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ES quick overview

• Developed: Germany in the 1970’s

• Early names: I. Rechenberg, H.-P. Schwefel

• Typically applied to:
– numerical optimisation

• Attributed features:
– fast

– good optimizer for real-valued optimisation

– relatively much theory

• Special:
– self-adaptation of (mutation) parameters standard
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ES technical summary tableau

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection (,) or (+)

Specialty Self-adaptation of 

mutation step sizes
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Introductory example: pseudo code

• Set t = 0

• Create initial point xt =  x1
t,…,xn

t 

• REPEAT UNTIL (TERMIN.COND satisfied) 
DO
– Draw zi from a normal distr. for all i = 1,…,n

– yi
t = xi

t + zi

– IF f(xt) < f(yt) THEN xt+1 = xt

– ELSE xt+1 = yt

– FI

– Set t = t+1

• OD



5

Introductory example: mutation mechanism

• z values drawn from normal distribution N(,) 

– mean  is set to 0 

– variation  is called mutation step size

•  is varied on the fly by the “1/5 success rule”:

• This rule resets  after every k iterations by

–  =  / c if ps > 1/5

–  =  • c if ps < 1/5

–  =  if ps = 1/5

• where ps is the % of successful mutations, 0.8  c  1
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Illustration of normal distribution
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Genetic operators: mutations (2)

The one 

dimensional case
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Representation

• Chromosomes consist of three parts:

– Object variables: x1,…,xn

– Strategy parameters:
• Mutation step sizes: 1,…,n

• Rotation angles: 1,…, n

• Not every component is always present

• Full size:  x1,…,xn,1,…,n ,1,…, k 

• where k = n(n-1)/2 (no. of i,j pairs)



9

Mutation

• Main mechanism: changing value by adding 
random noise drawn from normal distribution

• x’i = xi + N(0,)

• Key idea: 

–  is part of the chromosome  x1,…,xn,  

–  is also mutated into ’ (see later how)

• Thus: mutation step size  is coevolving with 
the solution x
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Mutate  first

• Net mutation effect:  x,    x’, ’ 

• Order is important: 

– first  ’ (see later how)

– then x  x’ = x + N(0,’)

• Rationale: new  x’ ,’  is evaluated twice

– Primary: x’ is good if f(x’) is good 

– Secondary: ’ is good if the x’ it created is good

• Reversing mutation order this would not work
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Mutation case 1:

Uncorrelated mutation with one 

• Chromosomes:  x1,…,xn,  

• ’ =  • exp( • N(0,1))

• x’i = xi + ’ • N(0,1)

• Typically the “learning rate”   1/ n½

• And we have a boundary rule ’ < 0  ’ = 0
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Mutants with equal likelihood

Circle: mutants having the same chance to be created



13

Mutation case 2:

Uncorrelated mutation with n ’s

• Chromosomes:  x1,…,xn, 1,…, n 

• ’i = i • exp(’ • N(0,1) +  • Ni (0,1))

• x’i = xi + ’i • Ni (0,1)

• Two learning rate parameters:

– ’ overall learning rate

–  coordinate wise learning rate

• ’  1/(2 n)½ and   1/(2 n½) ½

• And i’ < 0  i’ = 0
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Mutants with equal likelihood

Ellipse: mutants having the same chance to be created



15

Mutation case 3:

Correlated mutations 

• Chromosomes:  x1,…,xn, 1,…, n ,1,…, k 

• where k = n • (n-1)/2 

• and the covariance matrix C is defined as:

– cii = i
2

– cij = 0 if i and j are not correlated 

– cij = ½ • ( i
2  - j

2 ) • tan(2 ij) if i and j are 

correlated

• Note the numbering / indices of the ‘s 
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Correlated mutations cont’d

The mutation mechanism is then:

• ’i = i • exp(’ • N(0,1) +  • Ni (0,1))

• ’j = j +  • N (0,1)

• x ’ = x + N(0,C’)
– x stands for the vector  x1,…,xn 

– C’ is the covariance matrix C after mutation of the 
 values

• ’  1/(2 n)½ and   1/(2 n½) ½  and   5°

• i’ < 0  i’ = 0 and  
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Mutants with equal likelihood

Ellipse: mutants having the same chance to be created
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Recombination

• Creates one child

• Acts per variable / position by either

– Averaging parental values, or

– Selecting one of the parental values

• From two or more parents by either:

– Using two selected parents to make a child

– Selecting two parents for each position anew 
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Names of recombination's 

Two fixed 

parents

Two parents 

selected for 

each i

zi = (xi + yi)/2 
Local 

intermediary

Global 

intermediary

zi is xi or yi

chosen 

randomly 

Local 

discrete

Global 

discrete
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Parent selection

• Parents are selected by uniform random 
distribution whenever an operator needs 
one/some 

• Thus: ES parent selection is unbiased -
every individual has the same probability to 
be selected

• Note that in ES “parent” means a population 
member.
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Survivor selection

• (+)-selection is an elitist strategy

• (,)-selection can “forget”

• Often (,)-selection is preferred for:

– Better in leaving local optima 

– Better in following moving optima

• Selective pressure in ES is very high (  7 •  is the 

common setting) 
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Self-adaptation illustrated

• Given a dynamically changing fitness 

landscape (optimum location shifted every 

200 generations)

• Self-adaptive ES is able to 

– follow the optimum and 

– adjust the mutation step size after every shift !
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Self-adaptation illustrated cont’d

Changes in the fitness values (left) and the mutation step sizes (right)
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Prerequisites for self-adaptation 

•  > 1 to carry different strategies

•  >  to generate offspring surplus 

• (,)-selection to get rid of miss adapted ‘s

• Mixing strategy parameters by 

(intermediary) recombination on them
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Example application: 

the Ackley function (Bäck et al ’93)

• The Ackley function (here used with n =30):

• Evolution strategy:
– Representation: 

• -30 < xi < 30 (coincidence of 30’s!)

• 30 step sizes

– (30,200) selection

– Termination : after 200000 fitness evaluations

– Results: average best solution is 7.48 • 10 –8  (very good)
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Genetic Programming
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GP quick overview

• Developed: USA in the 1990’s

• Early names: J. Koza

• Typically applied to:
– machine learning tasks (prediction, 

classification…)

• Attributed features:
– competes with neural nets and alike

– needs huge populations (thousands)

– slow

• Special:
– non-linear chromosomes: trees, graphs

– mutation possible but not necessary (dispute!)
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GP technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement
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Introductory example: credit scoring

• Bank wants to distinguish good from bad 

loan applicants

• Model needed that matches historical data

ID No of 

children

Salary Marital 

status

OK?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorce

d 

1

…
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Introductory example: credit scoring

• A possible model: 

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

• In general: 

IF formula THEN good ELSE bad

• Only unknown is the right formula, hence

• Our search space (phenotypes) is the set of formulas

• Natural fitness of a formula: percentage of well 
classified cases of the model it stands for

• Natural representation of formulas (genotypes) is: 
parse trees
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Introductory example: credit scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

AND

S2NOC 80000

>=
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Tree based representation

• Trees are a universal form, e.g. 

consider 

• Arithmetic formula

• Logical formula

• Program
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y
x

(x  true)  (( x  y )  (z  (x  y)))

i =1;

while (i < 20)

{

i = i +1

} 
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Tree based representation
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Tree based representation

(x  true)  (( x  y )  (z  (x  y)))
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Tree based representation

i =1;

while (i < 20)

{

i = i +1

} 
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Tree based representation

• In GA, ES, EP chromosomes are linear 
structures (bit strings, integer string, real-
valued vectors, permutations)

• Tree shaped chromosomes are non-linear 
structures

• In GA, ES, EP the size of the chromosomes 
is fixed

• Trees in GP may vary in depth and width 
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Tree based representation

• Symbolic expressions can be defined by 
– Terminal set T

– Function set F (with the arities of function symbols)

• Adopting the following general recursive definition:
1. Every t  T is a correct expression

2. f(e1, …, en) is a correct expression if f  F, arity(f)=n and 
e1, …, en are correct expressions 

3. There are no other forms of correct expressions

• In general, expressions in GP are not typed 
(closure property: any f  F can take any g  F as 
argument)
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Offspring creation scheme

Compare 

• GA scheme using crossover AND mutation 

sequentially (be it probabilistically)

• GP scheme using crossover OR mutation 

(chosen probabilistically)
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Mutation

• Most common mutation: replace randomly 

chosen subtree by randomly generated tree
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Mutation cont’d

• Mutation has two parameters:

– Probability pm to choose mutation vs. 

recombination

– Probability to chose an internal point as the root 

of the subtree to be replaced

• Remarkably pm is advised to be 0 (Koza’92) 

or very small, like 0.05 (Banzhaf et al. ’98)

• The size of the child can exceed the size of 

the parent
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Recombination

• Most common recombination: exchange two 

randomly chosen subtrees among the parents

• Recombination has two parameters:

– Probability pc to choose recombination vs. 

mutation

– Probability to chose an internal point within each 

parent as crossover point

• The size of offspring can exceed that of the 

parents
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Child 2

Parent 1 Parent 2

Child 1
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Selection 

• Parent selection typically fitness proportionate

• Over-selection in very large populations
– rank population by fitness and divide it into two groups: 

– group 1: best x% of population, group 2 other (100-x)%

– 80% of selection operations chooses from group 1, 20% from group 2

– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

– motivation: to increase efficiency, %’s come from rule of thumb 

• Survivor selection: 

– Typical: generational scheme (thus none)

– Recently steady-state is becoming popular for its elitism
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Initialisation

• Maximum initial depth of trees Dmax is set

• Full method (each branch has depth = Dmax):
– nodes at depth d < Dmax randomly chosen from function set F

– nodes at depth d = Dmax randomly chosen from terminal set T

• Grow method (each branch has depth  Dmax):

– nodes at depth d < Dmax randomly chosen from F  T

– nodes at depth d = Dmax randomly chosen from T

• Common GP initialisation: ramped half-and-half, 

where grow & full method each deliver half of initial 

population
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Bloat

• Bloat = “survival of the fattest”, i.e., the tree 

sizes in the population are increasing over 

time

• Ongoing research and debate about the 

reasons 

• Needs countermeasures, e.g.

– Prohibiting variation operators that would deliver 

“too big” children

– Parsimony pressure: penalty for being oversized
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