combinatorial problems
- Special Features:
 - Traditionally emphasizes combining information from good parents (crossover)
 - many variants, e.g., reproduction models, operators

Genetic algorithms

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

SGA technical summary tableau

Representation	Binary strings
Recombination	N-point or uniform
Mutation	Bitwise bit-flipping with fixed probability
Parent selection	Fitness-Proportionate
Survivor selection	All children replace parents
Speciality	Emphasis on crossover

The simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.
 - Representation is too restrictive
 - Mutation & crossovers only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values

Alternative Crossover Operators

- Performance with 1 Point Crossover depends on the order that variables occur in the representation
 - more likely to keep together genes that are near each other
 - Can never keep together genes from opposite ends of string
 - This is known as *Positional Bias*
 - Can be exploited if we know about the structure of our problem, but this is not usually the case

n-point crossover

- Choose n random crossover points
- Split along those points
- Glue parts, alternating between parents
- Generalisation of 1 point (still some positional bias)

Uniform crossover

- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child
- Inheritance is independent of position

Crossover OR mutation?

- Decade long debate: which one is better / necessary / mainbackground
- Answer (at least, rather wide agreement):
 - it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA would not work

Crossover OR mutation? (cont'd)

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0's on first bit in the population, ?% after performing *n* crossovers)
- To hit the optimum you often need a 'lucky' mutation

Other representations

- Gray coding of integers (still binary chromosomes)
 - Gray coding is a mapping that means that small changes in the genotype cause small changes in the phenotype (unlike binary coding). "Smoother" genotype-phenotype mapping makes life easier for the GA
- Nowadays it is generally accepted that it is better to encode numerical variables directly as
- Integers
- Floating point variables

Real valued problems

- Many problems occur as real valued problems, e.g. continuous parameter optimization $f: \mathcal{R}^n \rightarrow \mathcal{R}$
- Illustration: Ackley's function (often used in EC)

$$f(\overline{x}) = -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}\right)$$
$$-exp\left(\frac{1}{n} \cdot \sum_{i=1}^n \cos(c_3 \cdot x_i)\right) + c_1 + 1$$
$$c_1 = 20, \ c_2 = 0.2, \ c_3 = 2\pi$$

Mapping real values on bit strings

- $z \in [x,y] \subseteq \mathscr{R}$ represented by $\{a_1,...,a_L\} \in \{0,1\}^L$
- $[x,y] \rightarrow \{0,1\}^{L}$ must be invertible (one phenotype per genotype)
- $\Gamma: \{0,1\}^{L} \rightarrow [x,y]$ defines the representation

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot \left(\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j\right) \in [x, y]$$

- Only 2^L values out of infinite are represented
- L determines possible maximum precision of solution
- High precision \rightarrow long chromosomes (slow evolution)

Floating point mutations 1

General scheme of floating point mutations

$$\overline{x} = \langle x_1, ..., x_l \rangle \longrightarrow \overline{x}' = \langle x_1', ..., x_l' \rangle$$
$$x_i, x_i' \in [LB_i, UB_i]$$

• Uniform mutation:

 x'_i drawn randomly (uniform) from $[LB_i, UB_i]$

Floating point mutations 2

- Non-uniform mutations:
 - Many methods proposed, such as time-varying range of change etc.
 - Most schemes are probabilistic but usually only make a small change to value
 - Most common method is to add random deviate to each variable separately, taken from N(0, σ) Gaussian distribution and then curtail to range
 - Standard deviation σ controls amount of change (2/3 of deviations will lie in range (- σ to + σ)

Crossover operators for real valued GAs

- Discrete:
 - each allele value in offspring z comes from one of its parents (x,y) with equal probability: z_i = x_i or y_i
 - Could use n-point or uniform
- Intermediate
 - exploits idea of creating children "between" parents (hence a.k.a. *arithmetic* recombination)
 - $z_i = \alpha x_i + (1 \alpha) y_i$ where $\alpha : 0 \le \alpha \le 1$.
 - The parameter α can be:
 - constant: uniform arithmetical crossover
 - variable (e.g. depend on the age of the population)
 - picked at random every time

Single arithmetic crossover

- Parents: $\langle x_1, ..., x_n \rangle$ and $\langle y_1, ..., y_n \rangle$
- Pick a single gene (k) at random,
- child₁ is: $\langle x_1, ..., x_k, \alpha \cdot y_k + (1 \alpha) \cdot x_k, ..., x_n \rangle$
- reverse for other child. e.g. with $\alpha = 0.5$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.5 0.3

Simple arithmetic crossover

- Parents: $\langle x_1, ..., x_n \rangle$ and $\langle y_1, ..., y_n \rangle$
- Pick random gene (k) after this point mix values
- child₁ is: $\left\langle x_1, \dots, x_k, \alpha \cdot y_{k+1} + (1-\alpha) \cdot x_{k+1}, \dots, \alpha \cdot y_n + (1-\alpha) \cdot x_n \right\rangle$
- reverse for other child. e.g. with $\alpha = 0.5$

Whole arithmetic crossover

- Most commonly used
- Parents: $\langle x_1, ..., x_n \rangle$ and $\langle y_1, ..., y_n \rangle$
- child₁ is:

$$a \cdot \overline{x} + (1 - a) \cdot \overline{y}$$

• reverse for other child. e.g. with $\alpha = 0.5$

Integer representations

- Some problems naturally have integer variables, e.g. image processing parameters
- Others take *categorical* values from a fixed set e.g. {blue, green, yellow, pink}
- N-point / uniform crossover operators work
- Extend bit-flipping mutation to make

Permutation Representations

- Ordering/sequencing problems form a special type
- Task is (or can be solved by) arranging some objects in a certain order
 - Example: sort algorithm: important thing is which elements occur before others (<u>order</u>)
 - Example: Travelling Salesman Problem (TSP) : important thing is which elements occur next to each other (<u>adjacency</u>)
- These problems are generally expressed as a permutation:
 - if there are *n* variables then the representation is as a list of *n* integers, each of which occurs exactly once

Permutation representation: TSP example

- Problem:
 - Given n cities
 - Find a complete tour with minimal length
- Encoding:
 - Label the cities 1, 2, ... , n
 - One complete tour is one permutation (e.g. for n =4 [1,2,3,4], [3,4,2,1] are OK)
- Search space is BIG:

for 30 cities there are $30! \approx 10^{32}$ possible tours

Mutation operators for permutations

- Normal mutation operators lead to inadmissible solutions
 - e.g. bit-wise mutation : let gene *i* have value *j*
 - changing to some other value k would mean that k occurred twice and j no longer occurred
- Therefore must change at least two values
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position

Insert Mutation for permutations

- Pick two allele values at random
- Move the second to follow the first, shifting the rest along to accommodate
- Note that this preserves most of the order and the adjacency information

Swap mutation for permutations

- Pick two alleles at random and swap their positions
- Preserves most of adjacency information (4 links broken), disrupts order more

Inversion mutation for permutations

- Pick two alleles at random and then invert the substring between them.
- Preserves most adjacency information (only breaks two links) but disruptive of order information

Scramble mutation for permutations

- Pick a subset of genes at random
- Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

Crossover operators for permutations

• "Normal" crossover operators will often lead to inadmissible solutions

 Many specialised operators have been devised which focus on combining order or adjacency information from the two parents

Order 1 crossover

- Idea is to preserve relative order that elements occur
- Informal procedure:
 - 1. Choose an arbitrary part from the first parent
 - 2. Copy this part to the first child
 - 3. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the **order** of the second parent
 - and wrapping around at the end
 - 4. Analogous for the second child, with parent roles reversed

Order 1 crossover example

• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2

Partially Mapped Crossover (PMX)

Informal procedure for parents P1 and P2:

- 1. Choose random segment and copy it from P1
- 2. Starting from the first crossover point look for elements in that segment of P2 that have not been copied
- 3. For each of these *i* look in the offspring to see what element *j* has been copied in its place from P1
- 4. Place *i* into the position occupied *j* in P2, since we know that we will not be putting *j* there (as is already in offspring)
- 5. If the place occupied by *j* in P2 has already been filled in the offspring *k*, put *i* in the position occupied by *k* in P2
- 6. Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously

PMX example

Cycle crossover

Basic idea:

Each allele comes from one parent *together with its position*.

Informal procedure:

1. Make a cycle of alleles from P1 in the following way.

- (a) Start with the first allele of P1.
- (b) Look at the allele at the *same position* in P2.
- (c) Go to the position with the *same allele* in P1.
- (d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

- 2. Put the alleles of the cycle in the first child on the positions they have in the first parent.
- 3. Take next cycle from second parent

Cycle crossover example

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

Edge Recombination

- Works by constructing a table listing which edges are present in the two parents, if an edge is common to both, mark with a +
- e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Element	Edges	Element	Edges
1	$2,\!5,\!4,\!9$	6	2,5+,7
2	$1,\!3,\!6,\!8$	7	$3,\!6,\!8+$
3	$2,\!4,\!7,\!9$	8	2,7+,9
4	$1,\!3,\!5,\!9$	9	1,3,4,8
5	1,4,6+		

Edge Recombination 2

Informal procedure once edge table is constructed

- 1. Pick an initial element at random and put it in the offspring
- 2. Set the variable current element = entry
- 3. Remove all references to current element from the table
- 4. Examine list for current element:
 - If there is a common edge, pick that to be next element
 - Otherwise pick the entry in the list which itself has the shortest list
 - Ties are split at random
- 5. In the case of reaching an empty list:
 - Examine the other end of the offspring is for extension
 - Otherwise a new element is chosen at random

Edge Recombination example

Element	Edges	Element	Edges
1	$2,\!5,\!4,\!9$	6	2,5+,7
2	$1,\!3,\!6,\!8$	7	3,6,8+
3	$2,\!4,\!7,\!9$	8	2,7+, 9
4	$1,\!3,\!5,\!9$	9	1,3,4,8
5	1,4,6+		

Choices	Element	Reason	Partial
	selected		result
All	1	Random	[1]
2,5,4,9	5	Shortest list	[1 5]
4,6	6	Common edge	$[1 \ 5 \ 6]$
2,7	2	Random choice (both have two items in list)	[1 5 6 2]
3,8	8	Shortest list	[1 5 6 2 8]
7,9	7	Common edge	[156287]
3	3	Only item in list	$[1\ 5\ 6\ 2\ 8\ 7\ 3]$
4,9	9	Random choice	$[1\ 5\ 6\ 2\ 8\ 7\ 3\ 9]$
4	4	Last element	$[1\ 5\ 6\ 2\ 8\ 7\ 3\ 9\ 4\]$

Modified Edge Recombination

- Edge Recombination Link based.
- Modified Edge Recombination Link and order based.

Parent 1	Common links	Offspring 1
(6781239450)	(-78150)	(3781462950)
Parent 2	Common links	Offspring 2
(1 8 7 9 5 0 2 6 3 4)	(187-50)	(1 8 7 3 5 0 6 2 4 9)

Multiparent recombination

- Recall that we are not constricted by the practicalities of nature
- Noting that mutation uses 1 parent, and "traditional" crossover 2, the extension to a>2 is natural to examine
- Been around since 1960s, still rare but studies indicate useful
- Three main types:
 - Based on allele frequencies, e.g., p-sexual voting generalising uniform crossover
 - Based on segmentation and recombination of the parents, e.g., diagonal crossover generalising n-point crossover
 - Based on numerical operations on real-valued alleles, e.g., center of mass crossover, generalising arithmetic recombination operators