
Genetics Algorithm
Javad Salimi

Fall 2019

2

GA Quick Overview
• Developed: USA in the 1970’s

• Early names: J. Holland, K. DeJong, D. Goldberg

• Typically applied to:
• discrete optimization

• Attributed features:
• not too fast

• good heuristic for combinatorial problems

• Special Features:
• Traditionally emphasizes combining information from good parents

(crossover)

• many variants, e.g., reproduction models, operators

3

Genetic algorithms

• Holland’s original GA is now known as the simple genetic
algorithm (SGA)

• Other GAs use different:
• Representations

• Mutations

• Crossovers

• Selection mechanisms

4

SGA technical summary tableau

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with

fixed probability

Parent selection Fitness-Proportionate

Survivor selection All children replace

parents

Speciality Emphasis on crossover

5

The simple GA

• Has been subject of many (early) studies
• still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.
• Representation is too restrictive

• Mutation & crossovers only applicable for

bit-string & integer representations

• Selection mechanism sensitive for converging

populations with close fitness values

6

Alternative Crossover Operators

• Performance with 1 Point Crossover depends on the order that

variables occur in the representation

• more likely to keep together genes that are near each other

• Can never keep together genes from opposite ends of string

• This is known as Positional Bias

• Can be exploited if we know about the structure of our problem, but

this is not usually the case

7

n-point crossover
• Choose n random crossover points

• Split along those points

• Glue parts, alternating between parents

• Generalisation of 1 point (still some positional bias)

8

Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other

• Flip a coin for each gene of the first child

• Make an inverse copy of the gene for the second child

• Inheritance is independent of position

9

Crossover OR mutation?

• Decade long debate: which one is better / necessary / main-
background

• Answer (at least, rather wide agreement):
• it depends on the problem, but

• in general, it is good to have both

• both have another role

• mutation-only-EA is possible, xover-only-EA would not work

10

• Only crossover can combine information from two parents

• Only mutation can introduce new information (alleles)

• Crossover does not change the allele frequencies of the

population (thought experiment: 50% 0’s on first bit in the

population, ?% after performing n crossovers)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? (cont’d)

11

Other representations

• Gray coding of integers (still binary chromosomes)

• Gray coding is a mapping that means that small changes in the

genotype cause small changes in the phenotype (unlike binary

coding). “Smoother” genotype-phenotype mapping makes life

easier for the GA

• Nowadays it is generally accepted that it is better to

encode numerical variables directly as

• Integers

• Floating point variables

12

Real valued problems

• Many problems occur as real valued problems, e.g.
continuous parameter optimization f : n

• Illustration: Ackley’s function (often used in EC)

13

Mapping real values on bit strings
z [x,y] represented by {a1,…,aL} {0,1}L

• [x,y] {0,1}L must be invertible (one phenotype per genotype)

• : {0,1}L [x,y] defines the representation

• Only 2L values out of infinite are represented

• L determines possible maximum precision of solution

• High precision long chromosomes (slow evolution)

],[)2(
12

),...,(
1

0

1 yxa
xy

xaa j
L

j

jLLL

14

Floating point mutations 1

General scheme of floating point mutations

• Uniform mutation:

ll xxxx xx ..., , ...,, 11

 iiii UBLBxx ,,

 iii UBLBx , from (uniform)randomly drawn

15

Floating point mutations 2
• Non-uniform mutations:

• Many methods proposed,such as time-varying range of change
etc.

• Most schemes are probabilistic but usually only make a small
change to value

• Most common method is to add random deviate to each
variable separately, taken from N(0,) Gaussian distribution and
then curtail to range

• Standard deviation controls amount of change (2/3 of
deviations will lie in range (- to +)

16

Crossover operators for real valued GAs

• Discrete:
• each allele value in offspring z comes from one of its parents

(x,y) with equal probability: zi = xi or yi

• Could use n-point or uniform

• Intermediate
• exploits idea of creating children “between” parents (hence

a.k.a. arithmetic recombination)

• zi = xi + (1 -) yi where : 0 1.
• The parameter can be:

• constant: uniform arithmetical crossover
• variable (e.g. depend on the age of the population)
• picked at random every time

17

Single arithmetic crossover

• Parents: x1,…,xn and y1,…,yn

• Pick a single gene (k) at random,

• child1 is:

• reverse for other child. e.g. with = 0.5

nkkk xxyxx ..., ,)1(, ..., ,1

18

Simple arithmetic crossover

• Parents: x1,…,xn and y1,…,yn

• Pick random gene (k) after this point mix values

• child1 is:

• reverse for other child. e.g. with = 0.5

n
x

k
x

k
y

k
xx

)1(

n
y ..., ,

1
)1(

1
 , ..., ,

1

19

• Most commonly used

• Parents: x1,…,xn and y1,…,yn

• child1 is:

• reverse for other child. e.g. with = 0.5

Whole arithmetic crossover

yaxa)1(

20

Integer representations

• Some problems naturally have integer variables, e.g. image
processing parameters

• Others take categorical values from a fixed set e.g. {blue,
green, yellow, pink}

• N-point / uniform crossover operators work

• Extend bit-flipping mutation to make

21

Permutation Representations

• Ordering/sequencing problems form a special type

• Task is (or can be solved by) arranging some objects in a
certain order
• Example: sort algorithm: important thing is which elements occur before

others (order)

• Example: Travelling Salesman Problem (TSP) : important thing is which
elements occur next to each other (adjacency)

• These problems are generally expressed as a
permutation:
• if there are n variables then the representation is as a list of n integers, each

of which occurs exactly once

22

Permutation representation: TSP example

• Problem:

• Given n cities

• Find a complete tour with
minimal length

• Encoding:

• Label the cities 1, 2, … , n

• One complete tour is one
permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG:

for 30 cities there are 30! 1032

possible tours

23

Mutation operators for permutations

• Normal mutation operators lead to inadmissible solutions
• e.g. bit-wise mutation : let gene i have value j

• changing to some other value k would mean that k occurred
twice and j no longer occurred

• Therefore must change at least two values

• Mutation parameter now reflects the probability that
some operator is applied once to the whole string, rather
than individually in each position

24

Insert Mutation for permutations

• Pick two allele values at random

• Move the second to follow the first, shifting the
rest along to accommodate

• Note that this preserves most of the order and the
adjacency information

25

Swap mutation for permutations

• Pick two alleles at random and swap their
positions

• Preserves most of adjacency information (4 links
broken), disrupts order more

26

Inversion mutation for permutations

• Pick two alleles at random and then invert the
substring between them.

• Preserves most adjacency information (only breaks
two links) but disruptive of order information

27

Scramble mutation for permutations

• Pick a subset of genes at random

• Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

28

• “Normal” crossover operators will often lead to
inadmissible solutions

• Many specialised operators have been devised which
focus on combining order or adjacency information from
the two parents

Crossover operators for permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

29

Order 1 crossover
• Idea is to preserve relative order that elements occur

• Informal procedure:
1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to the first child:
• starting right from cut point of the copied part,

• using the order of the second parent

• and wrapping around at the end

4. Analogous for the second child, with parent roles reversed

30

Order 1 crossover example
• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2

31

Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1

2. Starting from the first crossover point look for elements in that
segment of P2 that have not been copied

3. For each of these i look in the offspring to see what element j has
been copied in its place from P1

4. Place i into the position occupied j in P2, since we know that we
will not be putting j there (as is already in offspring)

5. If the place occupied by j in P2 has already been filled in the
offspring k, put i in the position occupied by k in P2

6. Having dealt with the elements from the crossover segment, the
rest of the offspring can be filled from P2.

Second child is created analogously

Partially Mapped Crossover (PMX)

32

PMX example

• Step 1

• Step 2

• Step 3

33

Cycle crossover
Basic idea:

Each allele comes from one parent together with its position.

Informal procedure:

1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1.

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions they
have in the first parent.

3. Take next cycle from second parent

34

Cycle crossover example

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

35

Edge Recombination

• Works by constructing a table listing which edges are present
in the two parents, if an edge is common to both, mark with a
+

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

36

Edge Recombination 2

Informal procedure once edge table is constructed

1. Pick an initial element at random and put it in the offspring

2. Set the variable current element = entry

3. Remove all references to current element from the table

4. Examine list for current element:
• If there is a common edge, pick that to be next element

• Otherwise pick the entry in the list which itself has the shortest list

• Ties are split at random

5. In the case of reaching an empty list:
• Examine the other end of the offspring is for extension

• Otherwise a new element is chosen at random

Evolutionary Computing 37

Edge Recombination example

38

Modified Edge Recombination

• Edge Recombination - Link based.

• Modified Edge Recombination - Link and order based.

Parent 1 Common links Offspring 1

(6 7 8 1 2 3 9 4 5 0) (- 7 8 1 - - - - 5 0) (3 7 8 1 4 6 2 9 5 0)

Parent 2 Common links Offspring 2

(1 8 7 9 5 0 2 6 3 4) (1 8 7 - 5 0 - - - -) (1 8 7 3 5 0 6 2 4 9)

39

Multiparent recombination
• Recall that we are not constricted by the practicalities of nature

• Noting that mutation uses 1 parent, and “traditional” crossover 2,
the extension to a>2 is natural to examine

• Been around since 1960s, still rare but studies indicate useful

• Three main types:

• Based on allele frequencies, e.g., p-sexual voting generalising
uniform crossover

• Based on segmentation and recombination of the parents, e.g.,
diagonal crossover generalising n-point crossover

• Based on numerical operations on real-valued alleles, e.g.,
center of mass crossover, generalising arithmetic recombination
operators

