
ELECTRICITY 
AND 

MAGNETISM 

MUNIR H. NAYFEH 

MORTON K. BRUSSEL 



This Witey I ~ t g H ~ i r m d  Editim is port of a cantinuhg prwm af 
, ~aperb& t e x t W q  sspecldly designed for studehts ond 

pr.ofa&tmal pwpke ~ v w m ~ .  It is an urmkwl- r m t i n g  of the 
.o&i r&kbcsrd  editian, which is a36o wai~atde from yow tmtdwtkw. 

WHey Intemationd EditiwJr 
include titlqr in the fields .ofl 

Agrleultural Engineering 
& Agriculture 
Anthropdegy 
Bit%thepnistry 
Biaitqy 
0usiwss Administrotion 
C hemist~y 
Civil Errginmrhg 
Chemical Engln-ring 
Computers & Data Pcwesshg 
Earth Scignceq 
Economics 
Education 
Electriod Engineering 
Engineering Mechanics 

t==wsCshY 
Home Ecmsmicr 
lndwsfrial Engineering 
Mathmat1cs 
Matisrials. Engineering 
Mechanical Engineering 
Medkina 
Physics 
Physical Chemistry 
~olym& Jt ien~e L Teehnolegy 
Probability 6 Statistics 
Psychalogy 
Sociology 
Vwatimol-Technical 

JOHN WSLEV & SONS, Inc. 
605 THIRD AVENUE 
NEW YORK, NEW YORK 10016 



ELECTRICITY 
AND 

MAGNETISM 





ELECTRICITY 
AND- 

MAGNETISM 

MUNIR H. NAYFEH 
MORTON K. BRUSSEL 

University of Illinois 
at Urbana-Champaign 

JOHN WILEY & SONS 

New Y ork Chichester Brisbane Toronto Singapore 



Copyright 0 1985, by John Wiley & Sons, Inc. 

All rights reserved. Published simultaneously in Canada. 

Reproduction or translation of any part of 
this work beyond that permitted by Sections 
107 and 108 of the 1976 United States Copyright 
Act without the permission of the copyright 
owner is unlawful. Requests for permission 
or further infonhatian shouw be addressed t o  
the Permissions Department, John Wiley & Sons. 

Library of Congress Catabging in Pu&&n Dora: 

Nayfeh, Munir H. (Munir Rasan) 
Electricity and maghttism 

Includes indexes. 
I. Electricity. 2. Magnetism. 3. Electromagnetic 

fields. I. Brussel, Morton K. 11. Title. 
QC522.N43 1985 537 84- 19478 
ISBN 0-471 -82985-4 

Printed in Singapore 



To Our Parents 





PREFACE 

This book is based on lecture notes that we have prepared and taught in our classes 
on electricity and magnetism and electromagnetic fields for several years. It is de- 
signed as a text-book for a two-semester course for students of physics but, with the 
selective omission of some material, it can well serve a one-semester course. No 
previous courses on the subject are required beyond the freshman general physics. 
so that the text can accommodate a wide readership for students in science or 
engineering. 

Influenced by the feedback from the students and other instructors who used the 
lecture notes, we have chosen to address the lament often heard from students study- 
ing electromagnetism: "I really understand the theory; I just can't work the prob- 
lems." This book presents 300 detailed problem-like examples at various levels of 
difficulty whose solutions illustrate various techniques and touch on every aspect of 
the material. From these examples, the student learns how to apply the formalism to 
concrete situations and practical problems. Self-confidence in analyzing problems is 
therefore promoted, and in this way competence is made more accessible. 

An important feature of this book that sets it apart from the available books at 
the same level is the chapter on vector algebra. Although it is customary to expect 
the students to have some knowledge of analytical geometry and vector analysis, 
many are very uncertain about the mathematics of the coordinate systems, analyt- 
ical geometry, and vector relationships, analysis and calculus. This chapter is orga- 
nized to be a self-contained source of such information. 

The chapter on the microscopic theory of magnetism gives in a simple, straight- 
forward way, using classical analogies, the Heisenberg explanation of ferromagne- 
tism, which is based on spin-spin interactions. In the existing books only the phe- 
nomenological explanation given by Weiss is presented. This chapter, therefore, 
makes this book the only book at this level with an up-to-date explanation of the 
phenomenon. This treatment does not require the student to know quantum 
mechanics, since the classical analogy of the spin is used. 

Applications involving discrete quantum mechanical dipoles in external electric or 
magnetic fields are presented. The results are compared to the cases involving 
classical dipoles. These examples, also, do not require a knowledge of quantum 
mechanics. 

We explain in Chapters 4, 7, and 9, the use of the method of images for the 
solution of dielectric, current, and magnetic problems. These topics are not ex- 
plained in the existing books at this level. Also, magnetic circuits are presented in 
analogy with electric circuits and are used to design electro- or permanent magnet 
systems. We employ the very useful methods of coefficients of potential and 
capacitance more extensively than is customary in solving electrostatic problems. 
Moreover, the corresponding method of coefficients of resistance is introduced and 
is used to solve current problems. The presentation of these special techniques may 
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be omitted without a loss of continuity (hence, they are labeled by asterisks for 
quick identification). 

The magnetic scalar potential (magnetic pole) concept is introduced in close anal- 
ogy with the electrostatic potential (electric charge) concept. Comparisons with the 
vector potential concept are developed and are further illustrated in a number of 
examples. 

The boundary conditions on the electromagnetic fields and on the scalar electric 
and magnetic potential, and on the vector magnetic potentials are given special 
attention. Often the relevant applications are solved with various methods in order 
to present the various boundary conditions and their interrelationships. 

All the material on radiation is placed in one chapter, Chapter 15. This procedure 
allows us to give comparisons and interrelationships between the various analysis 
methods employed, resulting in a coherent treatment of the subject. 

The exercises presented at the end of each chapter are chosen with the goal of 
further training the students. The problems fall into two categories. In the first 
category are extensions of the examples in the chapter. The student thus already has 
a head start on these problems and has an excellent chance of solving them com- 
pletely. The other category is more challenging and is intended to further develop 
the student's independent comprehension of the material. 

Our book can also be used for one-semester courses for students at the junior 
level by selectively choosing a subset of chapters that emphasizes Maxwell's equations 
and their implications. We have used the book successfully for such courses by omit- 
ting Chapters 1, 5, 7, 10, 11, 13 (with the exception of the continuity equation and 
Faraday's law in Chapters 7 and ll),  without any loss of continuity. Moreover, we 
omitted the following special techniques: magnetic circuits, the application of the 
method images to dielectrics, current, and magnetic problems, the methods of coeffi- 
cients of resistance and potential. Also, we omitted Sections 17.1 to 17.4. These are 
labeled so that they can be conveniently identified. 

We are indebted to all of our students, in particular to Walter Mieher and Glen 
Herrmannsfeldt for proofreading the manuscript, and to all of our colleagues, 
especially to Professor Robert D. Sard, for their constructive suggestions. Special 
thanks go to Phyllis Brussel, Hataf, Hasan, Haha, Ammar, and Osamah P.!ayfeh. 

Munir H. Nayfeh 
Morton K. Brussel 
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VECTOR ANALYSIS 

1.1 Properties of Vectors and Coordinate Systems 

Ordinary numbers are called scalars. They may be real or complex numbers. In 
contrast to scalars, we have other quantities called vectors. These quantities com- 
bine with each other differently than scalars. In physics they are used to represent 
objects that have both magnitude and direction, the prototype of which is a displace- 
ment. Mathematically, vectors are simply quantities that behave and combine ac- 
cording to the following rules. 

1. The sum of two vectors u and v is another vector: u + v = w. The sum is a 
commutative binary operation; that is, u + v = v + u. 

2. Under summation, the associative law holds. For vectors u, v, and w, 

3. Any vector can be "multiplied" by a scalar to yield another vector, 

We shall represent vectors geometrically by directed line segments (i.e., arrows). 
The magnitude of the vector is proportional to the length of the line segment, and 
the direction is given by the orientation of the arrow-that is, the d i r e c t i o n u h i c h  
it points. The rules to be followed in performing this (vector) addition geometrically 
are these (see Fig. 1.1): On a diagram drawn to scale lay out the displacement vector 
u; then draw v with its tail at the head of u, and draw a line from the tail of u to the 
head of v to construct the vector sum w. This is a displacement equivalent in length 
and direction to the successive displacements u and v. This procedure can be gen- 
eralized to obtain the sum of any number of successive displacements. 

1.1.1 Base Vectors and Coordinate Systems 

Choosing a coordinate system in space is essentially equivalent to choosing a set of 
base vectors. If we choose a cartesian coordinate system (Fig. 1.2), our base vectors 
are chosen to be along three fixed mutually perpendicular (orthogonal) fixed direc- 
tions called the x, y, and z directions. If we represent a vector by an arrow, the 
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Figure 1.1 Geometrical definition of the sum 
of two vectors u and v. 

X 

Figure 1.2 Definition of the cartesian coordi- 
nate system, showing the associated unit 
vectors. 

perpendicular projections of the arrow upon the three coordinate axes are called the 
cartesian components of the vector in these directions. In terms of these components, 
the magnitude of a vector A is as follows*: 

Magnitude of A = IAl = (A: + A; + A:)'/* 

A unit vector is that vector which when multiplied by the magnitude IAl, yields 
the vector A; that is, A = [ A I L  It provides a means for indicating direction. Unit 
vectors along x, y, and z coordinate axes (cartesian) are denoted by 9, 9, 2, respec- 
tively. They provide a convenient and fundamental set of base vectors. In terms of 
cartesian unit vectors, any vector A is represented by 

where A,, A,, and A, are the components of A along the 9, 9, and 2 directions, 
respectively. 

We shall restrict our attention to cases where the base vectors form an orthog- 
onal set. Moreover the magnitude of each base vector will be taken as unity (ortho- 
normal). The most commonly used base vectors in ordinary three-dimensional space 
are the unit base vectors (9,9,2). These vectors are considered to be constant vec- 
tors. Neither their directions nor their magnitudes depend on where they are located 
with respect to some reference point in space. It is the constancy of this ortho- 
normal set of base vectors that we wish to emphasize by the word cartesian. 

*Throughout this book scalars are in italics and vectors are in boldface. 
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The representation of vectors using the unit vectors is very useful in vector 
manipulations. For example, to add A to B we simply add the cartesian 
components: 

A + B = (A, + B,)% + (A, + B,)Q + (A, + B,)2 

It is frequently convenient to use other sets of base vectors whose directions do 
happen to depend on their locations (curvilinear base vectors). For example, we 
shall define and often use a spherical coordinate system and a cylindrical coordinate 
system. For each of these systems we shall find an orthonormal set of associated 
base vectors that depend on where in space they are located. 

Recall that the cartesian unit vector P may be defined as the unit vector that is 
perpendicular to any plane x = constant. Similarly, for the Q and 2 unit vectors we 
respectively associate the planes y = constant and z = constant. Now, there are 
other surfaces that one can describe that correspond to some geometrical variable 
being constant. If we can find three surfaces, defined by (three) geometrical vari- 
ables, that intersect each other perpendicularly at a point, then at this point we can 
define three associated mutually perpendicular vectors that are normal to these 
surfaces. In describing the spherical and cylindrical systems, we cite two instances 
where we find it useful to do so. (There are many others.) 

In the cylindrical coordinate system (Fig. 1.3) we define a set of base vectors at a 
point by considering surfaces, two of which are planes and one of which is a 
cylinder. The surfaces are denoted by the following equations: 

(a) z = constant 

(b) p = constant = d m ,  
(c) 4 = constant = tan- '(ylx) 

In equation (a) the z coordinate specifies a set of parallel planes. It is defined by 
reference to a reference plane called the z = 0 plane. The unit vector 2 is then a 
constant vector pointing in the (positive) direction (which may be chosen arbitrari- 
ly), perpendicular to the z = constant planes. The z axis is chosen to be a line 
pointing in the z direction (for - co c z c + co). 

Figure 1.3 Definition of the cylindrical coordinate 
system, showing the associated unit vectors. 
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In equation (b) the p coordinate is defined with reference to the z axis by a set of 
cylindrically circular surfaces that intersect the z = constant planes perpendicularly. 
The distance p from a particular surface to the z axis is the radius of the cylindrical 
surface. The unit vector fi is perpendicular to the cylindrical surface, pointing away 
from the z axis. Its direction depends upon what geometrical point of the circle 
resulting from intersection of the planes z = constant and p = constant is con- 
sidered. Thus, in Fig. 1.3, 6 is a function of the variable 4 defined in equation (c) 
(for p > 0). L 

In equation (c) the only surfaces that can perpendicularly intersect the previously 
defined surfaces at all points of intersection are planes that contain* the z axis. One 
such plane is called the 4 = 0 plane and is chosen arbitrarily. The 4 unit vectors lie 
perpendicular to the 4 = constant surfaces, and depend upon the angle 4 of the 
plane with reference to the = 0 plane. 

The intersection of the surfaces described by equations (a), (b), and (c) above 
locate points in space, just as the intersection of the cartesian coordinate planes do. 
However, the cylindrical unit vectors are well specified only when a point (not on 
the z axis) is specified. (The origin is specified by setting z = 0 and p = 0.) Once this 
has been done by assigning values of (p, 4 ,  z) or (x, y, z) to tpe point, any vector may 
be expressed in terms of the cylindrical unit vectors (2, fi, 4 )  at that point. 

One can easily show that these cylindrical unit vectors are related to the cartesian 
unit vectors by the following relations. 

Remember that 6 and 6 depend upon the coordinate 4 .  Thus, for any vector A and 
for a point at which the unit vectors are 2, fi, 6, A ZE A,2 + A,fi + ~~6 since 
{ 2 , 6 ,  6 )  form an orthonormal set. If A(r) is a vector point field, the natural triad of 
base vectors used to express A will be that defined by the location r. Note that the 
displacement vector r to a point (z, p, 4 )  is given by r = pfi + z2. 

We shall not describe the spherical coordinate system (Fig. 1.4) in the detail used 
above for the cylindrical system, except to note that the constant surfaces chosen are 
as follows: 

(a) r = constant = ,/-, which describes a sphere of radius r with 
respect to the origin. 

(b) 8 = constant = cos-'(zlr), which describes a right circular cone with open- 
ing angle 8. 

(c) 4 = constant = tan-'(ylx), which describes a plane containing the axis of 
the cone in (b). 

The unit vectors prescribed by these surfaces are denoted P, 0, 6 ,  respectively, and 
form an orthonormal set once the point (not at the origin and not at the z axis) 
located by the intersection of the three orthogonal surfaces is determined. These 
unit vectors are given in terms of the cartesian unit vectors by the following 
relations. 

P = S  sin 8 cos 4 + Q sin 8 sin 4 + 2 cos 8 

8 = I cos 8 cos 4 + f cos 8 sin 4 - 2 sin 8 

6 =  - 2  sin 4 + f cos 4 
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Figure 1.4 Definition of the spherical coordinate system, 
showing the associated unit vectors. 

If A is a member of a vector field, A(r), then at every point given by the displace- 
ment r one can express *A(r) in terms of the base vectors associated with that point: 
A(r) = A,P + ~ , 6  + A,$, where A, is the projection of A on f ,  and so on. The 
displacement vector to a point (r, 8,4) is given simply r = Pr. 

1.1.2 The Scalar Product (Dot Product) 

An important concept in vector algebra is that of the scalar product of two vectors. 
It is denoted by A .  B and also called dot product or inner product. It is defined 
according to the following rule: A . B = 1 A 1 1  Bl cos a, where I A 1 and I BI are the 
magnitudes of A and B, and a is the angle between A and B. It can easily be seen 
that the scalar product, as defined, has the following properties: Two vectors whose 
scalar product is zero are said to be orthogonal; that is, if A B = 0, A is said to be 
orthogonal to B. The unit cartesian vectors 9, Q, and 2 are said to constitute an 
orthonormal set of base vectors because they are orthogonal to each other and their 
magnitudes are normalized to unity. 

1.1.3 The Vector Product (Cross Product) 

We have seen that we can assign a scalar to any pair of vectors. The operation that 
does this is called the scalar product. We now wish to assign a vector quantity to 
any pair of vectors, A and B, and so we define what is known as a vector product (or 
cross product); it is denoted by A x B. The direction of the vector product is taken 
to be perpendicular to the plane determined by the pair of vectors. Its magnitude is 
given by the area of the parallelogram whose sides are formed by the vector pair. 
Therefore, if A is a unit vector perpendicular to the plane formed by the vector pair 
(A, B), then the vector product is defined according to the following rule. 
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Figure 1.5 Definition of the right-hand screw 
convention, which gives the sense of the cross 
product of the vectors A and B. 

So far the definition given remains ambiguous because the normal to the plane of A 
and B may point "up" or "down." To specify which way A points, we use the right- 
hand screw convention. We say that if A is rotated to the direction of B, through the 
angle a (1 180"), then the same sence of rotation given to a right-handed screw 
determines A, which points along the direction of advance of the screw as it is 
rotated (Fig. 1.5). 

In terms of cartesian unit vectors the vector product is expressed as 

A x B = A,  A,  A ,  , a determinant I: : :I 
Whenever we have a set of three orthonormal vectors, &,, C,, and C,, we say we 

have a right-handed system when Ci x Cj = C, where i, j, k are in the order (1,2,3), 
(2,3, l), or (3, 1,2). These are cyclic permutations of the integers 1 ,  2, 3. Note that 
for a right-handed system given by the triplet {C,, C,, C,), one has C1 . (6, x 6,) = 1.  
The cartesian coordinate system we have used is right-handed if we identify x with 
1, y with 2, and z with 3. A left-handed system is a mirror image of a right-handed 
system. 

Two useful identities to be remembered are as follows: 

1. Triple scalar product 

A . ( B  x C ) = ( A  x B ) . C  = ( C  x A ) . B  

(It is the volume of a parallelepiped whose edges are A, B, and C.) 
2. Triple vector product 

A x (B x C ) = B ( A . C ) - C ( A . B )  (1.8) 

The latter is frequently known as the "back cab" rule. It will be noted in Eq. (1.7) 
that the dot (.) and the cross ( x )  may be freely interchanged so long as {A, B, C) 
remain in cyclic order. 

1.2 Elements of Displacement, Area, and Volume; Solid Angle 
1.2.1 Element of Displacement 

Consider two points in space (x, y, x) and (x + Ax, y + Ay, z + Az). The first point is 
displaced relative to the second by the displacement Ar; that is, 

A r g A x + Q A y + 2 A z  (1.9) 
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Figure 1.6 The coordinates of two nearby points in 
cylindrical coordinates that may be used to define the dif- 
ferential displacements in this system. 

expressed in a cartesian system. A differential element of displacement is conse- 
quently written 

d r = d x S + d y Q + d z 2  (1.10) 

We now wish to express Ar (or dr)  in terms of cylindrical and spherical coordinates 
and their associated unit vectors. We again assume that Ar may be made arbitrarily 
small, in the limit calling it dr. 

Consider Fig. 1.6, where two points arL displaced by Ar. In the cylindrical coordi- 
nate system we have base vectors that are different at the two points 1 and 2. Thus 

where 

p2 p1 + A p  bz - Dl  + A@ z2  = z1  + AZ e2 = el = 2 (1.12) 

Substituting Eq. (1.12) in Eq. (1.11) and dropping products of differentials, we obtain 

A r = A p ( i l  + p l  A f i + A z 2  (1.13) 

If points ( 1 )  and ( 2 )  are close enough together then, to good approximation, 

For A p  sufficiently small (4 w 4, = 4) we can see that Ap  = 10, IAq5 4. As a result, 
Eq. (1.12) becomes 

A r = A p b l  + P , A &  + A 2 2  (1.14) 

As point 2 approaches point 1, we can write the differential displacement as 

dr = dl,b + d144 + d l 3  (1.1 5 )  

where 

dl, = d p  dl, = p dq5 dl, = d z  (1.16) 

are the elements of displacement in the p, q5, and z directions, respectively. Thus 

d r = d p b + P d q 5 4 + d ~ 2  (1.17) 
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Figure 1.7 Differential displacements in spher- 
ical coordinates. 

where { p ,  4 ,  z }  are defined at the point where the displacement dr is made. Geo- 
metrically this is a natural result, since close enough to any point of space (z, p, 4 )  
we can define a "cartesianlike" system in terms of which any element of length may 
be expressed directly. 

Instead of deriving the element of displacement at a point in terms of spherical 
unit vectors at !htt point, we shall simply make the remark that at any point the 
unit vectors {P, 0,+) serve to establish a cartesian system locally (near the point). It 
will be seen from Fig. 1.7 that the elements of length along the three directions near 
this point are given by 

dl, = dr dl, = r d6  dl,  = r sin 8 d 4  (1.18) 

and that 

dr = dr P + r d8  6 + r sin 8 d 4  6 = dl, P + dl, 6 + dl, 6 (1.19) 

1.2.2 Element of Surface Area 

Having determined expressions for elements of displacement in various coordinate 
systems, we can now determine elements of surface area. There are three elements of 
s~rface area for every coordinate system; these are of the form d l ,  dl , ,  d l ,  dl, ,  and 
dl ,  d l , .  For cartesian coordinates, we have 

dx  d y  d y  d z  d z  dx  (1.20) 

corresponding to the surfaces z = constant, x = constant, and y = constant, respec- 
tively. Similarly, for cylindrical coordinates, elements of surface area on the surfaces 
that define the coordinates are 

d z d p  p d p  d 4  p d 4  d z  (1.21) 

For spherical coordinates we have 

r dr d6 r Z  sin 8 d6 d 4  r sin 8 d+ dr (1.22) 

A direction may be associated with an element of area. This direction is normal to 
the area. If dl, dl j  is the element of area, the normal direction is given by the cross 
product C, x Cj, and we may denote the area as a vector (Ci dl,) x (Cj dlj)  = C, dli d l j .  
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. IC 
( b )  

Figure 1.8 Definition of plane and solid angles. (a) Plane angle dB 
(b)  Solid angle dQ. 

Often we shall more simply denote the element of area as da = A da, where the sense 
of A must be specified but is always normal to the surface. 

1.2.3 Solid Angle 

When an arc element ds of a circle in a plane is referred to its center, we use the 
concept of an angle d0 = ds/r where r is the radius of the circle (Fig. 1.8~). On the 
other hand when an element of surface area is referred to an origin, it, is often 
convenient to use the concept of solid angle (see Fig. 1.8b). The differential element 
d o  of solid angle with respect to the origin is defined as follows: 

da.f daA.f dacosy do=----- - - 
r2 r2 r2 

Here, the surface element da is located at a point displaced from the origin by the 
vector r E Pr, and hence y is the angle between A and P. Since da.P is just the 
element of area of a sphere of radius r, then substituting da = r2 sin 8 d0 db, we see 
that dR is also given by 

which is an element of area of a unit sphere. 
Physically, the solid angle is the "opening angle" of a cone whose sides interpept 

the area element in question. Thus, just as for ordinary angular elements do, where 
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Figure 1.9 Illustrating why the solid angle 
subtended by a closed surface with respect to 
an origin inside the surface is 4n and to an 
origin outside the surface is zero. 

we have r d6 = dl,,,,,, = dl cos $, for an infinitesimal element of area of a sphere 
(which approximates a rectangular planar area) we have da,,,,,, = r2 sin6d6 d4, da 

r2 dR. The unit of solid angle is known as the steradian. It is clearly analogous 
to the unit of angle, the radian. Any finite solid angle is expressed as 
R = J dR = J sin 6 d6 d4, where 6 and 4 are the spherical coordinates of the spher- 
ical surface element intercepted. If we have a surface that completely encloses the 
origin, then R = 471. If we have a closed surface that does not enclose the origin and 
if we choose the direction of da always to point out from the closed surface (or into 
the surface), then R = 0. This is (see Fig. 1.9) essentially due to the fact that for each 
positive contribution of solid angle there is an equal contribution of negative solid 
angle, as seen from the origin. 

1.2.4 Element of Volume 

Remembering that A . ( B  x C) is the volume of a parallelepiped, we have that the 
volume element for a system of base vectors {C1, C,, C,) is simply given by the vector 
triple product: 

do = dl, C, .(dl2 C2 x dl, 6,) 

dv E I & ,  .(e2 x e3)ldll dl2 dl, 

where the dlj are the magnitudes of the elements of displacements along the direc- 
tion of the respective base vectors 6,. Thus, in the cartesian system, 

do = IS.(f x 2)ldxdydz = dxdydz (1.25) 

In the cylindrical system we have 

and in the spherical coordinate system we have 
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1.3 Gradient 
If we wish to express the change in a scalar function of position f ( r )  at the location 
s~c i f i ed  by r, then writing f and r in cartesian components, we find the differential 
change to be 

We now define a linear differential "vector operator" called del, and symbolized V 
as follows: 

Since dr = S dx + 9 dy  + 2 dz, then from the definition of the dot product, 

df = ( V f )  - dr (1.29) 

where Vf is a vector point function, and is called the gradient o f f :  

af af af gradf = V f  =$--+f-+2- ax ay az 
Some applications involve the operation of the above gradient operator on vector 

fields. If we wish to express the change in a vector field A at the location specified by 
r, then writing A and r in cartesian components, we find the differential change to be 

Using Eq. (1.30), one can show that the scalar product of dr and V is 

Thus 

d A  = (dr . V)A(r)  (1.32) 

In words, the scalar operator (dr - V )  acting on a vector point function A(r) generates 
the spatial differential of A, dA, at the point in question. 

Figure 1.10 The use of the surface f ( r )  = c = constant to show 
that the gradient of the function ,/(r) is normal to this surface. 
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Hence, the del (V) operator in cylindrical coordinates is 

Similarly, one can obtain expressions for Vf and V in spherical polar coordinates: 

as A i af A 1 af 
Vf =P-+0--+Q-- 

ar r 88 r sin 8 a4 
a * l a  A 1 a 

V=P-+9--+Q-- 
r 88 r sin 8 8 4  

1.4 The Divergence of a Vector and Gauss' Theorem 
For a vector field, A(r), we shall define the divergence, written variously as div A or 
V . A, by the expression 

where A V  is a differential volume and S is its surface. Moreover V . A may be shown 
to be equivalently definable as the scalar product of V with the vector A. We will 
first use the integral definition to derive the divergence of a vector explicitly. Con- 
sider a surface S whose surface element is denoted by da, then the integral 

P 

is called the ' I f lux of A through S." Clearly, as in our discussion of solid angle, S is 
assumed to have an orientation (with respect to the origin of the coordinate system 
used), and in general may or may not be closed. The element of flux through da is 
correspondingly given by dF = A . da where A is evaluated at the center of da. Now 
consider the infinitesimal volume element dv, shown in Fig. 1.1 1. The sides of dv are 
given by the six spherical-coordinate surfaces: r = c, r = c + dr; 8 = c', 8 = c' + dB, 

Figure 1.11 Determination of the divergence of a vec- 
tor in spherical coordinates. 
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4 = c", 4 = c" + d4, and its volume is r2 sin 6 dr d6 d4. We compute the fluxes dFl, 
dF2,. . . , dF6 through the sides 1, 2,. . . , 6  of the volume element described above 
(and illustrated in the figure). 

dF, + dF2 = - {r2Ar sin 6 dB d 4 ) ,  + {r2Ar sin 6 d6 d 4 ) ,  = d[r2 sin 6 d6 d 4  ArI2, 

dF, + dF, = - {r sin 6 d4  dr A,}, + {r sin 6 d4  dr A,), - d{r sin 6 d+ dr A,},,, 

dF, + dF6 = - {r d6 dr A,), + {r d6 dr A,), = d{r d6 dr A,),. , 
The quantities in the braces can be evaluated at the center of the faces. Thus, for 

surfaces 1 and 2 only functions of r are different: 
a 

d{r2 sin 6 d0 d4  A,),. , = d{r2Ar),, , sin 6 d6 d4  = - {r2Ar)dr sin 6 d6 d+ 
ar 

Similarly, 
a 

d{r sin 6 d4 dr A,),, , = d{sin 6 A,),, ,r dr dq5 = - {sin 6 A,)r d6 dr d+ ae 
a 

d{r dr d6 A,),, , = - {A,)r dr d6 d4  
a4 

Therefore 

C"= dFj 
V . A =  

[r2 sin 6 dr dB d+ 1 
that is, 

We now use the direct scalar product V . A  to arrive at the divergence in the 
various coordinate systems. The V operator in spherical coordinates is given by Eq. 
(1.36), and thus 

Expanding the indicated scalar product, we get nine terms: 

6 a +-.-[PA, + 6A0 +&A,] 
r sin 6 84  

Now, perform the implied derivatives, noting, for example, that 

and so forth. There will be 18 individual terms, but if we remember that 
P .6 = P 6 = 4.4 = 0, and so on, we obtain just 12 nonzero terms: 

4 a~ 4 a6 4 86 1 aA, +-.- A,+-.- A, +-.- 
r sin 6 a+ r sin 6 a+ r sin 6 a+ 
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Table 1.1 

The values of the partial derivatives of the unit vectors in this expression are given 
in Table 1.1. This table is easily constructed by usin the expressions for P, 6, and 4 
given previously in Eq. (1.3). For example, since if = f cos 8 cos 4 + 9 cos 8 sin 4 
- 2 sin 8 and the cartesian unit vectors are constant, &/a8 = *(-sin 8)cos 4 
+ 9(- sin 8)sin 4 - 2 cos 8 = - P. Substitution will yield the same result we got in 
1.39. 

The operator V in cylindrical coordinates was shown to be [see Eq. (1.35)] 

Proceeding by the direct product method to calculate V . A in cylindrical coordinates 
and using the fact that 2 is a constant unit vector and that 0 and 4 depend on the 
coordinate 4 only [see Eq. (1.2)], we find that the only nonzero derivative of the 
unit vectors are a?/a+ = 4 and 84/84 = -8. Therefore 

Finally, in the case of cartesian coordinates the operator V was shown in Eq. (1.28) 
to be 

Expanding V - A directly gives 

The Divergence Theorem (Gauss' Theorem). Finally we prove a relation that is 
very useful in electrostatics: the divergence theorem, which involves the divergence 
operation. From our definitions of V . A we have 

(V - A)*" - da 
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Figure 1.12 Proving the divergence theorem (Gauss' 
law) by subdividing the volume V of surface S into 
many infinitesimal volumes Aoi of surfaces si and the 
application of the definition of the divergence in terms 
of the infinitesimal volumes. 

for small Av. Consider a volume V with a surface S subdivided into N small volume 
elements Vvi, with surfaces si as shown in Fig. 1.12. Then 

N N 

1 (V . A), Avi = 1 A .  da 
i =  1 i =  1 bi 

If we take the limit as N + co and Avi + 0, on the left we have a volume integral 
and on the right a surface integral 

(1.42) 

The fact that 
r 

lim 1 da 
N-m i 

becomes an integral over the surface external to the whole volume can be seen from 
Fig. 1.12. Note that the net flux through any internal surface is zero, because such a 
surface is common to two contiguous volume elements whose outward normals 
point oppositely on the common surface. All that remains are fluxes through sur- 
faces not common to two volume elements-namely, surfaces on the surface of V 
itself. 

Equation (1.42), which is known as the divergence theorem (or Gauss' theorem), 
proves very useful when one wishes to relate values of a vector field on the surface 
of a region to values in the interior. It often will happen that we may want to 
convert a surface integral to a volume integral, or vice versa, as will be shown in 
Chapters 3 and 4. 

1.5 The Curl and Stokes' Theorem 
We now introduce another useful operation involving V. For a vector field, A(r), we 
shall define the curl written as V x A or curl A by the expression 
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Figure 1.13 Determination of the explicit 
form of the curl of a vector in cartesian co- 
ordinates using a differential rectangular box. 

where Av is a small volume of surface area S. This definition can now be used to 
determine V x A  in a cartesian representation. Consider the volume element 
do = dx dy  dz shown in Fig. 1.13. The contributions from the opposite sides 1 and 2 
to the integral J da x A  are 

j l da  x A = { - f d y d z  x A ) ,  = -dydz(2Ay - g ~ , ) ,  

x A = ( 9  dy  dz x A ) ,  = dy dr{2Ay - 9A,) ,  

The sum of these two integrals is the (partial) differential of the expression shown in 
braces taken between faces 1 and 2: 

Similarly, for the opposite sides 3 and 4 and opposite sides 5 and 6, we can readily 
show that 

Summing all the contributions gives 

Similar procedures can be used to determine V x A  in spherical and cylindrical 
coordinates. We may also form the cross product of the operator V with the vector 
point function A by employing the cross product of two vectors. One can easily 
show that this operation gives exactly Eq. (1.44). 
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In determinant form we can write V x  A  in cartesian coordinates as 

The determinant must be expanded in terms of the top row to have meaning. 
Since V  x  A  is formed like a cross product of two vectors, V  and A, it is expected 

to have a value independent of the particular coordinate system in which it is 
represented. We shall see, for example, that V  x  A  has a physical meaning and 
retains that meaning independent of the system of coordinates in which A  is ex- 
pressed. Thus, we shall assume that V  x  A  is a vector, just as we assumed Vf was a 
vector, and V  . A  a scalar. 

One can formally obtain different coordinate representations for V  x  A  by writ- 
ing the operator V  and the vector A  in a consistent set of coordinates. We need only 
be careful to understand that unit vectors in curvilinear coordinates need not have 
partial derivatives equal to zero (unlike the cartesian {a,$, 2) unit vectors, whose 
derivatives are always zero). This method gives the following expression for the curl 
in cylindrical coordinates: 

V x A =  

Equation (1.46) indicates that there is no simple determinant notation that can be 
applied to the curl of a vector in cylindrical coordinates. However, one can still 
write it in a determinant form: 

a a a  
- - - 

ax ay az 
Ax A, A, 

Similarly, one may derive the following expression for V  x  A  in spherical 
coordinates. 

Again, a determinantal notation can be used: 

I t d r s i n d l  

V X A = -  - 
rZ sin 6 ar a4 l a  a I I A, rAe r sin A. 1 

Stokes' Theorem. Finally we prove a very useful relation in magnetostatics that 
involves the curl or a vector: Stokes' theorem. To this end we consider the compo- 
nent of V  x  A  in the direction 8. To compute this we consider a small volume 
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Figure 1.14 Determination of the component 
of a curl of a vector along a unit vector &, by 
applying the definition of the curl to a dif- 
ferential pillbox of negligible height 6, and axis 
along &. 

element of surface S, shown in Fig. 1.14, in the form of a cylinder whose top and 
bottom each of area S,  are perpendicular to ? and whose sides of width 6 and area 
S, is parallel to ?. Using Eq. (1.43) for this volume element, we have 

We now calculate the component of V x A along ?. Taking the dot product of C 
with V x A gives: 

Only the side band will contribute in Eq. (1.48), since ? x S, = 0. Therefore 

If 6 is sufficiently small, then one writes da = 6 dl A, where dl is an element of length 
along the band, and A is a unit vector normal to the band. Noting that 6 x C = *t, 
where i is a unit vector tangent to the band, then the triple scalar product C x da A 
can be written as (A - i)6 dl. Since i dl is dr, then we get 

As 6 + 0, S, is the area bordered by the path of integration and contains the vector 
i. The sense of circulation is related to ? as the turning of a right-hand screw is to its 
advance. Written formally. 

where S, represents an area whose normal is parallel to ? and whose perimeter of 
length C is the path of integration. Note that the integral 8, A dr is called the 
circulation of A around C. With Eq. (1.49) one can readily obtain the components of 
V x A in orthogonal curvilinear coordinates. 
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We now use Eq. (1.49) to prove Stokes' theorem, which relates the flux of the curl 
of A through a surface to the circulation of A around the edge of the surface. 
Consider an open surface S whose periphery is a closed curve C. We take C to be 
simply connected; that is, it can be continuously shrunk down to a point without the 
curves leaving the space. The surface S has two sides, one of which we declare the 
positive side. We now subdivide this surface into vector elements of area (6, Aa,) 
which are essentially planar if Aaj are small enough. For each of these area elements 
we may apply Eq. (1.49) for the component of the curl of A in the direction 6,; as 
follows: 

We now form the sum of the expressions in Eq. (1.50) for all the surface elements 
of the surface S. Thus 

In going to the limit as Aaj -* 0 and the number of elements tends to infinity, the 
left-hand side becomes an integral over the (open) surface S. The right-hand side 
becomes the line integral around curve C, since contributions of $ A .  dr for all line 
elements internal to S cancel, and only the contributions of the rim of S (that is, on 
C) remain. Therefore 

which is known as Stokes' theorem. The positive side of S and the sense in which C 
is traversed are related via the right-hand convention. 

An immediate udlization of Stokes' theorem is the derivation of the criterion for 
determining whether a field is conservative or not. If $ A .  dr = 0, for all possible 
closed paths, in a region of space, then it follows that V x A = 0 everywhere in this 
region. The converse is also true. Such a vector is called a conservative vector. We 
may therefore summarize the criteria that determine whether or not a vector field A 
is conservative in a region of space. If in some simply connected region one of the 
following relations holds, 

f cA .  dr = 0 for arbitrary C 

A = Vf for some scalar function f (see Example 1.2) 

then A is a conservative field. One of these criteria being true throughout a simply 
connected region of space implies that the other two also are true. 

1.6 Vector Manipulations of V 
1.6.1 Single Del Operations 

We have discussed the meanings of the gradient, divergence, and curl operations. In 
so doing we have come to regard the del operator, V, as a quantity that acquires 
meaning only by operating on what is "to the right" of it, but otherwise behaves in 
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many respects like an ordinary vector. We wish here to summarize some of these 
operations. Iff and g are scalar functions, and A and B are vector functions of 
position in space, then 

These formulas may all be proved by expressing V in cartesian components and 
comparing both sides of the above equations. 

1.6.2 Double Del Operations 

The del operator may be applied several times in succession. Considering a scalar 
point function f we have, for example, V . Vf and V x Vf. In cartesian coordinates, 

Since 9 . 9  = f  . f  = 2 . 2 =  1 and 2 . 9  = ! 2 . 2 = f . 2 = 0 ,  we have 

This is called the Laplacian operator. The Laplacian in other coordinates can be 
determined using similar procedures. In cylindrical and spherical coordinates it is 
given by 

'7 =ld(r2?l)+--- r2 ar r2 sin t~ a0 a ( s i n e g ) + m w  (1.64) 

The curl of the gradient of a scalar V x Vf can also be determined using similar 
procedures. In cartesian coordinates one writes 

v x (vf)  = 

2 9 2  
a a a  - - -  
ax ay a~ 
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Expanding gives 

but for well-behaved, continuous functions a!f/ay az = a2f/az ay, etc., the curl of the 
gradient of a scalar function vanishes [see Eq. (1.52) defining conservative vectors]; 
that is, 

With a vector field f, one can form the various double del expressions. One can 
show, however, that (V x V) f and (V x V) x f vanish. The quantity V . (V x f), the 
divergence of the curl of a vector can also be shown to be zero by direct calculation 
in cartesian coordinates; that is, 

Equation (1.66) is important in magnetostatics since the divergence of the magnetic 
field B is known to be zero (V . B = 0), then it allows casting of the magnetic field B 
in terms of a vector potential A: 

Finally we discuss the curl of the curl of a vector V x (V x f). This double del 
operation has wide application in the propagation of electromagnetic waves, a topic 
to be discussed in the later chapters of this book. Regarding V as a vector, V x (V 
x f) can be expanded by the usual triple vector product a x (b x c) = b(a.c) 
- (a . b)c. This gives 

V x (V x f) = V(V . f) - V . (Vf) (1.67) 

where Vf is a second-rank tensor or dyadic (see Example 1.3). In cartesian coordi- 
nates we have V . (Vf) = (V . V)f = V2f where V2 is the laplacian operator. 

1.7 Vector Integral Relations 
Here we discuss a number of extensions to the divergence theorem and Stokes' 
theorem. Although we will not need all of these extensions for the development of 
electricity and magnetism at the level of this book, we include them for the sake of 
completeness and as a future reference. 

Divergence Theorem. The integral relations given below in Eqs. (1.68) to (1.72) are 
extensions of the divergence theorem. 

This is called Green's first identity or theorem. 
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This is called Green's second identity or symmetrical theorem. 

Equations (1.68) and (1.69) can be proved easily by applying the divergence 
theorem to the vector F = @ V$ and F = @ V$ - $ V@, respectively, where @ and 
$ are scalar functions. 

Equations (1.70) and (1.71) can also be proved by applying the divergence 
theorem to the vector F = A x C and F = @C, respectively, where C is a constant 
vector. 

Stokes' Theorem. The following integral relations are extensions of Stokes' 
theorem. 

These two relations can be proved by applying Stokes' theorem to the vector 
F = B x C and F = @C, respectively, where C is a constant vector. 

Example 1.1 Velocity Field in a Water Drain 

Consider a vector field given by v(r] = p$ and shown in Fig. 1.15, where p is the distance 
from the z axis w is a constant, and 4 is associated with the angular coordinate I$ about the z 
axis. Is v conservative? 

Figure 1.15 Velocity field in a water drain. 
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That it is clearly not conservative is seen from considering its circulation on a circular path 
of radius R about the z axis: 

The circulation is nonzero, and therefore v is nonconservative. This example might bring to 
mind the velocity field of water going down the drain in a sink. The circulation of the water is 
not in general zero for such a system. 

Example 1.2 Conservative Nature of Radial Vectors-Potential Functions 

Consider a radial vector field given in spherical coordinates by A = f(r)P where f(r) is a 
scalar function that depends on r only. We will show below that this vector is conservative. 
The criteria that determine whether or not a vector is conservative are given in Eq. (1.52). 
Substituting A, = f (r), and A, = A, = 0 in V x A in spherical coordinates (Eq. 1.47) immedi- 
ately gives V x A = 0 ;  thus indicating that A is conservative. 

Radial vector fields are of importance to electrostatics since the electric field produced by a 
point charge is radial, and hence it is conservative. Because of the importance of this prop- 
erty, we will examine the conservative nature of these vectors from the point of view of the 
last criterion of Eq. (1.52). If A is conservative, then it must be written as the gradient of a 
scalar function @; that is, A = V@. The function @ is called a potential function correspond- 
ing to A. To show this we consider a function 

If the integral exists and is a continuous function of r, then from the expression for the 
gradient in spherical coordinates we see that 

The result is that there exists a function @ such that 

V@ = f (r)P 

A indeed has a potential function. 

Example 1.3 Gradient of a Vector-Dyadics 

This example deals with the gradient of a vector, which will be useful when we deal with 
forces on electric dipoles placed in external electric fields. Consider a vector E = Ex% + E y f  
+ E,2. Formally, we can define VE as follows: 

Expanding, we get 

The quantities SS, S f , .  . . are called unit dyads. Note that bf, for example, is not the same 
as fS;  thus we have nine different unit dyads in the gradient. A quantity that can be ex- 
panded in the form 

is called a dyadic, and the nine coefficients ai j  are its components. 



1.8 SUMMARY 25 

i t  is useful to examine the scalar product of a vector A = A,* + A,f + A,2 and a dyadic 
@ of the form given above. Consider the product A.m. Formally, we write 

As an example consider the product 2 .  @. The product has nine terms, including, for example, 
f . a, ,f%, It. a,, f f ,  f . a,, f 9, and 2 .  a3,2f. These individual products can be evaluated using 
the following rules: 

Analogous rules exist for the rest of the products and for the products f . @  and 2.a. See 
Problem 1.20 for a specific example. 

Example 1.4 Dirac Delta Function 

In this example we introduce a very useful function for dealing with point charges. We will 
define it here from a mathematical point of view. Its relevence to electromagnetism will be 
introduced later. The Dirac delta function, given the symbol 4r)  is defined as follows: 

q r )  = 0 for r # 0 (1.79) 

S G(r1)dv' = 1 (1.80) 

where the integral is carried out over all space. This definition shows that the delta function is 
a very high singular mathematical function; it is zero everywhere except at a single point and 
yet has a nonzero integral ("spike" function). This function is obviously not a continuous 
one; thus it should not be differentiated as a continuous function. Nevertheless it is a very 
useful mathematical property if handled cautiously. 

Another property of the Dirac delta function comes from its relation to the Laplacian or 
divergence operator; that is, 

It is easy to show by direct differentiation that 

Since V .  r = 3, V(l/r3) = - 3P/r4, then V. (r/r3) is zero for r # 0 and becomes indeterminate as 
r -, 0. The nature of the divergence at r = 0 can be examined using the divergence theorem. 
Applying the theorem to a small volume of radius R gives 

Since this result is true regardless of how small R, then one can replace the V.(r/r" by 4xG(r). 

1.8 Summary 
When an element of surface area da at r is referred to the origin, it is often convenient to use 
the concept of solid angle dR: 

da.P 
&=-- - sin 8 d8 dt#~ (1.23),(1.24) 

r2 
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If we have a surface S that completely encloses the origin, then R = gS dR = 4a, whereas if we 
have a closed surface that does not enclose the origin, then R = 0. 

The gradient operator V is a linear differential "vector operator" that can operate on 
scalar as well as vector fields f and A to give the gradient of a scalar, divergence of a vector, 
curl of a vector, and gradient of a vector. 

V x A = 1  ---I + f  --2 + 2  -I-- [: ad:] :] [: :] 

In the last equation the ellipsis (...) represents three analogous terms for each of the deriva- 
tives with respect to y and z. The gradient operator may be applied several times in suc- 
cession, or may be applied to products of functions. The outcome of such operations can be 
derived from the above basic differential operations. One important operation is the Lap- 
lacian operator acting on a scalar or vector function V-Vf = V2f or V2A. All operations can 
also be derived in terms of other coordinate systems (e.g., cylindrical and spherical systems). 

Some integral identities of the del (gradient) operations can be derived by integrating the 
differential ones over an arbitrary volume V bounded by a closed surface S, or over an open 
surface S bounded by a closed curve C. These include the divergence theorem and Stokes' 
theorem. 

A vector A is said to be conservative if 

V x A = O  or ~IA .dr = 0 (conservative A) 

If so, A can also be written as a gradient of a scalar 

A = -V@ (conservative A) 

Problems 
1.1 Determine the unit vector perpendicular to the plane that contains the vectors A = 29 

- 69 - 32 and B = 41 + 39 - 2. 

1.2 Determine an equation for the plane passing through the points P,(2, - 1, I), P2(3, 2, 
- I), and P,(- l,3,2). 

1.3 The position vectors of points PI and P2 are A = 31 + f + 22 and B = 1 - 29 - 42. 
Determine an equation for the plane passing through P2 and perpendicular to the line 
joining the points. 

1.4 (a) Show that Vr" = nr"-'r. (b) Find V lnlrl and V(l/r). 

1.5 Consider the surface defined by the equation 2xz2 - 3xy - 4x - 7 = 0. Find a unit 
vector normal to this surface at the point (1, - 1,2). 

1.6 Consider the function @ = x2yz3. In what direction from the point P(2, 1, - 1) is the 
directional derivative of @ a maximum? What is the magnitude of this maximum? 
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Show that V.(r/r3) = 0 if r # 0. 

If vectors A and B are conservative, prove that A  x B is solenoidal-that is, that it has 
a zero divergence. 

(a) Determine the constants, a, b, and c if the vector A = (x + 2y + az)l + (bx - 3y 
- z)f + (4x + cy + 2z)2 is irrotational (conservative). (b) Determine the function 4 ,  
where A = V@. 

What should the constant a be if the vector A  = (x + 3y)P + (y - 2z)f + (x + az)2 is 
solenoidal (has zero divergence)? 

Show that the vector E = r/r2 is conservative. Determine 4 such that E = -V4 and 
@(a) = 0, where a > 0. 
Show that the vector A = (6xy + z3)l + (3x2 - z)f + (3xz2 - y)2 is conservative. Find 
the corresponding potential function 4 such that A = V4. 

Determine V . r and the surface integral & r . A da, where S is a closed surface. 

Consider the vector A = 4x1 - 2y2f + z22 and the region bounded by x2 + y2 = 4, 
z = 0, and z = 3. (a) Determine V . A .  (b) Determine the unit vectors normal to the 
surfaces S, (z = 0), S2 (z = 3) and the curved surface S, (x2 + y2 = 4). (c) Verify the 
divergence theorem for A taken over the bounded region above. 

Consider the vector A = zP + xf - 3y2z2 and the surface of the cylinder S defined by 
x2 + y2 = 16. (a) Determine the unit vector normal to the surface of the cylinder h  as a 
function of x and y. (b) Evaluate the surface integral I, A . h  da over the first octant 
surface of the cylinder between z = 0 and z = 5. 

Consider the vector A = (2x - y)P - yz2f - y2z2, and S the upper half surface of the 
sphere x2 + y2 + z2 = 1. Verify Stokes' theorem, jsV x Ash da = 4, A.dr, where C is 
the boundary of the surface S. 

Prove that (a) $, A da = 0 and (b) $ r x A da = 0 for any closed surface. 

Prove that j V x B dv = rs A x B da and (b) j V4 dv = j @A da. 

Determine V2 In r,V2r" and V2(l/r) (r # 0.) 

Consider the dyadic 4 = 2 1  + f f  + 22 (see Example 1.3). Determine r . ( 4 .  r) and 
(r. 4 ) .  r. IS there any ambiguity in writing r .  4 .  r? 

Determine the gradient of r. 



ELECTROSTATICS 

2.1 Electric Charge 
The primordial stuff of electricity is electric charge. It is the essence of electrical 
phenomena. It is so basic that it is difficult to describe except in the context of the 
effects that are ascribed to its existence. These effects are only manifest as forces of 
interaction. We experience something and consequently seek to "explain" our ex- 
perience in terms of something more elemental. It may be, however, that charge is 
simply a property of certain of nature's elementary particles and does not exist 
"outside" of these particles (as in the case of the electron, the p meson, etc.). How- 
ever, we will talk of charge as if it possesses an independent existence. 

So far as we know, electric charge has the following characteristics: 

1. There are two kinds of electric charge, denoted arbitrarily as positive and 
negative charge. The magnitude of the charge is given by a positive real number, 
and its type is denoted by a plus (+) or minus (-)  sign. All charge is equivalent, 
however, in the sense that charges may be added to each other algebraically just like 
real (positive or negative) numbers to give other charges. It is found that two 
charges of the same sign physically repel each other, but two charges of opposite 
sign attract each other. 

2. In nature, the total amount of positive charge just balances the total amount of 
negative charge; electrical neutrality of objects is the most common occurrence. 
Moreover, it is not possible to create (or annihilate) positive (or negative) charge 
without creating or annihilating an equal amount of negative (or positive) charge. 
This may be regarded as a principle of conservation of charge. 

3. Physically, we also would like to believe in what may be called "charge sym- 
metry." This means that two worlds that differ only in that all charges in one have 
opposite signs from the charges of the other would be physically indistinguishable. 
We see "approximate" manifestations of this effect in the realm of elementary 
particle physics. There, it has been found that for every elementary particle with a 
positive charge, there exists another "identical" elementary particle that has a nega- 
tive charge of equal magnitude. Thus, we have electrons and positrons, protons and 
antiprotons, x +  mesons and x -  mesons, and so on. 

4. Charge is quantized. This means that there seems to be a minimum magnitude 
(nonzero) to electric charge. This minimum magnitude is associated, for example, 
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with the charge of a positron or electron. Therefore, all charges are integral multi- 
ples of this elementary charge. Mathematically, then, charge may be put into corre- 
spondence with the integers, if only we agree to call the magnitude of the electron 
charge unity. So far as we know, all the "elementary particles" of nature have a 
charge magnitude equal to the unit electron charge or zero charge, though it has 
recently been suggested that perhaps an elementary particle of subelectronic charge 
exists. (These particles, named quarks, have one-third or two-thirds of the unit 
electronic charge.) However, if quarks exist, charge will still be quantized. 

5. Whatever has charge has mass. One might state this by saying that electricity is 
a form of energy--or is always associated with energy. Objects with zero (rest) mass 
have no charge. Just as we talk of gravitational energy, so shall we talk of electric 
energy. 

The lightest charged particle that we know of is the electron. Its (rest) mass is 
9.1091 x kilogram. The rest mass of a nucleon (proton or neutron) is ap- 
proximately 1840 times larger. 

These characteristics of charge are not its only characteristics. We shall not 
answer questions such as "What is the geometrical size or shape of the elementary 
charge?" The characteristics we have listed, however, are those that are important 
to our understanding of electricity. 

2.2 Coulomb's Law 
Coulomb's law is associated with Charles Augustin de Coulomb (17361806), 
although Henry Cavendish (1731-1810) earlier (about 1773 to 1785) discovered it.* 
This law expresses succinctly how two stationary charges affect each other (Fig. 2.1). 
We write it as 

4142 A F,, = k-r,, = -F2, 
r : 2 

(2.1) 

Fl2 

Figure 2.1 Electric force between two 
charges of the same sign as given by 
Coulomb's law. 

* See R. S. Elliott, Electromagnetics (New York: Mffiraw-Hill, 1966) for a discussion of these historical 
points. 
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where 9, and 9, represent electric charges of objects (particles) 1 and 2, which may 
be positive or negative numbers, r,, is the distance from particle 1 to particle 2, F,, 
is the force on particle 2 due to particle 1, k is a positive constant of proportionality, 
and i12 = -i,, is a unit vector pointing from 9, to q,. 

In order for this law to be applied correctly, we must emphasize certain assump- 
tions implicit in its statement. 

1. It is often stated that this law is true for "point charges," meaning entities 
having no finite size. What is practically meant here is that the linear dimensions of 
the objects 1 and 2 are considered to be "negligible" compared to the distance 
between them, r,,. We shall subsequently discover that if the charges on the objects 
are distributed with spherical symmetry, the formula is true even if the diameters of 
the spheres (assumed noninterpenetrating) are not negligible. However, this is a 
special case. 

The idea of point charges runs into difficulty mathematically if r,, -+ 0. We shall 
adopt the point of view that two particles (particle implies a "negligibly" small 
object) can never have r,, = 0. Note that for two "nonnegligibly" sized objects the 
distance r,, is in any case ambiguous. The linear dimensions of subatomic elemen- 
tary particles are of the order of 10-l3 cm or less. 

2. The formula of Coulomb's law is true whether or not charges other than 9, and 
9, are nearby. It correctly gives the force between the charges 9, and 9,. Electric 
forces are then said to be two-body forces. These properties are sometimes subsumed 
under the title of the superposition principle. 

We now apply the superposition principle for the determination of the force on a 
charge due to more than one charge. Consider N point charges 1, 2, ... , N with 
scalar magnitudes q,, q,,. . ., q, located at displacements r,, r,,. . ., r,, respectively, 
from some fixed origin 0. The force exerted on the charge q located at displacement 
r by all of these other charges is obtained by summing vectorially the forces 

Coulomb's law thus states that between charges 9, and 9, the force (a) is propor- 
tional to q,, (b) is proportional to q,, (c) is proportional to llr:,, and (d) lies along 
the straight line connecting 9, and 9,. If q,q, is a negative number, then F,, is in 
the direction - P I ,  and F,, is in the direction +PI,. That is, we have attraction; 
otherwise we have repulsion. 

3. We shall use the MKS (meter-kilogram-second) system of units, wherein force 
is measured in newtons (1 N = 1 k g . m . ~ - ~ ;  that is, in units of mass (M) x length 
(L) x timeC2 (T -2). Energy is measured in joules (units of ML2T-,). In the SystPme 
International (SI) or MKSA* system of units, charge is measured in coulombs 
[abbreviation, C] or ampere-seconds (Aas). Charge Q, or charge per unit of time 
(current), is considered on an equal footing with mass, length, or time. Because the 
units of M, L, T, and Q, are independently specified, k as it appears in our formula 
is found from experiment to be 

where c is the speed of light in vacuum which is equal to 2.99792458 x lo8 m/s by 
definition or ~3 x lo8 m/s. The quantity so is sometimes called the permittivity of 

Sometimes referred to as "giorgi" units. 
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free space, and has the value 8.854 x lo-'' C2/N.m2; that is, with the dimensions 
Q2TZM-'L-3. The 472 is inserted to make certain expressions to be encountered 
simpler (that is, without a factor of 44,  and the system is therefore said to be 
rationalized. 

In the CGS (centimeter-gram-second) system of units, k = 1, and the unit of 
charge is set by Eq. (2.1). It has the dimensions dyne'12-centimeter; that is, 
M'I2LT-'. It is called the "statcoulomb" and is equal to (1/2.998) x coulomb. 
For further discussions of the system of units see Appendix I. 

4. Coulomb's law will give the correct total force on q, due to q, if both q, and q, 
are stationary. If q, is moving with respect to our reference system, then the total 
force F,, on a stationary q, is modified from that predicted by Coulomb's law. 
However, if the speed of travel are small compared to the speed of light (c = 
3 x lo8 m/s), the modifications are small. An analogous remark pertains to the force 
F,,. At one time it was thought that the electric forces acted instantaneously across 
the distance r,,-that no time interval intervened in the Coulomb interaction of the 
particles. 

We know now that this "action at a distance" concept is not valid, and that the 
effects on one charge due to another are propagated in time across the intervening 
space separating them. If the charges are stationary, however, we need not consider 
these effects. These effects are discussed in Chapters 15 and 17. 

5. It is a fascinating fact that Coulomb's law has the same form as Newton's 
gravitational law. The inverse-square character of this law seems to be verified over 
a very large range of distances, from the submicroscopic to the macroscopic. For 
distances which are familiar to us, macroscopic distances, the exponent 2 of the 
inverse-square dependence has been shown* to be accurate to better than one part 
in loi5. For submicroscopic distances also, down to the order of at least 10-l3 cm, 
we have found that the physical effects predicted by this force law seem true. 
Because of lack of evidence to the contrary we assume Coulomb's law to be true 
universally. 

2.3 Electric Field 
It will be observed that the net force F, in Eq. (2.2) depends linearly on the charge 
magnitude q. This suggests that the presence of the other charges creates a con- 
dition in space such that when charge q is placed in that space, it feels a force. The 
condition is described by saying that electric charge creates (or is associated with) 
an electric field. If an arbitrary ("test7') charge q is placed in this electric field 
(denoted by E) it will then experience a force F,, given by 

From Eq. (2.2) we see immediately that the electric field created by N stationary 
point charges q,, q,,. . .,qN is given by 

Even though we have defined the electric field with reference to forces on a charge q, 
the electric field is an entity independent of q because F is simply proportional to q. 

E. Williams, J. Faller, and H. Hill, Physical Review Letters, vol. 26, no. 12, p. 721, 1971. 
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When there are N stationary point charges, we may then use Eq. (2.4) to calculate 
the electric field E at a point in space whose displacement from a reference point 0 is 
denoted by r. We thus see that once we know where all of a given set of charges are 
located, we can find E at any point in space due to the charge distribution. Remem- 
ber that the charges are assumed to be stationary. To emphasize this, we say that 
the electric field is an electrostatic field. 

Example 2.1 Lines of Force 

If there is a curve in space, r(s), whose tangent vector, t(r) at every point lies parallel to the 
electric field at that point, we have what is referred to as a line offorce (or electric field line). If 
displacements r, and r locate two points on the curve and Ar = r, - r, then the necessary 
condition for the curve to represent a line of force is that, as r, approaches r, 

A dr A 

lim - - t(r) = aE(r) 
b-oAs ds 

where u is a scalar constant and s is taken to measure distance along the curve from some 
arbitrary point on the curve. If r is expressed in cartesian coordinates as r = xS + yf + z2, 

(b )  ( c )  

Figure 2.2 Lines of force of some configurations of charge. (a) A negative point charge. 
(b) Two point charges of opposite sign. (c) Two point charges of the same sign. 
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then substituting in Eq. (2.5) we find that a necessary condition is that, on the curve, 

We now show how this result can be used to find the lines of force of a point charge. From 
Coulomb's law, the field due to a "point charge" in the x-y plane is given by 

where r2 = x2 + y2 and P = [xP + y f ] / r .  Substituting for Ex and E, in Eq. (2.6) gives the 
following equation for the lines of force in the x-y plane: 

The solution to the equation dyldx = y/x is y = kx, where k is any constant. These are just the 
equations of straight lines passing through the origin (Fig. 2.24. The lines of force for two point 
charges of opposite and same sign but of same magnitude are shown in Figs. 2.26 and 2.2~. 

2.4 Charge Density 
In our discussion to this point we have treated the electric charge as being located 
on particles. We have considered only point charges-i.e., objects whose linear 
dimensions were negligible compared to the distance between them. Occasions arise 
when this procedure is not adequate because it is not convenient or practical to 
account for these charges individually. In these instances one assumes that there 
exists a well-behaved function of position in space such that the charge contained in 
any volume of space V is given by the relation 

where p(r), a function of the displacement r from some chosen origin is called the 
volume charge density. If electric charge is really smeared out so that it varies 
continuously in space, then p(r) is expressible as the mathematical limit 

. A9 d9 p(r) = lim - = - 
AD dv 

where Aq is the total charge in volume Av. If our electric measurements are insensi- 
tive to linear dimensions smaller than d, then we shall assume that the charge Aq 
contained in a volume Av x d3 defines the macroscopic charge density, p, at the 
volume element in question p(r) = Aq/Av = ZqJAv. Here Zqi denotes the sum of all 
the constituent charges in Av. Moreover, we shall assume that this charge density p 
is well behaved for whatever mathematical calculations we might like-to perform, 
and that the charge within Av may be considered in all such calculations as point 
charges of magnitude Aq. The density p(r) as expressed above is assumed to be 
defined at a particular time t .  It may change in time, however, so that in general we 
can write p = p(r, t). 
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With the assumptions above, if we are given a charge distribution p(r), we can 
obtain the, contribution to the electrostatic field at a point r from any volume 
element do' containing a charge dq and located at position r' and hence at a distance 
r - r' from the point of observation by using Eq. (2.4): 

Taking dq(rf) = p(r')dvl, then 

1 p(r')dvl 
dE(r) = -- (r - r') 

4x6, ( r  - r'I3 

The total electric field produced by the charge distribution is calculated by integrat- 
ing Eq. (2.10) over all volume elements where p # 0, or over all space, which proves 
more convenient. Thus 

' I  p(rl)(r - r')dvl 
Ejr) = - 

4nco , Ir-r'13 

Occasionally it proves convenient to consider charge as being distributed smooth- 
ly over surfaces, or on curves, such that if the surface has an area S, the total charge 
on it is given by Qs = Js o(r)da, and if the charge lies on a curve C, its total charge is 
given by Q, = I, I(r)dl where 

are the surface and line charge densities, respectively. Thus, in the macroscopic 
limits, where da is an element of area and dl an element of length small enough to 
perform arbitrarily accurate calculations, the charge elements dq where 

may be used to represent point charge elements for purposes of calculating electric 
fields. If a charge distribution can be specified completely as a surface charge distri- 
bution over S, then 

which simply represents a summation of point-charge-like contributions for all the 
charge elements dq = a da' constituting S. Analogously, for a charge lying on curve C, 

I(rl)(r - r1)dl' 
Ejr) = - 

If a charge distribution contains densities p, a, and I distinctly, the electric field is 
due to the vector sum of their individual contributions. One can express Equations 
(2.1 I), (2.1 3), and (2.14) symbolically by writing 

where dq may represent p dv', o ds', I dl', or appropriate combinations of these, and 
the integral sign represents a sum over all the charge elements of the distribution. 
Because the combination r - r' occurs quite often in this book, we reserve the 
choice of writing it explicitly or instead using the symbol 
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Since the evaluation of the integral in Eq. (2.15) is troublesome for all but the 
simplest types of charge distributions, we shall not often employ this method of 
calculating E. One can contemplate, however, evaluating such integrals numerically 
on modern digital computers for rather arbitrary charge distributions. 

We will now calculate the electric field due to a number of symmetric charge 
distributions that involve line and surface charge distributions. We will not present 
an example of a symmetric volume charge distribution here, but defer it until we 
develop a much easier method, Gauss' law, in the next section. 

Example 2.2 Line Charge Distribution 

Let us find the electrostatic field at a distance p from the axis of a straight, thin rod carrying 
a constant charge density 1 per unit length. The physical situation is illustrated in Fig. 2.3. 

I 
I 

Figure 2.3 The electric field of a finite line of charge. 

Since the rod is described as "thin" we assume that p $ thickness of rod. Supposing that the 
rod has a constant cross section of area a, we apply the Coulomb formula to find the 
contribution to E(p,  4 ,O)  (in cylindrical coordinates) from the length element dz', as follows: 

Only components along z and p exist; that is, 

1 Az' dz' 
d E  = -- 

1 Ap dz' 
dEp = - 

' 4nc0 [z f2  + p2I3 l2  4nc, [z f2  + p2]312 

Integrating over all elements from z' = -1, to z' = + I 2 ,  we get 

I" ""' 1 
E = - ---A dz' 

4nc0 [z r2  + p2]312 

These expressions are readily integrated, yielding* 

* Note that I ,  and 1, can be positive or negative, depending on the choice of the origin. 
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If the rod were very long in both directions, which we idealize by stating that 
l,/p -r co and l,/p -, oo, then E,  -r 0, and E ,  becomes IEl. That is, 

It should be noted for this problem that we have not performed an integration in the y or 
x direction because of our assumption of a thin rod. p was assumed to be sufficiently distant 
from the rod that the rod thickness appeared negligible.* 

Example 2.3 The E Field of a Charged Ring 

We calculate now the electric field due to a thin ring of charge having a uniform charge 
density a for points on the axis of the ring. The geometry is shown in Fig. 2.4. From 

X 

Figure 2.4 The electic field at the axis of a 
ring of charge. 

symmetry, the electric field will have only a component along z. Thus for a differential 
element of charge, d q  = a Ap p dc$ located effectively at a distance p from the origin-that is, 
(r - r') = z2 - pb-we have a contribution to E, of d E ,  given by 

d q  (r - r') d E ,  = --. 2 = d q  
4nso Ir - rI3 ~ z E ~ ( z ~  + pZ)312 

'However, we shall find later that the expression for E above, the infinitely long rod, is valid even though 
p is not % rod thickness. It suffices that the rod be round, of radius (aln)'", and that p 2 (a/n)'/2. (See 
Example 2.7.) 
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For all charge elements dq, p and z remain constant. Therefore, summing over all charges, 
1 dq = AQ = 2np(Ap)a, and we may write 

It is noteworthy that if point P is far enough away from the ring, then (z2 + p2)3/2 z z3, and 
the field approximates that of a point charge, as it should. 

Example 2.4 The E Field of a Charged Sheet 

Using the result of Example 2.3, we can also calculate the electrostatic field of a uniformly 
charged plane sheet of charge density a for a point sufficiently near the plane (see Fig. 2.5). By 
"sufficiently near" we mean that we may consider it to be a good approximation to let the 
plane become infinite in extent. 

z = 0 plane 

Figure 2.5 The electric field of an infinite surface 
charge distribution by integrating the field produced 
by a ring of charge. 

Since a ring of charge of thickness dp contributes to the field an amount given by Eq. (2.20) 
of the previous example 

and the plane of charge may be considered to consist of such concentric rings, we can find E 
By integrating the above result from p = 0 to p = co; that is, 

Thus 
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2.5 Gauss' Law 
We now discuss Gauss' law, which is extremely important in our understanding of 
vector fields, and of electric fields in particular. In a certain sense this law is even 
more powerful than Coulomb's law, which, as we saw, was stated with various 
limitations imposed. We will show below that Gauss' law provides a very powerful 
method for the solution of electrostatic problems of symmetrical nature. 

2.5.1 Integral Form of Gauss' Law 

In an electrostatic field arising from some charge distribution with density p (see 
Fig. 2.6) we know that from an element of charge dq = p(r1)dv' we have 

Hence at a point given by r, where an element da of surface S is located, there is a 
contribution [see Eq. (1.38)] to the flux dF of 

(r - r') . da 

The term in brackets is just an element of solid angle dl2, which da subtends with 
reference to dq, so the result obtained is 

If the charge element is completely enclosed by a surface, then the integral over the 
solid angle gives 411, and thus 

dq dF = - (2.25) 
80 

The same result is valid for all charge elements dq located inside the closed surface 

4 Charge 
distribution 

Figure 2.6 Derivation of Gauss's integral law by utilizing 
the Coulomb field of charge elements. 
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Figure 2.7 Gauss's law emphasizes that the 
net flux through a closed surface does not de- 
pend on the charge; that reside outside of it, a 
concept that follows the properties of solid 
angles. 

S. Therefore the flux due to all these internal elements is 

Now suppose there are charges lying exterior to the closed surface S, as shown in 
Fig. 2.7. Since the solid angle of a closed surface viewed from outside that surface is 
zero, the fields due to such charges make no contribution to the net flux through S. 
(Of course, through any element da of S, they would contribute.) Consequently, the 
total flux of E through S due to all sources is simply related to the total charge 
contained in the surface S. This is the statement of Gauss's law, which may now be 
expressed as follows: 

We now wish to emphasize the following points about Gauss' law: 
1. E as written in Eq. (2.27) may be regarded as the total electric field acting at a 

point on the surface of S, even though only contributions to E for charges 
internal to S contribute to the net result for F. 

2. We have obtained this result (from CoulomWs law) for an electrostatic field E. 
However, its validity transcends this, and is true for any electric field--even 
one depending upon time. It is in this sense that we may consider Gauss' law 
to be even more fundamental than Coulomb's law. 

3. The essential feature of Coulomb's law that allowed us to "derive" Gauss' law 
was its inverse-square central dependence. Any other type of distance de- 
pendence would not lead to Gauss' law. Indeed, it is this fact that has been 
used to verify the truth of the inverse-square dependence. We shall sub- 
sequently observe many applications of the use of Gauss' law. A few examples 
are given below that involve spherical, cylindrical, and plane symmetry. 



Example 25  Gauss' Law--Spherical Symmetry 

We show that for a distribution of charge that has spherical symmetry, Gauss' Law almost 
immediately yields the electric field. Let p = p(r) for r I R and 0 for r > R (see Fig. 2.8) and 
the total charge be Q,. Then the electric field due to this charge distribution cannot depend 
upon the spherical coordinates ( 0 , 4 ) .  Moreover, the electric field itself can have no 0 or 4 
components. Therefore W r )  = E(r)P. We calculate E for the two regions of space, r 2 R and 
r I R. 

Figure 2.8 Calculation of the electric field of 
a uniformly charged sphere using Gauss' law, 
showing two gaussian surfaces. 

In the region r 2 R, consider a spherical surface of radius R 2 R centered at the origin and 
apply Gauss' law to this closed surface. Since E = E(r)P, E . 8  = E.P = E is constant on the 
sphere. Then f E(r).da = 4xr2E. Equating this to QO/cO, where Qo is the total charge inside 
the Gaussian surface, gives 

This is the form of Coulomb's law for the field of a point charge Q, located at r = 0. We have 
found that to an outside observer (at r 2 R), the electrical effects of the sphere and point 
charge of magnitude Q, are identical. 

To calculate E in the region r < R, we form our Gaussian spherical surface with a radius r 
15 R. As in the case where r 2 R, we find that 

where Q, = & 4x~'~p(r')dr' is just the charge enclosed by the sphere of radius r I R. 
We have thus found in a simple fashion that the charge outside the surface of radius R 

makes no net contribution to E. This result can also have been shown directly using 
Coloumb's law, where we would find that for every element of charge dq in a shell outside r 
there is another element dq' outside r that cancels the field of the first element. 

As an application of the above results, let us consider a uniformly charged sphere, with a 
constant charge density p, for r < R. Refemng to Eqs. (2.28) and (2.29). we note that 
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Figure 2.9 A sketch of the field of a uniformly 
charged sphere showing the continuity of the field at 
r = R. 

Figure 2.9, which shows a sketch of the field as a function of r, indicates that the field is 
continuous at r = R. 

Example 2.6 Uniformly Charged Infinite P l a n d a u s s '  Law 

Let us find the field of a uniformly charged infinite plane having a surface density a. Here we 
set up our coordinates as shown-in Fig. 2.10, and remark immediately that E  can only have a 
z component. Also, E  = E(z)f. Why? Moreover, again, by symmetry, E(z) = -E(-z). 

We now construct the gaussian surface shown in Fig. 2.10. Since E  = f E2, no flux leaves 
through the sides of the surface, so the only contribution to the flux through the gaussian 
surface comes from the flat end of the surface. If the area of the flat end is A, then A = AB for 
z > 0 and A = - AB for z < 0. Therefore 

Qint a A  E A + E A = 2 E A = - = -  
Eo Eo 

implying that 
a a  

E = 2 -  for z > 0 ,  E =  - 2 -  f o r z < O  
2 ~ 0  2 0  

Figure 2.10 Determination of the field of a uni- 
formly charged plane using Gauss' law. 



This is exactly the result we got in Eq. (2.21) in Example 2.4. It is instructive to note that the 
field E does not depend on z. Therefore it is constant on both sides of the z = 0 plane; 
however, the directions are opposite to each other, there being a discontinuity equal to a/&, 
at the z = 0 plane. This field is due not only to the charge inside the gaussian surface but to 
all the charge, even though only the charge inside the surface contributes to the net flux of the 
gaussian surface. 

Example 2.7 Gauss' Law-Line Charge 

For this example we assume a constant charge density IZ per unit length for p I p,, and 0 for 
p > p,, where p is the cylindrical coordinate measured from the z axis of the cylinder shown 
in Fig. 2.1 1. We note that symmetry dictates that E does not depend upon z or 4 and that E 
is of the form E = ?E(p). 

z axis 

I 

Gaussian 
surface 

Figure 2.11 Determination of the E field of a 
long line of charge using Gauss' law. 

We draw the cylindrical gaussian surface of radius p. There is no flux through the sides of 
this surface in the z = constant planes, since E, = 0. The field on the cylindrical surface is 
constant, and therefore Gauss' law gives 

Qint 12 2nplE = - = - 
Eo Eo 

If the radius of the gaussian surface is less than p,, we have Qin, = (p21Zlpi)l, and thus 
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2.5.2 Derivative Form of Gauss' Law 

We have seen that the charge within a closed surface can always be determined if we 
know the electric field E on-and consequently the flux through-the surface. We 
now want to consider the relation between the charge around a point in space and 
the electric field near that point. We shall first assume that the charge is character- 
ized at all points in space by a finite and well-defined charge density p. At a point in 
space displaced from our reference point by r, we shall seek the relationship between 
p(r) and E(r). Recalling that 

and applying the divergence theorem 

we get 

Because this relation is true for all volumes that one can conceive of, the integrands 
must be equal; that is 

for all V if and only if 

This is called the derivative form of Gauss' law. 
We wish to emphasize that this differential form of Gauss' law applies only when 

p is a finite, continuous function in space. When p is not defined or is not finite-as, 
for example, when charge occurs on surfaces, curves, or points-V.E becomes in- 
finite. Physically, this means that a finite electric flux is diverging from an in- 
finitesimal volume element. Thus, if one considers charge distributions that include 
point charges, as one approaches the location of the point charge, 

Note, however, that the flux emanating from the charge remains finite; that is, 

4 lim f s ~ . d a  = - 
AU-0  E 0 

where q is the magnitude of the point charge. Since we presume a point charge to 
create a spherically symmetric field [point charges have no (angular) spatial struc- 
ture whatsoever] the total field as the charge is approached is just that given by 
Coulomb's law that is, (r' locates q): 

1 q(r - r') 
E(rIr+ = -- +a, 4m0 Ir - r1I3 
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This is the limiting form of any electric field near enough to an isolated point charge 
(since the fields due to other charges nearby remain finite when measured at the 
location of q). Similar behavior is observed in the vicinity of line charges. 

It is clear from the above discussion that the charge density corresponding to a 
point charge can be represented by a Dirac delta function (see Example 1.4). Thus, 
for a point charge q at r = r', 

4 
p(r) = q6(r - r') and V . E = - 6(r - r') 

t; 0 

We shall now consider an example in which we encounter a discontinuity in E 
and use Gauss' law to interpret the result. 

Example 2.8 Determining a Charge Distribution for a Given Electric Field- 
Derivative and Integral Forms of Gauss' Law 

Let us suppose that we have an electric field given by E = 2E,z,  for 0 I z  5 1 and E = 2k, for 
z < 0 and z  > I ,  where k is a constant as shown in Fig. 2.12a. We wish to find the charge that 
is responsible for producing this field. 

E = E,Gz 

z = 0 
plane 

( b )  

Figure 2.12 Determination of the charge 
density from the knowledge of E field pro- 
duced by it. (a) The E field. (b) A pillbox at the 
interface z = 0 that may be used to determine 
the charge density at z  = 0. 
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From Gauss' law, we have = E ~ ( V . E ) .  Since E  depends only on z here, then p = 0 for 
z < 0 and : > 1. Rut for 0 < : < I the density is 

We therefore have an infinite slab of uniform charge density. We note, however. that d E , / d z  
does not exist at 2 = 0 and 2 = I, because E is discontinuous there. Consequently, in order to 
find the charge at these two surfaces, we apply Gauss' integral law at these surfaces. To this 
end we construct a "pill box" at the 2 = 0 plane flat area .4 and height 26 as shown in Fig. 
2.12h. The contribution to 4 E . d a  comes only from the surfaces of the pill box parallel to the 
2 = 0 plane: hence 

The charge inside the pill box, Qi,,, is the charge that resides on the surface (at z = 0) since 6 
is very small. By the planar symmetry of this problem, the charge on the surface is character- 
ized by a constant charge density cr. The charge inside the pill box as 6 -+ 0 is therefore 
Qi,, = aA. yielding cr(z = 0) = - ~ , k .  In a similar fashion, by applying Gauss' integral law to 
the surface at 2 = I, we would find the surface charge density, u(z = 1) = e,(X - E,l). 

The feature of this problem worth emphasizing is that whenever a discontinuity in E  exists, 
the volume charge density must diverge, giving rise to a surface (or line, or point) charge 
density. To  find the value of this surface density, one employs Gauss' law in integral form 
"around" the discontinuity. 

2.6 Conductors and Insulators 
Most of us know that certain materials "conduct electricity" well and others d o  not. 
What we mean by conducting electricity is that in the former materials, elements of 
charge (electrons, for example) can move freely from one point to another. Actually, 
most materials will allow charge movement under certain conditions (high tempera- 
ture, high pressure, etc.), and we do  not wish to catalog these materials and their 
properties now. We wish to emphasize only that by the name conductor we imply a 
medium that contains charge elements and, further, that these elements are free to 
move under the influence of an applied electric field. (Such charge not being bound 
to a particular location of the conductor is consequently referred to as "free 
charge.") We also wish to imply that if such a medium is insulated from other 
conductors and is subjected to an applied electric field, then, within a very short 
time, the freely moving charges inside the medium will so rearrange their positions 
as to annul the effect of the original electric field in the interior of the conducting 
medium. Inside an isolated "conductor" no steady electric field can persist. 

It is difficult to define all our terms simultaneously. For example, by insularr we 
imply that there are media that are the antithesis of conductors, called insulators, 
through which charge does not or cannot pass freely. Most nonmetallic solids serve 
the purpose well enough. Almost by definition, a vacuum (i.e., charge-free space) 
acts as an insulator. Most gases-as, for example, air under normal conditions 
(beware of thunderstorms!&behave as insulators. Materials are classified as con- 
ductors because charge moves in them much more readily than in insulators. Vari- 
ous materials at temperatures approaching absolute zero offer no resistance at all to 
this movement of charge and are called superconductors. 

By our definition, then, if a long enough time interval elapses (e.g., second), 
an isolated conductor will have a macroscopically zero electric field in its interior 
after a steady electric field is applied. (By "steady" we mean that it does not vary 
with time, although it turns out that for our present definition we may allow it to 
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vary, but not too rapidly.) A macroscopic field is one averaged over macroscopic 
dimensions (in space and time). For our present purposes, if we consider media 
having "normal" densities (i.e., greater than about l o - '  kg/m3), we may consider a 
macroscopic spacc dimension to be of the order of meter, and a macroscopic 
time interval to be of the order of one picosecond (10-l2 second). "Macroscopic" 
thus is meant to imply the antithesis of "microscopic," i.e., of atomic dimensions. 
Under the conditions of macroscopic electrostatics, atomic electric fields are "aver- 
aged out," yielding a smoother behavior in time and space. The following conclu- 
sions may then be drawn: 

1. In the interior of the isolated conductor, the macroscopic charge density will be 
zero: p = (V.E) = 0 (anywhere) inside the conductor. 

2. Statement 1 implies that a net charge can exist only at the conductor surface. 
Surface charge densities exist there. Actually, the charge will exist in a region near 
the surface of the conductor, and the electric field always penetrates slightly into the 
conductor. But to talk like this is to talk microscopically, and we know that close 
enough to the "surface" the charges are not completely free to move (e.g., they 
cannot easily leave the conductor). Macroscopically, it is an excellent approxi- 
mation to assume that the charge lies on the surface. 

3. The external electrostatic field at the conductor surface is perpendicular to the 
surface. If i t  were not, forces would be exerted on the charge to move i t  laterally,* 
creating a nonstatic condition, violating our preconditions. Furthermore, if the con- 
ductor is finite and insulated. the charge will so arrange itself as to annul any lateral 
component of the electric field and thereby achieve a static condition. 

4. The magnitude of the electrostatic field at the conductor surface is a/&,, where 
a is the surface charge density. We prove this as follows: If an E field exists outside 
the conductor and is zero inside, V.E diverges to infinity at the surface, implying 
that an infinite charge density exists there. In other words, a surface charge density 
exists there. In order to find its magnitude we apply Gauss' law to a disklike volume 
element encompassing an element of area Aa of the surface (Fig. 2.13). As the thick- 
ness of the disk shrinks to zero, the electric flux through the sides of the disk 
perpendicular to the surface become negligibly small since the field at the surface 
itself approaches perpendicularity at the surface. Since the field within the conduc- 
tor is zero, the total flux out of the disk is from the surface element Aa outside the 
conductor. If Aa is small enough, the flux of E through it is given by E . A a ,  where E 
is taken as the value at the center of Au. As a result. we obtain 

Thus, on the surface of the conductor, 

Equations (2.34) is a special case of a more general relation valid at a charged 
plane interface. Let us suppose that in a small region near the interface the finite 
fields E ,  and E, exist in media 1 and 2, respectively (refer to Fig. 2.14). We construct 
the gaussian surface whose top and bottom areas have magnitude Aa and whose 

* That is. in a direction perpendicular to the normal to the surface at any point; tangential to the surface. 
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Figure 2.13 Applying Gauss' law to a pillbox 
at a highly conducting interface to determine 
the properties of the E field just outside the 
conductor. 

side area is negligible compared to the top and bottom (achieved by letting the 
height 26 go to zero). Gauss' law then indicates that 

The charge associated with a finite volume charge density p inside the gaussian pill 
box approaches zero as the thickness 26 -* 0; only the surface charge remains o Aa. 
Therefore, 

Thus, the difference in the normal components of E at the interface equals the 
surface charge density (divided by E,). The result in Eq. (2.34) is a special case of this 
general result when one of the media (medium 1) is a conductor, in which case 

Figure 2.14 Applying Gauss' law to a pillbox at an 
interface that may have surface charges to determine 
the relation between the E field just across the inter- 
face. (Boundary conditions.) 
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2.7 Electric Potential 
It has been shown in Example 1.2 that the curl of a radial vector A = f(r)P is zero, 
and that it is expressible as the gradient of a scalar, and hence it is a conservative 
vector. Here we shall show that any electrostatic electric field can be written as a 
gradient of a scalar function. The minus sign is chosen for convenience. Since 

the vector must be conservative; that is [see Eq. (1.52)], 

To prove this we first show that the electrostatic field due to a point charge q may 
be so written. It can be shown straightforwardly that: 

where V operates on the variable r. Thus the E field of a point charge becomes 

Therefore E is representable as the gradient of a scalar function 0, as follows: 

The function @ is called the electrostatic potential of the charge q. Since the relation 
between E and @ is a linear one and E is decomposable, always, into electrostatic 
fields from individual charge elements q, it will be true that E = --V@ for any 
electrostatic field. Thus the potential corresponding to the field of a general charge 
distribution [Eq. (2.15)] is 

Having now shown that E = -V@, we may integrate this equation in order to 
determine @ in terms of E. In taking d@ = V@.dr, 

If we examine Eqs. (2.40) and (2.41), we see that @(r) is only given to within an 
arbitrary constant. This is related to the fact that only potential differences have 
physical significance. If the charge distribution that creates the electric field is loca- 
lized in some finite region,* one usually specifies points "at infinitymt as being where 
the potential is assigned a zero value: @(a) = 0. Then 

The relation E = -V@ immediately implies that surfhces of constant potentiul, 
given by @(r) = constant, are at every point perpendicular to E at that point [see 

* If dq is glven by p(r')dv', then p(r') should approach zero faster than ( r ' ) - 2  as r' + xm. 
' "At infin~ty" is that region where the field E (and hence any electrostatic force) ra negligibly small 
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Figure 2.15 Illustration of equipotential surfaces and 
lines of force in the region between two highly con- 
ducting electrodes showing that they are normal to 
each other. 

Eq. (1.33)]. These are called equipotential surfaces, as shown in Fig. 2.15. Similarly, 
a region that is at a constant potential would be called an equipotential volume. An 
isolated conductor, under electrostatic conditions, constitutes an equipotential vol- 
ume. Its surface is an equipotential surface. This, of course, is consistent with our 
notions of potential relative to work: Since E = 0 inside a conductor, no work is 
done against E in the displacement of charge inside the conductor. 

If one agrees to draw only those equipotential surfaces (to represent a picture of 
potential) differing successively by constant increments, A@, then when the surfaces 
are close together, E is large compared to the case where the surfaces are far apart. 
This is just another way of stating that when (V@I is large, IEl is large. (Note that 
IV@( = A@/AS, where AS is the "distance" between surfaces @ = c and @ = c 
+ A@.) Since E = -V@ and V@ is perpendicular to the surfaces @ = constant, the 
streamlines of E are at every point perpendicular to the equipotential surfaces 
passing through those points. 

-- -- 

Example 2.9 Two "Point Charges" of Opposite Sign-Electric Dipole 

In order to find the potential of two point charges we need only add the potentials at r for 
each individual charge. Using the notation of Fig. 2.16, 
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+4 -4 

Figure 2.16 Potential and electric field of an 
electric dipole. 

Taking r - = r + 6 gives 

Let us now suppose that 6 < r, and expand ( r  + 61-' in powers of 6/r. Keeping the lower- 
order terms gives 

which, upon substitution gives 

Remember, however, that we assumed r/6 % 1, and that the dipole field as r + 0 is defined as 
the field one would obtain if one allowed 6 to approach zero and q to approach infinity such 
that q6 remained constant. One then always assumes that as r + 0, 6 -r 0 more rapidly, so as 
to maintain the relation 6/r < 1. Thus 

where p = q6 is the dipole moment. 
It is interesting to note that we may rewrite this dipole potential as the differential of the 

monopole potential: 

Noting that for a scalar function f [see Eq. (1.29)], df = (dr.V)f, it appears that the dipole 
potential is the differential of the monopole potential of q, q/4nsor, with respect to the 
displacement dr 5 -6. The dipole potential is thus a difference between two monopole 
potentials (small compared to either). 
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Let us now find the electric field E. Choosing spherical coordinates and setting p = p5!, we 
have @ = (p cos O)/4nsor2. Thus 

a@ A i a@ 1 a@ E =  - V @ =  -P - -@- -  -Qp- 
dr r a0 r sin 0 8 4  

Note that 

a@ -2pcos O 1 a@ p sin 8 a@ - -- - -- -- 
ar 4nsOr3 r as n o r 3  a4 - O 

Consequently the dipole electric field is 

E = -  [2 cos P + sin 61. 
4nc0 r3 

which can also be written in the following form (show it). 

Finally, one can verify that V .  E = 0 at all points except at r = 0, where E diverges. Here the 
charge density for the dipole is zero everywhere except at r = 0. To find the charge there 
( p  + co) we might try to apply Gauss' law. We thus imagine that "dipole field" to origi- 
nate from a point in space with a highly singular charge distribution that cannot be well 
investigated with Gauss' law. Microscopically, electric dipole fields do not exist as r + 0. 
Macroscopically, they appear often. 

Example 2.10 Potential on the Axis of a Uniformly Charged Ring 

In this example we meet a case where finding the potential, or electric field, at arbitrary 
points in space is a difficult task. It is easy, however, to find the potential on the axis of a 
uniformly charged ring of charge density 1 per unit length and radius p' (see Fig. 2.17). 

We take the zero of potential at infinity since the charge distribution is finite and apply the 
formula for points on the z axis given by Eq. (2.40). Noting that all charge elements dq are 
equidistant from points on the z axis, we immediately write 

@(r = Pz) = Q - - Q (2.48) 
~ X E ~  I PZ - fip'l 48c0(z2 + pf2)lI2 

Figure 2.17 The electric potential at the axis 
of a ring of charge. 
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where Q = 2np'l is the charge on the ring. Knowledge of @ on the z axis does not permit us 
to determine the derivatives of @ perpendicular to this axis; that is, we cannot determine E, 
or Eo (cylindrical components). We can only determine E, = -a@/az. However, when the 
ring is uniformly charged, we know that E, and E ,  are zero on the z axis by symmetry 
considerations. Therefore, we know that a@/dp and a@/ad are both zero on the axis. It is 
then easy to show (in agreement with Example 2.3) that we can get Eq. (2.20) by taking E = 
- e ampz. 

Example 2.11 Potential on the Axis of a Thin Disk 

From the preceding example it is easy to obtain the potential on the axis of a uniformly 
charged disk of surface charge density a and radius a. We need only sum over (by integration) 
the contributions of all the rings constituting the disk. The radius of a particular ring is 
denoted by p' and the charge thereon by Qri,, = a2np1dp' (see Fig. 2.18). Then, from a 
particular ring we get the potential contribution from Eq. (2.48) as follows: 

a2np' dp' 
d@ = 

4 n ~ , ( z ~  + p")'I2 

Summing over all rings from p' = 0 to p' = a, the radius of the disk, we obtain 

Integrating gives 

As in the preceding example, the electric field on the axis, E, = -a@/az, is easily obtained 
also: 

I forz > 0 

Figure 2.18 A uniformly charged thin disk. 
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Figure 2.19 Sketches of (a) the potential and (6) the electric field on the axis of a uniformly 
charged thin disk. 

and 

I for z < 0 

Figures 2 .19~ and 2.196 show a sketch of the potential and the electric field as a function of 
z. The figures show that the potential is continuous as expected while the electric field is not. 
In fact, one can easily show that on the z axis 

lim[E(z) - E( - z)] = Y 
2-0 60 

which agrees with the boundary condition given by Eq. (2.35). 

Example 2.12 Determination of cD from cD = -I E dr 

Examples 2.12a and 2.126 show how to calculate the electrostatic potential by first determin- 
ing the corresponding electric field and then using Eq. (2.42). This method can be applicable 
only to problems of high symmetry where the electric field can be easily determined using 
Gauss' law. Because this method involves integration over the electric field, then the result 
can be given only to within an arbitrary constant. This effect, as we noted above, is related to 
the fact that only potential differences have physical significance. The arbitrariness is used to 
specify the value of the potential at some reference point. 

(a) The Spherical Capacitor 

Let us assume we have two conducting, concentric, spherical shells of outer radii R, and R, 
(refer to Fig. 2.20). Suppose charges Q, and Q, are placed upon these shells, respectively, and 
we wish to find the potential function at all points due to the resultant charge distribution. 

We define the fields El, E,, and E, and potentials (O,, (O,, and (O, in the r > R,, R, < r 
< R,, and R, < r < R, regions, respectively. The electric fields in the different regions are 
radial because of the spherical symmetry. They are easily found by applying Gauss' law to 
spherical surfaces in the various regions and concentric with the capacitor. Therefore 

Inside the conducting shell the electric field vanishes; therefore E, = 0. 
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Figure 2.20 Potential of a spherical capacitor utiliz- 
ing Gauss' law. 

The potentials can now be easily determined. Substituting El in Eq. (2.42) we get 

In region 2 the electric field is zero, and therefore the corresponding potential is constant: 

Q, + Q2 @, = constant = - 
4ns0R2 

Finally, the potential in region 3 is determined by substituting E, in Eq. (2.42), as follows: 

(b) Charged Spherical Shell 

In this example we derive the potential of a uniformly charged spherical shell of charge 
density po (see Fig. 2.21). From Gauss' law, we know that the electric fields El, E,, and E3 in 
regions 1, 2, and 3, respectively, are given by 

and the field E, = 0 for r R,. 

Figure 2.21 Potential of a charged spherical 
shell utilizing Gauss' law. 
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Applying the definition @(r) = - r, E . dr, we obtain the corresponding potentials: 

The preceding expressions can be used to find the potential of a uniformly charged sphere 
merely by setting R,  = 0. In this case (R, r R), 

The corresponding electric field of the sphere is 

r E I - & R ~ -  - for r > R 
3c0 r3 

Example 2.13 Potential Due to Spherically Symmetric Charge Distribution p(r)  

In this example we consider a general case where the charge density is not uniform. However, 
we will consider a spherically symmetric distribution where the density is a function of r only. 

To calculate the potential at a point of observation P located at distance r, the charge will 
be divided into spherical shells. Consider two shells as shown in Fig. 2.22, each of thickness 
dr'. Shell 1 encloses the point of observation, whereas shell 2 does not. 

Figure 2.22 Spherically symmetric charge 
distribution showing two rings of charge. One 
encloses the observation point P and the other 
does not. 
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The potential due to a thin, charged shell was considered in Example 2.12b. The potential 
d@,  due to shell 2 is the same as if all the charge in the shell is concentrated in a point charge 
at the origin [see Eq. (2.50)] .  Therefore 

1 p(r')4xrf2 
d o 2  = -- dr' 

4ns0 r 

The total potential due to all of the charge at distances smaller than r is therefore determined 
by integrating the above expression from 0 to r :  

= dm2 = - p(r')rt2 dr' Ji e:r J: 
To calculate the potential due to shell 1 ,  we consider an area element on the shell at angle 

0' with respect to the observation vector r. Then the effect of the shell can be calculated by 
integrating over the surface of the shell: 

p(r')rI2 dR' 
dm,  = - dr' 

(rI2 - 2rr' cos 0' + r2)'12 

where dR' = dip' sin e'd0'. The integration over ip' gives 2x, and then the integration over 8' 
yields 

1 
dml = - p(r')rt dr' (2.57) 

Eo 

Note that this result can also be arrived at using the results of Example 2.12b. The potential 
due to all the charge at r' > r is then determined by integrating over r': 

Adding both contributions, @, and @, ,  gives 

The electric field E = -V@ can now be easily evaluated. The result is 

It will now be shown how the above result can be obtained more easily from Gauss' law. 
We take a spherical surface of radius r and center at the origin. Because the charge distri- 
bution is spherically symmetric, then the eIectric field at r is radial and independent from 
angles, and therefore applying Gauss' law gives 

which is of course what we arrived at in Eq. (2.60). The potential W r )  is now determined from 
E by using W r )  = -r, E. dr: 

The integral is of the form u dv, where u is p(r')rI2 dr' and do = -dr/(&,r2), and therefore 
can be integrated by parts: 
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This yields exactly what we got using direct integration [Eq. (2.59)]. 
We now use this result to determine the potential due to a specific charge distribution: an 

exponential charge distribution, p(r) = pee-", where po and a are constants. Substituting for 
p in.&. (2.59) gives 

The integration can be easily carried out, with the result 

In terms of the total charge Q = p dv = 8npo/a3, the potential is 

This result indicates that the potential @(r) has an exponential behavior. In the limit of 
ar 9 1, which can be achieved at large distances, the potential becomes q r )  = Q/4mOr which 
is identical to a potential produce when the total charge Q is concentrated at the origin. Near 
the origin such that ar 1, the potential becomes independent of r; that is, q r )  = Qa/8ne0. 

Example 2.14 Equipotential Surfaces of a Dipole Field 

We now explain the surfaces of constant potential of an electric dipole. The dipole is taken to 
be along the z axis and composed of two point charges of same magnitude and of opposite 

Figure 2.23 Equipotential surfaces and lines of force of an electric 
dipole. (Equipotential surfaces are indicated by solid lines; lines of force, 
by dashed lines.) 
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signs separated by a distance I. The electric dipole was treated in Example 2.9, and the 
potential was given in Eq. (2.44): @(r) = p.r/4nsor3, where p = 912. In the y-z plane, Q, 

reduces to @(r, 8) = p cos 8/(4n&,r2) or r(8) = a(c0s8)"~ where a = (p/4n~,Q,)''~. This relation 
between r and 8 can now be plotted for different values of Q, and hence different values of a, 
as shown in Fig. 2.23. 

2.8 The Multipole Expansion 
We turn now to the problems of characterizing the electrostatic potentials and fields 
of an arbitrary charge distribution, localized in a rather small region of space. One 
may think of this charge distribution as the charge distribution of a molecule, whose 
linear dimensions are of the order of lo-'' meter. 

Consider Fig. 2.24, where we show a charge distribution that is localized in a 
volume V and characterized by a density p. We choose an origin, 0, in or near this 
charge distribution. The displacement r' locates an element of charge relative to 0. 
The displacement r locates a point in space outside the charge distribution, where 
we wish to determine the potential Wr): 

In fact, for any r', we shall assume that r'lr 4 1. Then, we may expand the term in 
the integrand, 

Now we apply the binomial expansion 

valid for 1x1 < 1. Letting 

Figure 2.24 Localized charge distribution. 
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we have 

Grouping the powers of r'lr in ascending order, we find 

Hence the potential becomes 

We now rewrite the potential in a more revealing form by writing it as a sum of 
three integrals corresponding to three potential contributions @'I), and mt2), 
respectively. 

It will be observed that successive terms of this expansion differ by a factor of the 
order of R'lr, where R' is a linear dimension characteristic of the charge distribution. 
Therefore, the dominant term of the distribution, when r % R', will be the first 
nonvanishing term. If R' were of atomic dimensions and r was a macroscopic 
distance, then R1/r I 

In certain cases, the point of observation may be enclosed by the charge distri- 
bution. If r 6 R', where R' is the smallest dimension of the distribution, then the 
potential in the region r < R' is represented by a series expansion in terms of rlr' 
rather than r'lr as in the previous case. The result is 

We will not discuss the interior problem [given by Eq. (2.62)] any further except 
in Example 2.17 and Problem 2.2. The exterior problem, however, will now be 
discussed in detail. Let us now consider the terms @'O), @(I), and @'2) in Eq. (2.61) 
separately. 

Monopole Term: WO). The potential 0") is called the monopole potential; it can 
be written as follows: 

where Q is the total net charge of the charge distribution. The presence of this term 
simply indicates that far enough away the charge distribution in the lowest-order 
approximation looks like a point charge, Q. 

Dipole Term: @")-Dipoles in External Fields. The contribution 0") is called the 
dipole term; it can be written as follows: 
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where p is the vector called the dipole moment of the charge distribution, defined as 

p = J r' dq = j p(r ly  do' (2.63) 

and p is the charge density. The importance of the dipole term is that when Q = 0, it 
is the term that dominates the expansion. Because of the importance of "dipoles" in 
the discussion of electrical properties of matter, we catalog several properties of the 
dipole field, and of the dipole moment p. 

1. In general, the dipole moment, p, depends upon one's choice of origin. In fact, it 
can always be set equal to zero for some origin if the total, net, charge of the 
distribution, Q, is not zero. If, however, Q = 0, then p has a value independent of 
origin. 

2. The prototype dipole consists of two point charges of equal magnitude but 
opposite sign with a relative displacement 6. We see that the dipole moment can be 
expressed as 

p = S rldq = r-(-q) + r+(+q)  = q(r+ - r-)  

where r +  and r- are, respectively, the vector positions of q and -q charges from an 
origin 0. One often considers such dipoles as giving rise to dipole fields. However, it 
must be emphasized that the dipole potential 0'') is the potential of this dipole only 
in the limit as 6 / r  + 0. The potential of two such point charges is not 0") when 
6/r x 1. Note that we separate any charge distribution into its positive and negative 
charge components, such the dq = dq+ + dq-; that is, 

p =  r l d q =  r ldq+ + r'dq- =(r'+)Q+ +(r l - )Q-  S S 
where (r;) and (rl-) represent the average displacements of the total positive 
charge Q +  and the total negative charge Q- from the origin. If the net charge of the 
distribution is zero, then Q - = - Q +, and 

3. The energy required to place a dipole in an external electrostatic field of 
potential function 0 is 

where r+  = r- + 6. If 6 is small enough, we can approximate @(r- + 6) by the first 
two terms of the Taylor expansion @(r- + 6) = @(r-) + (6 .  V N r - ) .  Therefore 
U'" = - q@(r -) + q@(r -) + q6 . V@(r -). Taking E = - V@(r) gives 

~ ( 1 )  = - p - ~ f r )  (2.64) 

In asserting that 6 is small enough, we imply that E is in fact constant "over the 
dipole." Then U(') has the simple interpretation as the work necessary to displace a 
positive charge q by 6 in the field E. However, it does not include the energy 
required to form the dipole in the absence of E. 

4. The force F on a dipole immersed in an external field, E, is F = F -  + F +  
where F -  and F +  are the forces acting on the -q and q charges as shown in Fig. 
2.25. Writing F ,  = + qE(r,), F becomes 



2.8 THE MULTIPOLE EXPANSION 61 

Figure 2.25 Schematic diagram of an electric 
dipole interacting with an external electric field by 
representing the dipole by two separated charges. 

Keeping the first two terms in the Taylor expansion gives 

It is to be noted from Eq. (2.65) that the force on a dipole is zero if the field in which 
it is immersed is uniform. 

5. The torque r on the dipole when placed in a uniform field E is just 

where F- and F+ are the forces exerted by the field on the - q  and q  charges, as 
shown in Fig. 2.25. Substituting for F, = f qE gives 

The torque is in such a direction as to align the dipole moment along the field E. If 
the field E is not uniform, one can directly show that 

where F is the force acting on the dipole, and r is its displacement from the origin- 
about which the torque is computed. 

6. Since a dipole may be conceived of two equal and opposite "monopoles" 
separated by the displacement 6, then referring to Fig. 2.25 we get 

Using the Taylor expansion gives 

This expression was originally encountered in Example 2.9. In a similar fashion, it is 
not hard to show that we may construct a multipole of order n from a multipole of 
order (n - 1). In fact, 

where 6'"' is the displacement of two multipoles of order (n - 1) from each other (see 
Example 2.16). 
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Example 2.15 Some Dipole Moments 

We determine in this example the dipole moments of a number of charge distributions 
(shown in Fig. 2.26). 

( 1 )  A Point Charge. The dipole moment of the point charge q  located a displacement r' 
from the origin is p = qr'. If we had chosen the origin at the location of the charge, the dipole 
moment would have been zero. 

(2) N Point Charges. The dipole moment of N point charges q , ,  q , ,  . . . , qN is given by 

where ri is the displacement of charge qj  from the origin. Only if 

N 

1 4 j = o  
j =  1 

is p independent of the choice of origin. 

(3) A Circular Ring of Charge. The dipole moment of a circular ring uniformly charged with 
respect to an origin at the center of the ring is given by 

where R is the radius of the ring and 1 is the linear charge density. 

(4) Rod of Charge. The rod shown has the charge density 

Figure 2.26 Some charge distributions: (1) point charge, (2) collection of point charges, (3) a 
ring of charge, (4) rectangular rod of charge, and (5) sphere of angular charge distribution. 
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Its dipole moment is given by 

Note that the total charge in the rod 5 dq can be easily shown to be zero, and therefore p is 
independent of our choice of origin. 

( 5 )  Sphere with an Angular Charge Distribution. We consider the dipole moment of a sphere 
with a surface charge density given by a = a, cos 8. A point on the surface is located 
by r' = RP, which is equal to z'2 + p'? in cylindrical coordinates, where pt2 + zf2 = R2. 
The charge dq on a ring at an angle B is dq = 2nR2a sin B dB. Therefore p = r' dq = 

5 ( 2 ~ '  + ?pr)dq. The integral 5 bp' dq vanishes; thus 

S 4nR3ao 
p = 2z' dq = 22xR3ao cos2 8' sin 8' dB' = 2 - = 20, V 

3 
(2.7 1) 

where V is the volume of the sphere. This dipole moment is independent of the choice of the 
origin because the total charge on the sphere is zero. 

Quadrupole Term; @(". The contribution to the potential @(2) is called the quad- 
rupole term; 

We have written this term so that the integrand is completely symmetric with 
respect to r and r'. Expanding the integrand in cartesian coordinates, and noting 
that the integration over the charge distribution depends on the primed coordinates 
(x', y', z'), not on the coordinates of the point of observation, (x, y, z)] give 

S [3(r - (rr')2]dq = (3x2 - rZ) x ' ~  dq + 3xy x'y' dq + 3x2 X'Z' dq I I I 
+ 3xy x'y' dq + (3y2 - r2) yt2 dq + 3yz y'z' dq I S I 
+ 3zx z'x' dq + 3zy z'y' dq + (3zz - rz) zt2 dq I I I 

The "off-diagonal" elements of the array of terms are equal. The array of integrals is 
a matrix called the quadrupole matrix. Its elements will be denoted by Q,,, Q,,, Q,,, 
etc. A knowledge of these elements completely specifies @('), just as a knowledge of 
the components of the dipole moment (p,, p,, p,) specifies @(I). Equation (2.72) can 
now be written as 

where 

and we use x, = x, x2 = y, and x, = z, and dij is the Kronecker delta; it is equal to 
1 if i = j and zero if i # j. 
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Occasionally the terms above are regrouped, so that instead of the diagonal terms 

one writes the equivalent expression (show this) 

In terms of these integrals (denoted Q'!,, QYy, Q:,) the quadrupole matrix is said to 
be "reduced," a word chosen because Q'!, + QYy + Q',, = 0, whereas Q,, + Qyy 
+ Q,, = j rf2 dq. 

Thus the potential in (2.72) can alternatively be written as follows: 

where 1,  2, and 3, denote x, y, and z, and 

It is however possible to simplify the description of this matrix yet further by 
properly choosing the coordinate axes. If they are chosen judiciously, the (off- 
diagonal) terms Q,,, Q,,, Q,,, can be made to equal zero. It turns out that this can 
always be accomplished by choosing the axes to be perpendicular to planes of 
symmetry. A case of special importance is one where there is rotational symmetry 
about an axis, which we call the z axis. Rotational symmetry here implies that one 
cannot distinguish one orientation of the distribution about the z axis from any 
other. In such a case Q,, = 0, Q,, = 0, and Q,, = 0. Moreover, Q,, = Q,,, since the 
rotational symmetry renders the x and y coordinates indistinguishable. In terms of 
the reduced quadrupole matrix, one sees in this case that Q,, + Qiy = - Q:,, imply- 
ing that 

Thus, all of the nonzero quadrupole matrix elements are expressible in terms of Q':,, 
sometimes called the quadrupole moment of the distribution, as follows: 

where 8' denotes the angle between the z axis and the charge element dq. If Q:, > 0, 
one has a cigar-shaped ellipsoid, whereas if Q,, < 0, one has a saucer-shaped (ob- 
late) ellipsoid of charge. In this sense, the quadrupole moment is a measure of the 
deformation of the ellipsoid from spherical symmetry. 

Example 2.16 Quadrupole Distributions of Point Charges 

In this example we determine the quadrupole matrix of the point charge distribution shown 
in Figs. 2 . 2 7 ~  and 2.276. In the case where one is dealing with point charges alone, the 
quadrupole potential (0(2) reduces to the sum: 
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(b )  (c )  

Figure 2.27 Quadrupole charge distribution. (a) Linear quadrupole. (b) Two-dimensional 
quadrupole. (c) Same as (b) but with axes rotated. 

and the reduced quadruple matrix has elements of the form 

where the sum is over the number of charges, and q, and xi, are the magnitude and the ith 
coordinate of the mth charge. 

1. The set of charges shown in Fig. 2.27a has zero monopole and dipole moments. Its 
reduced quadruple matrix elements are easily calculated by using Eq. (2.79): 

Q' xy =Q '  X I  =Q'  yz = o  

Note that QXx + Qyy + Q':, = 0. The potential cD@) is therefore (for r ) a) 
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This array of charges, called a "linear quadrupole," has rotational symmetry about the z axis, 
and its "quadrupole moment" is QZz = 4qa2/3. 

2. Another point quadruple charge distribution is shown in Fig. 2.276. The monopole and 
dipole moments are here zero. The reduced quadrupole matrix has matrix elements: 

Q' =Q'  = o  
YY 

Qxy = CqiXiYi = qa2 

Qxz = Qyz = 0 

that is, only Qxy = Qyx are not zero. The potential 0") is thus given by 

If this array of charges were referred to the new set of axes shown-that is, x' and y' in Fig. 
2.27~-we would have had QXx = 2q[4a2] = qa2, QfYy = -qa2, QZz = 0, and 
QXy = QXz = QYz = 0. Therefore we would have 

The expressions for the potentials have different forms. However, if the transformations 
between the different coordinate systems are made, or 

1 1 
x'+-(x+y) and yl+-(-x+y) 

Jz Jz 
one finds that the latter expression for 0'') becomes the former. 

la) 

Y 

Figure 2.28 Determination of the fields of a quadrupole as a dif- 
ferential of a dipole field. (a) General quadrupole distribution. (b) 
Four-charge two-dimensional quadruple. 
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3. It is interesting to point out that the "pure" quadrupole distributions shown are simply 
pairs of dipoles, one displaced from the other with the signs of the charges reversed. If 6(2) is 
the displacement of the one dipole from the other (see Fig. 2.28a), we have, from Eq. (2.69), 

This result is analogous to the derivation of the dipole field from the field of a simple 
monopole [see Eq. 2.68)]. For the quadrupole of Fig. 2.286, 

Substituting these expressions in Eq. (2.80) gives 

just as previously obtained. 

Example 2.17 Potential by Multipole Expansion 

This example explains the use of the multipole expansion in calculating the potential due to 
an angular charge distribution. Consider a spherical shell of radius R, carrying a surface 
charge distribution a = a, cos 8, where 8 is the angle with respect to the z axis. From Eq. 
(2.61), the potential outside the sphere (r > R) is 

where 

3(r. r')2 
@('Yr) = I . 1  4 n ~ ,  2 J',, [T - ;loo cos 19' da' 

where 8' is the angle between r' and the z axis, and s' is the surface of the shell. The potential 
@(O)(r) = 0 since the total charge on the sphere is zero. 

The potential @(I)  can be evaluated as follows: One first writes r' in terms of 8' and 4, as 
follows: 

r' = (R sin 8' cos @)I + (R sin 8' sin @)f + R cos 8' 2 

Thus the integral in @(I)  becomes 

Zn 

a, I r f  cos 8' da' = R300 I;=, I&=, [(sin2 8' cos 8' cos &)P 

+ (sin2 8' cos 8' sin &)$ + cos2 6' sin B &]dB d& 

The first two terms vanish because 



and the last term gives p = (4n/3)uoR3%. Therefore 

The potential @(')(r) is the first nonvanishing contribution; it is a dipole potential with a 
dipole moment p along the z axis and moment equal to a, times the volume bounded by the 
shell. This potential agrees with the direct calculations of the dipole moment of the shell [see 
Eq. (2.71)]. 

Using a similar procedure one can show that W)(r) as well as the other higher multipoles 
vanish, indicating that the field of this charge distribution is a dipole field; that is, 

Inside the sphere-that is, for r < R-we use Eq. (2.62). Thus 

@(r) = @(O)(r) + @(I)(r) + @(')(r) + . . . 
where 

@(2)(r)=-.- I I , [ :Iuo cos S dal 
4nso 2 

Substituting R for the magnitude of r', and taking it outside the integral gives 

1 aO' = - Su0 cos S da' = 0 
~ R E ~ R  

since the integral is just the total charge on the sphere. Doing the same thing in the ex- 
pression for @(') gives 

where p, the dipole moment, is as defined above. Again, as in the region exterior to the 
sphere, @(') and the other higher-order terms vanish. Therefore 

It is apparent that the potential inside the shell depends only on z and is independent of the 
size of the shell, unlike the potential outside the shell. The corresponding electric field is 
-(u0/38,)2, which is uniform and directed along the negative z axis. 

The previous discussion indicates that the electric multipoles can be used to 
approximate the electric field or potential of an arbitrary charge distribution. This 
process, in fact, is equivalent to the approximation of the charge distribution itself 
by a combination of a point charge, a point dipole, a point quadrupole, and so 
forth, as shown schematically in Fig. 2.29. The applications of such approximation, 
thus, go beyond just the electric field or the potential of the distribution. 
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Monopole Dipole Quadrupole Octupole 

Figure 2.29 Schematic diagram of the representation of a localized charge distribution by its 
various multipoles. 

2.9 Summary 

Electrostatics is the subject matter that deals with electric charges that are at rest. Coulomb's 
law defines the electrostatic force law between a point charge go at the origin and a point 
charge q located at r ;  that is, 

where 

in MKS units. Writing 

defines the electrostatic field E  associated with the charge go 

Coulomb's law and the electric field can be generalized to many point charges or con- 
tinuous charge distributions that may residue in volumes, on surfaces, or along lines such 
that the element of charge dq is given by 

dq = pdv, a da, or 1 dl 

where p, a, and 1 are the volume, surface, and line charge densities, respectively. For a point 
charge qi located at ri ,  

~ ( r )  = qi&r - ri) 

where 6 is the Dirac delta function. Since forces add vectorially, then 

This electrostatic field is said to be conservative. In other words, 

VxE=O 

Its divergence, on the other hand, depends linearly on the charge density 
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This is often called the differential form of Gauss's law, and it is one of four fundamental laws 
of electromagnetism as we understand them today (Maxwell's equations). It is even satisfied 
by time-dependent fields. The curl property, however, is true only for electrostatics and will 
be modified later when time-varying sources are considered. 

The integral law of Gauss' law follows from the differential law by integrating both sides 
over an arbitrary volume V bounded by the surface S, and applying the divergence theorem 
to the left side; that is, 

where Q is the total charge enclosed by S. In cases of symmetry where the electric field is of 
constant magnitude over all elements of the surface, and of constant direction relative to the 
surface, Gauss' law simplifies the calculation of the electric field at the surface. A powerful 
implication of Gauss' law, along with the fact that the electric field inside a conductor is zero, 
is the fact that charge on a conductor must reside on its outer surface, with the fields just 
outside the conductor being E = (a/&,)&. The law also shows that the fields just below and 
just above a surface charge distribution, E, and El, are discontinuous, with the discontinuity 
being 

At distances from the charge distribution that are large compared to the largest dimension 
of the distribution, the charge distribution can be approximated by a combination of a point 
charge Q, a point dipole p, a point quadrupole Qij, etc., where 

where 1, 2, and 3 denote x, y, and z, respectively. The applications of such approximation in 
fact goes beyond just the electric or the potential of the distribution. 

When a point charge is placed in an electrostatic potential @ of corresponding field E, the 
charge experiences a force F = qE, and the potential energy U of the charge is 

If a dipole p is placed in such a field, we have for the force and energy 

The dipole will also experience a torque t as follows: 

Problems 

2.1 Four point charges, q = 2 x lo-' C each, are on the corners of a square of length 4 m. 
Find the force on a point charge q, = C located 3 m just above the center of the 
square. 

2.2 Determine the electric field at the center of curvature of a uniformly charged semicir- 
cular rod with a total charge q. 

2.3 A filamentary charge is distributed along the z axis with a charge density 1 = 1, for lz l  
> 5 and 1 = 0 for lz l  < 5. Find E on the x axis, 2 m from the origin. 

2.4 A filamentary charge is distributed along the z axis with a charge density 1 = I ,  for lz l  
< d and 1 = 0 for lz l  > d. Determine the E field in the x - y plane a distance R from 
the z axis. 





72 ELECTROSTATICS 

cavity. (b) Assuming that the cavity is filled with charge of uniform density p6 and the 
sphere is not, determine the electric field at distance r' c a from the center of the cavity. 
(c) Determine the actual electric field inside the cavity. Sketch the lines of force of this 
field. (d) Determine the actual potential at a point inside the cavity relative to that at 
the origin of the cavity. 

Determine the potential in spherical coordinates due to two equal but opposite point 
charges placed on the y axis at y = +1/2 with 1 4  r, the distance to the observation 
point. 

Show that the potential at large distances from a linear octupole shown in Fig. 2.30 is 

6qa3P3 (cos 0) 
4ns0r4 ' 

where P3 = (5 cos3 0 - 3 cos t3)/2. 

Figure 2.30 Linear octupole. 

Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b (a > b) 
and charges q and -9, respectively. Determine the potential at large distances from the 
rings. Compare this potential with that of a linear quadrupole (see Fig. 2.27a). 

Consider half a sphere that has a uniform surface charge distribution a. Calculate the 
dipole moment of the distribution relative to an origin at the center of curvature. 

Consider an electric dipole p = poP located at the origin and placed in external poten- 
tial @ = ~ a , x 2  + a,x + a3. (a) What was the energy needed to place the dipole in the 
potential? (b) Determine the force acting on the dipole. (c) Determine the torque acting 
on the dipole (see Example 1.3). a,, a, and a, are constants. 

Determine the force and torque acting on an electric dipole of moment p due to a point 
charge q. 

A dipole of moment p, lies at the origin and a dipole of moment p, lies at a point 
whose position vector is r. Determine the force between the two dipoles. For which 
orientation of the dipoles does the force maximize? 

Two charges q and -q are placed on the x axis at d and -d, respectively. A dipole of 
moment p is placed on the z axis at I .  (a) Determine the force acting on the dipole. (b) 
Show that this force can be produced by replacing the two charges with a dipole of 
moment 2qd(l + d2/12)-5/2 placed at the origin and directed along the x axis. 

Use the multipole expansion given in Eq. (2.62) to find the potential near the center of 
a thin sphere of radius R that has a uniform surface charge density a. 

Calculate the first three multipole moments of the following charge distributions. (a) A 
uniform filamentary distribution extending from z = zo to z = -zo and of total charge 
q. (b) The uniformly distributed ring of charge (discussed in Example 2.15) with an 
additional point charge q = -2nR1 placed at its center. 

Use Eq. (2.69) and the dipole field to calculate the potential of the quadrupole of Fig. 
2.27a. 



ELECTROSTATIC 
BOUNDARY 

VALUE PROBLEMS 

3.1 Poisson's and Laplace's Equations 
Often, we are confronted with situations where we do not know, a priori, the charge 
distributions, and consequently we cannot directly determine E or 4. An important 
example of this is when we have a system of conductors whose relative potentials 
are known, but the charge densities on the conductor surfaces are not. In this 
instance, as we will see later, there exists a solution, producing well-behaved electric 
fields and charge densities. Our explicit formula for E and 4 demand that we know 
the charge distributions on the conductor surfaces, yet we cannot obtain these 
without knowing the electric fields at the conductor surfaces (a = eOE there). It 
turns out that we can resolve this problem. What allows us to resolve it is basically 
that we employ two criteria simultaneously to solve two problems. For example, 
although each of two linear algebraic equations may contain two unknowns and 
neither can be solved alone for both unknowns, the two in combination can be 
solved. In the case of electrostatics, two relations that can be solved simultaneously 
are as follows: 

These two equations may be further combined into one equation-namely, 

-which is customarily written as 
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This latter equation, which is called Poisson's equation, summarizes the equations of 
electrostatics. It relates the partial derivatives of the potential function at a point to 
the charge density, p, at that point. The symbol V2 ("del squared"), called the 
Laplacian operator, is a linear, scalar operator [see Eqs. (1.62) to (1.6411. In terms of 
cartesian coordinates, 

V2@ may be expressed in other coordinates also, such as cylindrical or spherical 
coordinates, using the gradient and divergence expressions in those coordinates. 
They are given in Eqs. (1.63) and (1.64), respectively. 

If p = 0 in some region of space, then in that region Poisson's equation becomes 

This is known as Laplace's equation. The study of the properties and solutions of 
these partial differential equations occupy an important place in mathematical 
physics. In problems with conductors, p is usually zero in the region between the 
conductors, so we seek a solution of Laplace's equation, V2Q, = 0, in these regions 
that will have the correct boundary conditions at the surfaces of the conductors. 
Having obtained @, we can then obtain E = -V@ and subsequently the surface 
charge densities on the conductors. 

The assumption that the charge density p is zero in the space not occupied by 
conductors has a greater application than might be supposed. It will be true if that 
space is free space (obviously) or is occupied by a simple dielectric (to be discussed 
later), and if there is no agent that continually injects charge into that region. In the 
case of free space, any charge that may have existed there will have been swept out 
by the existing (static) electric fields, so ultimately one has a situation wherein 
charge resides only on bounding conductor surfaces. The fact that charge cannot 
exist in stable equilibrium in free space under the influence of electrostatic fields 
alone is often given the name Earnshaw's theorem. In establishing this theorem it 
suffices to remark that surrounding any such point in space where a charge could 
reside in stable equilibrium one could locate a small Gaussian surface S through 
which the electrostatic flux would be finite. This follows since E must point toward 
or away from the point everywhere on the sphere in order that restoring forces exist 
around the point. This implies that a net charge exists inside the sphere, which 
contradicts the assumption of free space. Therefore stable equilibrium is not 
possible. 

It is interesting to note here that these arguments about electrostatic equilibrium 
in free space are similar to those involved in showing that the macroscopic charge 
density must be zero inside a conductor. The main difference, macroscopically, 
between free space and the interior of a conducting medium is that the conductor 
possesses a large available supply of elementary charges that can be used to annul 
any existing static fields. This occurs by a rearrangement of charge on its surfaces. 
Such a field is usually not possible in free space. 

3.2 Uniqueness of Solutions to Electrostatic Problems 
We address ourselves now to problems involving conductors in free space. We shall 
first indicate that a unique solution to the electrostatic field exists in this space so 
long as certain boundary conditions are specified. We shall assume that a mathe- 
matical solution to Eq. (3.4) indeed exists. This is not obvious, although physically 
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we know that if we have a system of conductors, with an arbitrary charge or 
potential on each, then there will exist some electrostatic field solution in the space. 

Let us assume the following. (1) The region of interest, V, is charge free space 
where V . E = V2@ = 0. (2) The boundaries of V are completely specified by various 
surfaces (such as the surfaces of conductors), collectively called S. One boundary 
may correspond to a surface of a sphere at "infinity," where by definition the 
potentials will vary as l/r, and the fields as l/r2.* We consider three uniqueness 
conditions: 

I. Potential Boundaries. We take all bounding surfaces to be surfaces on which the 
potential @ is uniquely specified. Then the potential in the intervening region is 
uniquely specified. 

Proof 
(i) Assume that there exist two solutions to the equation V2@ = 0, @, and @,, 

satisfying the same potential boundary conditions. We shall show that they are 
identical. 

(ii) Consider the function @, = @, - a,. It is a solution of Laplace's equation in 
this region since V2cDo = V2(@, - 0,) = V2@, - V2@, = 0. Moreover, the potential 
@, vanishes on all the bounding surfaces since @, and @, have identical values there 
by hypothesis. 

(iii) Consider the vector function [@,E,] where E, r -V@,. Then, by the diver- 
gence theorem, 

r r 

The surface integral in this equation vanishes since @, = 0 on S. If a part of the 
bounding surface of V is "at infinity," $,(E,@,).da + 0 either because the integral 
varies as (1/R).(1/R2).4nR2 - 1/R, and so the integral vanishes or we assume that 
as R -+ co, @, and @, becomes identical. Thus 

JV v . (@, E,)d. = 0 

Using the property V . (@,E,) = V@, - E, + @,V. E, in the integrand of the volume 
integral, and noting that V.E, = 0 anywhere inside V, and that E = -V@,, we 
obtain 

r 

(iv) For this volume integral to vanish at any point in V, the integrand itself 
should vanish identically. Thus 

E =  -V@,=O 

i.e., @, = constant. Since cD, is zero and continuous on the boundaries of V it 
follows that 0, = 0, or @, = @,. 

A physical argument for the validity of this uniqueness property is that if 0, is 
zero on all boundaries, then it either must be zero everywhere in between or it must 
have an extremum somewhere in between. If it has an extremum, then through some 
Gaussian surface surrounding the region of this extremum, which is at a lower or 

*That is, at a distance far enough from all the charge (the charge must therefore be localized) the charge 
looks like a single point charge. 
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higher equipotential, there must be a nonzero net flux. (The difference in potential 
dm, = - E, dr # 0.1 The latter implies the existence of charge inside the Gaussian 
surface, and contradicts the hypothesis of charge-free space. Therefore @, must be 
zero everywhere. Note that this proof nowhere is dependent upon the assumption 
that surface S is that of a conductor. 

11. Charged Boundaries. Assume the surface of conductors to be the bounding 
surfaces of a region I/, and that each conductor has its (total surface) charge well 
specified. If V is an open region, let the potential at infinity approach that of a point 
charge equal to the total net charge of the system. Then the electric field in V is 
uniquely specified, and the potential is specified to within a constant value that is 
determined if the potential at one point is specified. (This point is sometimes called 
"ground" or "common," and is assigned the potential zero.) 

Proof 
(i) Again assume two solutions 0, and 0, are possible in V having the same 

boundary conditions (including the condition at infinity, if required.) Then @, E @, 
- @, is also a solution, but to a problem with all conductors having zero net 
charge. Clearly, if @, # @,, the charge densities will differ on the conductors even 
though the total charges are equal. 

(ii) Now, as in condition I above, we again find that 
P P 

$s again indicates all bounding surfaces, including possibly one "at infinity." If we 
consider the conductor bounding surfaces, we note that 0, is constant there, and so, 
for each conductor surface Si, 

l!@, E,) . da = @, E, . da I, 
Since the net charges on each conductor vanishes, then the surface integral vanishes. 
If the surface at infinity is considered, then the surface integral at infinity vanishes 
too because 0, and @, and El and E, behave identically there. Thus, as before, 
I, Eg dv = 0, implying E, = 0, implying El = E,. 

III. Mixed Boundaries. Other uniqueness conditions are possible. For example, 
one may specify for each conductor either the potential or the total charge (not both 
at once). Again, it is found that the resulting fields are unique. The proof proceeds 
similarly to those given above. Similarly, uniqueness will result if, on the boundaries 
of V, the normal component of E = -V@ is everywhere given. 

Though we have proved uniqueness for the case where VZ@ = V . E = 0 (Laplace's 
equation), similar arguments show the uniqueness of solutions even when a charge 
density exists between the boundaries. We shall thus feel completely free to suppose 
that a unique solution always exists, although we must be careful not to impose 
contradictory or insufficient conditions on our problem. By the word "solution" we 
simply mean that we have found the electrostatic field or potential throughout the 
region of space of concern. 

The uniqueness property of electrostatic problems is of great utility in obtaining 
solutions, because one can then more plausibly use the power of guesswork and 
intuition. If a field is obtained by whatever argument, and that field satisfies the 
electrostatic equations and the physical boundary conditions, then that field is the 
true solution to the electrostatic problem and no further arguments need to be 
made. (See Section 3.5, The Method of Images.) 
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3.3 Boundary Conditions 
One often desires the solution to an electrostatic problem in a restricted volume of 
spa.=, V. For example, in using the differential electrostatic equations, we would like 
to exclude regions where there are point charges, surface charges, or line charges, so 
that E will everywhere be a continuous function in V. We shall see that it is possible 
to find a solution in V if we also know certain properties that we must obtain for 
the solution at the boundaries of V. Thus it is crucially important to the subject to 
specify the boundary conditions. 

It will suffice to give these boundary conditions at surfaces separating two regions 
of space. We shall assume that point charges, and line and surface charge densities, 
exist. Consider first the behavior of the electric field near an isolated point charge. 
The magnitude of the field grows arbitrarily large as the point charge is approached. 
Therefore it will always be true that the electric field on the surface of a sphere 
centered at the point charge will approach that of the point charge alone as the 
radius of the sphere, r, shrinks to zero: 

This is the boundary condition for point charges. 
Similarly, if there exists an isolated line charge density of magnitude 1 the field at 

a radial distance p from the line satisfies Eq. (2.19); that is, 

Now consider any surface separating two regions labeled 1 and 2. The surface 
may carry a surface charge density a. The boundary condition on the normal 
components of E at that surface have already been derived [see Eq. 2.35)]. It states 
that 

d 
(E2 - El).A = - (2.35) 

Eo 

where E, and El are the values of E in regions 2 and 1, respectively, as a point on 
the surface is approached. This result follows directly from an application of Gauss' 
integral law. It asserts that a discontinuity in the normal components of E at a 
surface exists only if a surface charge density exists at the surface. 

A relation between the tangential components of E across a boundary can be 
determined using V x E = 0. Integrating this equation over an open area S and 
using Stokes' theorem gives j, V x E-da = 8, E-dr  = 0, where C is a closed loop 
bounding S. The equation 8, E-dr  = 0 always implies that the tangential compo- 
nents of E across any interface separating two regions of space are continuous. The 
proof consists in evaluating this integral (circulation of E) around the closed rectan- 
gular loop (Fig. 3.1), which straddles the surface. The long side of the loop, of length 
I, is chosen small enough so that I, E-dr  = E . l  where E equals the value at the 
center of 1. The short sides of the loop may be chosen small enough so that as long 
as E is Jinite across the interface surface, their contributions to the line integral may 
be neglected. Then 

n 

where i is a unit vector parallel to the surface. Consequently 

(E, -0  = ( ~ , . f )  
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Figure 3.1 Application of Stokes' theorem to 
the area of the rectangle at the interface of two 
regions to determine conditions on the com- 
ponent of E tangent to the interface. 

This equation indicates that the tangential component of E is continuous. 
Moreover, it can also be written in terms of a cross product: 

A x (E2 - El) = 0 

where A is a unit vector normal to the interface. Finally Eqs. (3.6) and (2.35) can be 
combined into one single vector relation, as follows: 

The boundary condition on the potential function @ is simply that @ is con- 
tinuous across any boundary where the electric fields remain finite. This is an im- 
mediate consequence of the definition of A@ as the work required to displace a unit 
point charge between two points. If E is finite, then as the displacement Ar goes to 
zero, E Ar -r 0, implying A@ -r 0, or 

= o2 (3.8) 

The conditions in Eqs. (2.35) and (3.6-r combined in Eq. (3.7band Eq. (3.8) 
are the boundary conditions needed to solve electrostatic boundary value problems 
in vacuum. However, it is to be noted that the three conditions are not independent 
of each other. In fact, the continuity of the potential is equivalent to the continuity 
of the tangential components of the electric field. We would like to reemphasize that 
E must be finite for the potential to be continuous. When E is not finite, such as 
when a dipole layer (which will be discussed in Chapter 4) is crossed, the potential 
will not be continuous (see Example 4.1). 

3.4 Problems Involving Laplace's Equation 
In this and following sections we consider electrostatic problems where the charge is 
confined to surfaces of conductors or localized at discrete points, or both. In the 
space between conductors and away from the point charges the electrostatic poten- 
tial satisfies Laplace's equation: V20 = 0. In this section we study the solution of 
this equation for various physical configurations. 
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3.4.1 Laplace's Equation in One Dimension 

We shall study first some simple types of solutions of this equation. These solutions 
arise in problems of very high geometrical symmetry where the potential @ is a 
function of a single variable. In these cases Laplace's equation reduces to an ordin- 
ary differential equation with very simple solutions. 

Consider a cartesian geometry where @ is only a function of z ;  then 

with a solution 

where a and b are constants to be evaluated from the boundary conditions. 
In the case of spherical geometry where the potential is a function of r only, the 

potential satisfies the following equation: 

Multiplying by rZ # 0 and integrating gives 

where a is a constant. Integrating again gives 

where b is another constant. The constants a and b are to be evaluated from the 
boundary conditions. 

When the potential is a function of p and independent of 4 and z of the cylin- 
drical coordinates, then 

Multiplying by p # 0 and integrating gives 

where a is a constant. Integrating again gives 

where b or p, is another constant, which along with the constant a can be evaluated 
from the boundary conditions. 

Other problems involving other single independent variables such as 0 in spher- 
ical coordinates and 4 in cyclindrical coordinates will be discussed later in 
Examples 3.3 and 3.4. 
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Example 3.1 Long, Uniformly Charged, Conducting Rod 

In this example (see Fig. 3.2) we approximate the long conductor as one extending in both 
directions to infinity. The conductor has, on its surface, a surface charge density a. We are 
required to find the potential at a distance p from the axis of the rod. It is apparent that this 
potential should depend only upon the coordinate p. (The electrostatic field of this charge 
distribution depends only on p, and points in the p direction by symmetry arguments.) 

Figure 3.2 Long, uniformly charged rod. 

The charge extends to infinity, and therefore we expect @ not to vanish at co; that is, 
Wco) # 0. Consequently we choose the zero of potential to be on the axis of the rod (the 
symmetry axis). Since the conductor is an equipotential volume, the whole volume of the rod 
has zero potential. 

In the region outside the conductor, we must have V2@ = 0. Since @ and E depend only on 
the cylindrical coordinate p, then @ satisfies Eq. (3.13), whose solution is given by 
@ = a ln(p/p,). To determine the constants our solution is made to satisfy the correct physical 
conditions on the boundary of the conductor. We therefore require that 

which has already been satisfied. Moreover, recalling that at the surface of a conductor 
E = a/&,, then 

implying that 

Our final solution is therefore 

where 1 is the charge per unit length of the rod. 
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Example 3.2 Spherical Capacitor 

Consider two concentric spherical shells of radii R ,  and R, (where R, > R,). The inner and 
outer shells are kept at potentials V, and V,, respectively. Because of the spherical geometry 
we use spherical polar coordinates with the origin at the center of the shells. Moreover, 
because the shells are concentric, we expect the potential between them to be independent of 
the angles 0 and 4 .  Therefore, the potential is given by Eq. (3.12); that is. Q, = a/r + b. The 
boundary condition at r = R ,  gives V, = a/R,  + b and that at r = R, gives V, = a/R,  + b. 
These two equations can now be solved simultaneously for a and b and hence, for the 
potential and the field; 

Using this expression, one can calculate the charge 9,  on the inner shell, as follows: 

and thus E is written in terms of the total charge as follows: 

The charge on the outer shell can be determined using this field and that in the region 
r > R,, which can be determined by solving the boundary value problem of the outer 
region. (Do it.) 

Example 3.3 Wedge Capacitor 

Consider the capacitor shown in Fig. 3.3. It consists of two large plates in the shape of a 
wedge forming an angle B. The plates are insulated from each other and kept at 0 and V 
volts. This capacitor can be best described by cylindrical coordinates. Because the plates are 
large, we expect the potential to be independent of z and p. In this case the Laplacian V2 
reduces to (l/p2)d2/dt$2 and the potential between the plates Q, satisfies the equation 

Figure 3.3 Wedge capacitor. 



The most general solution for @ is 

@ = a + + b  

where a and b are constants to be evaluated from the boundary conditions. At 4 = 0, @ = 0; 
and therefore b = 0. At the other plane (4 = B), @ = V; and therefore a = VIP. Substituting 
for a and h in Eq. (3.16) gives 

To calculate the electric field, we take the gradient of Q. This gives 

where 6 is a unit vector in the 4 direction. 

Example 3.4 Coaxial Conic Capacitor 

The capacitor of Fig. 3.4 consists of two coaxial cones whose apexes are placed at the origin 
and whose axes are along the z axis. The apex angles are 0 ,  and 0 ,  (82 > 8,). The cones are 
insulated from each other and the inner and outer cones are kept at V and zero potentials 
respective1 y. 

To determine the potential and the electric field between the cones we start with Laplace's 
equation in spherical polar coordinates. Taking the cones to be sufficiently large that end 
effects can be neglected results in the situation where the potential is independent of r and 4. 

L L (  sin o 9 - = o 
r2 sin 6 do 

which, upon multiplication by rZ sin 6, gives 

which, upon integration, gives 

d@ a - =- 
do sin 8 

where a is a constant. Integrating again gives 

@ = a l n  tan- + b  ( 3 

I 

I 
1 \ + = o  

ry 
X 

Figure 3.4 Conical capacitor. 
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where b is another constant. The constants can now be evaluated. At O = O,, cD = V, and at 
6 = O,, @ = 0; thus 

The above equations for a and b when solved simultaneously yield: 

v 
a = and b = -a In 

Substituting for a and b in Eq. (3.18) gives 

3.4.2 Laplace's Equation in Two Dimensions-Spherical Coordinates 

We will now consider some problems that are less symmetric than the ones discus- 
sed above in Section 3.4.1. These involve potentials that are functions of two vari- 
ables. In spherical coordinates we choose geometries of azimuthal symmetry and 
thus choose the dependence of the potential to be on r and 8. In this case Laplace's 
equation reduces to 

The dependence of 0 on r and 8 can be determined by the method of separation of 
variables. This method assumes @(r, 8) to be a product of two functions. One de- 
pends on r only, and the other depends on 8 only and, as a result, transforms the 
above partial differential equation to two ordinary differential equations. Substitut- 
ing @(r, 8) = Y(r)P(B) in Eq. (3.19) gives 

Dividing by Y(r)P(B) and multiplying by r2 we get: 

Since the left-hand side of this equation depends only on r and the right-hand side 
depends only on 8, then the only way that both sides can be equal for all values of r 
and 8 is for both sides to be equal to a constant K, which is called the separation 
constant. Thus 

~ ~ ( s i n 8 ~ ) + K P = 0  sin 8 dB 
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Equation (3.22) is called Legendre's equation; it has solutions that behave well for all 
values of 8 including 0 and n only if K = n(n + l), where n is a positive integer. The 
corresponding solutions are labeled by n, written as P,(8) and called Legendre's 
polynomials or zonal harmonics. Table 3.1 gives the explicit dependence of a few of 
them on 8. An important property of these polynomials is that they are orthogonal 
with each other; that is, 

where x = cos 8. The Kronecker delta function, 6,,, is zero for n # m and is unity for 
n = m. 

Table 3.1 

n P,(cos 9) 

0 1 
1 cos 9 
2 t(3 c0s2 9 - 1) 
3 t (5  cos3 e - 3 C O ~  9) 

Since K has been determined, the equation for Y(r) can now be solved for differ- 
ent values of n: 

This equation permits two linearly independent solutions for each n; these are 
labeled by n and are given by the following equation. (You can check them by 
substitution.) 

The overall equation O,(r, 8) = P,(B)Y,(r) then has two linearly independent solu- 
tions, which are as follows: 

@,(r, 8) = r"P,(8) and r-("+"P,(8) (3.27) 

The most general solution is then written as a linear combination of all the possible 
solutions-namely, n = 0, 1,. . . , co. That is, 

where A, and B, are constants to be evaluated from the boundary conditions. 
This expansion can be interpreted as a multipole expansion of similar nature to 

Eqs. (2.61) and (2.62). The terms having the solution Y, = r-'"") correspond to 
terms in which r'lr G 1, whereas those having Y, = r" correspond to the case 
rlr' G 1. Further details of this nature can be seen in some of the examples in the 
text. 

We consider below four examples where the potential is a function of r and 8. 
These examples arise in quite different physical situations and thus help explain the 
foregoing technique. 
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*Example 3.5 Nonconcentric Spherical Capacitor 

Let us consider again the spherical capacitor treated above in Example 3.2. In here we take 
the inner shell to have a charge q and the outer shell to be kept at zero potential (mixed 
boundary conditions). When the shells are concentric, as discussed in Example 3.2, the poten- 
tial is only a function of r. A dependence on 6' can be introduced by displacing the centers of 
the shells by an amount 6, as shown in Fig. 3.5. In order to simplify the derivation we 
consider only the case where the displacement is very small-namely, 6 < R,. 

Figure 3.5 Nonconcentric spherical capacitor. 

We choose a spherical polar coordinate system whose origin is at the center of the inner 
sphere. Using the law of cosines one can easily show that the surface of the outer sphere is 
described approximately in this coordinate system by R(0) x R, + 6 cos 8. 

Because there is only a slight departure from spherical geometry, order 6, then the 0 
dependence of the potential will be of order 6. Since the potential has azimuthal symmetry, as 
in the concentric case, then 

We will now use the boundary conditions to evaluate the constants A,, A,, B,, and B,. 

1. The potential of the inner shell is constant [@(R,, 0) = constant] but unknown at this 
stage. Therefore 

Equating the coefficient of cos 0 to zero gives 

2. The potential of the outer shell is zero [WR, 0) = 01. Therefore 

Neglecting terms of order 6' and higher, we get 
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Equating the coefficients of cos 8 gives 

3. The last boundary condition states that the total charge on the inner shell is q; that is, 

4 Js,E.fi = - (3.32) 
Eo 

The electric field at the surface of the inner shell is normal and is given in terms of B, by 

and which, upon substitution in Eq. (3.32), gives 

Equations (3.30), (3.31), and (3.34) are now solved simultaneously for the constants A,, B,, 
A,, and B,, and then substituted in Eq. (3.29). The result is 

Example 3.6 Angle-Dependent Charge Distribution 

We will give an example in which angular dependence in the potential is caused by the 
introduction of angular dependence in the charge distribution on a surface boundary. Con- 
sider a shell of radius R that has a surface charge distribution a = a, cos 8, where a, is a 
constant. Inside and outside the shell the potential satisfies Laplace's equation and therefore 
the potentials in both regions are represented by Eq. (3.28), as follows: 

The coefficients of the expansions can now be determined using the following four bound- 
ary conditions. 

1. The potential @, should be finite as r + 0, which requires B, = 0, for n 2 0. 
2. The potential @, should be zero as r + co; thus A; = 0 for n 2 0. 
3. The electric fields at the surface of the shell are related by 

where E, and El are the electric field vectors just outside and just inside the shell surface, and 
B is a unit vector normal to the surface and pointing into region 2. Calculating the fields from 
Eqs. (3.36) and substituting them in Eq. (3.37), we obtain 

'J 0 nAnRn-'Pn(cos 8) + (n + 1)&R-(n+2)Pn(cos 8) = - cos 8 (3.38) 
&o 

Since the various Pn(cos 8) are linearly independent functions, we equate their coefficients on 
both sides, which gives B', = 0 and 
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4. The potential at the shell is continuous (0 ,  = @,). This gives A, = 0 and 

The simultaneous solution of Eqs. (3.39) to (3.42) yields the nonzero coefficients 
A, = a,/3to and B; = a, R3/3&,, and thus 

0 0  0,(r, 8) = - r cos 8 r < R  (3.43) 
360 

aoR3 1 
m2(r, 0) = - - cos 0 r > R 

3&, r2 

It is apparent that the potential inside the shell is due to a uniform field along the negative 
z axis, E = -a0/3t02. The potential outside the sphere, however, is due to an electric dipole 
of moment (4n/3)R3aO which is just the product of the volume of the shell by the maximum 
charge density a,. Finally, we note that these results are precisely what we arrived at when 
the problem was solved using the method of multipole expansion (see Example 2.17). 

Example 3.7 A Conducting Sphere in an Electric Field 

A conducting sphere carrying a charge Q is placed in an electric field that is initially uniform 
and along the z axis, E = Eo2, in the absence of the sphere or far away from it, as shown in 
Fig. 3.6a. The electrostatic potential associated with the electric field at far distances is 

@ =  - E.dr=  - E , z + C =  -E,rcosO+C I (3.45) 

where C is a constant. This condition constitutes an angle-dependent boundary condition on 
the potential of the combined problem (sphere + electric field); it introduces 8 dependence in 
the potential at arbitrary r. However, there is still symmetry about the z axis, and therefore 
the potential will be a function of r and 8 only. Another boundary condition in this problem 
is the fact that the potential at the surface and inside the sphere is constant since the electric 
field in a conductor is zero. 

Outside the sphere the potential satisfies Laplace's equation and thus is given by 
m 

(a)  ( b )  
Figure 3.6 Conducting sphere in an initially uniform electric field. 
(a) Schematic diagram of the sphere and the lines of force in the 
absence of the sphere. (b) Lines of force in the presence of the sphere. 
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Using the bouxidary condition of Eq. (3.45) derived above for r + a, gives: 
w 

AnSP,(cos 0) = - Eo r cos 8 + C (3.47) 
n = O  

Equating coefficients of P,,(cos 0) in this equation gives 

A, = -E,,A,=C,andA,=O f o r n 2 2  (3.48) 

Substituting these values into Eq. (3.46) and using the boundary condition @(r, 8) = 
@, = constant at r = R gives 

- 
@(r, 0) = @, = B, R-("+ ')Pn(cos 8) + C - E, R cos 8 

n = O  

Equating the coefficients of Pn(cos 8) on both sides of this equation gives 

B 
c +?= @,,B, = EoR3,andB, = 0 forn 2 2 

R 

Thus 

Eo R3 
rn(r,e) =ao + so(:-;) - EorcOs8 +- cos e 

r2 

The third boundary condition is the statement about the total charge on the sphere, which 
will now be used to evaluate B,. First, one calculates the electric field on the surface by 
taking the normal derivative of @: E = -a@/& evaluated at r = R. The surface charge 
density, a = cOE is then calculated. 

BOEO a = - 
RZ 

+ 3c0E0 cos 8 

Thus 

Q = j a d a = % j  da + 3c0 Eo j cos 8 da 

The second integral vanishes and the integral da gives 4nR2, yielding Bo = Q/4nco. Hence 

Eo R3 
-Eorcos8+-  cos 8 

r2 

This result shows that the potential consists of four terms. The first and third terms are 
associated with the external field Eo2. The second and the fourth terms are the result of the 
introduction of the sphere in the external field. The second is only present when the sphere 
has a net charge Q, whereas the fourth is a dipole field produced by a dipole moment equal to 
47tR3coEo2, indicating that the sphere has been polarized by the external field. Figure 3.66 
gives the lines of force of the electric field in the presence of the sphere with no net charge. 

We would like now to present a very simple idea for arriving at the above results. Consider 
the case where the sphere does not have a net charge. The net field inside the sphere must be 
zero. Therefore the external field Eo must be annulled by the field produced by charges 
induced on the conducting surface. Since the previous example showed that we could produce 
a uniform field inside a sphere by placing a charge density a = a, cos 8 on its surface, it is 
easy to annul the field E by choosing a, so that 

that is, 

a, = 3c0E0 
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Consequently, u = 3&, Eo cos 8. Now, external to the sphere, such a charge density produces a 
dipole potential that is superimposed upon the potential associated with the field E,. Also, 
from the previous example, the potential function inside the sphere is a constant. Outside the 
sphere, 

Clearly, at r = R, @ = 0; that is, the potential of the sphere is zero. 

Example 3.8 Angle-Dependent Potential Boundary 

Two concentric spheres have radii R ,  and R ,  ( R ,  > R,).  The potential everywhere on the 
surface of the smaller sphere is zero. On the surface of the larger sphere the potential is given 
by 

V ( R 2 ,  8 )  = Vo cos 8 (3.53) 

where V, is a constant. 
This angle-dependent potential boundary introduces angular dependence in the potential 

between the spheres, whose explicit form can be found by solving Laplace's equation in this 
region. Thus, between the spheres, @ is given by the following expansion [see Eq. (3.28)]. 

Note that the present region of interest does not include r = 0 or r = co, as some of the 
previous cases did. The boundary condition W R , ,  8 )  = 0 gives 

A, + B,R, - ( 2 " + 1 )  = 0 for all n (3.54) 

and the boundary condition @(R,, 8 )  = Vo cos 8 gives 

for n # 1 

Equations (3.54) and (3.55) are now solved simultaneously; they yield 

A, = Bn = 0 for n # 1 

and 

Therefore 

The electric field at the surface of the inner sphere can be calculated from the relation 
E = -V@: 

3V0R: 
E(Rl,  8 )  = -- P cos 8 

R: - R: 
which shows that it is purely normal indicating that the inner sphere is a conductor as it 
should be. We leave the determination of the potential and the electric field outside the larger 
sphere as an exercise. 

3.4.3 Laplace's Equation in Two Dimensions-Cylindrical Coordinates 

We now turn our attention to boundary value problems where the geometrical 
configuration is cylindrical in nature, and where the potential is a function of more 
than one coordinate. Here we will consider potentials that are functions of p and 4 
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only. Such potentials arise in cases where there is a symmetry along the z axis. In 
regions excluding point charges, the potential satisfies the equation 

The method of separation of variables used above to solve for the potential in 
spherical coordinates applies here. We write 0 as the product of two functions, 
0 = R@)Y(4), and substitute it into Eq. (3.59): 

Both sides of the equation will be taken equal to KZ, which is the separation 
constant. The equation for Y, 

has the solutions cos K 4  and sin K). The magnitude of K has to be restricted in 
order to make these solutions single-valued functions of 4. Or, in other words, for 
the solution to make sense physically it should be the same after a rotation of 2n, or 

cos K(4 + 2n) = cos K 4  and sin K(4 + 28) = sin K 4  (3.62) 

which requires that K = n, where n is zero or a positive integer. Dropping the 
negative integers will not result in neglecting any possible solutions, since cos(-n4) 
is identical to cos(n4) and sin(-n4) = -sin(n4). An important property of these 
solutions is the fact that they are orthogonal; that is, 

where a,, is the Kronecker delta introduced in Eq. (3.24). 
The radial dependence of the potential can now be obtained. Setting the left-hand 

side of Eq. (3.60) equal to K2 = n2, we get: 

For n = 0, the potential satisfies the same equation that we encountered in the case 
where the potential has no angular dependence [see Eq. (3.13)]; namely, 

which has the solutions R(p) = constant and R(p) = In p. For n # 0 the equation 
has the two solutions pn and p-". Therefore the most general solution is 

m 

0 = 1 (A, cos(n4) + Bn sin(n4))pn 
n = l  
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where A,, A:, En, and B,, for n 2 0, are constants to be evaluated from the bound- 
ary conditions. It is to be noted that this result has more types of expansions than 
the corresponding expansions in spherical coordinates. Moreover, the solution of 
the angular equation in spherical coordinates involves Legendre polynomials, while 
this expansion involves the harmonics of sin 4 and cos 4. Also, the radial de- 
pendence of this expansion contains a In p term. Below we consider some appli- 
cations of the cylindrical expansion in order to explain further the nature of these 
terms. 

*Example 3.9 The Nonaxial Cylindrical Capacitor 

Consider a cylindrical capacitor. The cylinders are displaced so that there is a distance 6 
between the axes of the cylinders, as shown in Fig. 3.7. The inner shell of radius p, is kept at 
potential V, and the outer shell of radius p, is kept at potential V,. Further, we take 6 < p ,  
in order to simplify the problem. 

Figure 3.7 Nonconcentric cylindrical capacitor. 

Take a cylindrical coordinate system with the z axis along the axis of the inner shell. From 
the law of cosines one can show that the surface of the outer cylinder is approximately 
described by R ( 4 )  = p, + 6 cos 4 .  Before we take on the nonaxial case, it is instructive to 
consider the axial case: namely, 6 = 0. In this case the potential depends only on p and thus 
the solution of Eq. (3.13) is applicable: 

With W p , )  = V, = A,  + Ab In p, and V, = A, + Ab In p,, the constants A,  and Ab, and 
hence @, take the following values: 
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It can be easily shown that the term proportional to In p  is due to a charge density. If we 
calculate E = - V@ = -$ (80 /8p)  at p  = p, and then use Gauss' law, we obtain: 

This solution is modified when 6  is not zero. A first-order correction of the order 6  can be 
written using Eq. (3.65); that is, 

6  
q p ,  4 )  = A, + & In p  + 6p(A1 cos 4 + B ,  sin 4)  + -(A; cos 4 + B; sin 4) (3.68) 

P  

We now apply the boundary conditions. 

1. At p  = p,,  W p , ,  4 )  = V,. This gives 

Since the sine and cosine functions are linearly independent, then we equate on both sides of 
the equation the coefficients of cos 4 and also the coefficients of sin 4 .  This yields: 

2. At p  = R(4)  = p, + 6  cos 4, W R ,  4)  = V2. This gives 

Ab 6  cos 4 
A o + & l n p , +  

6  + 6p2(A1 cos 4 + B ,  sin 4)  + - (A; cos 4 + B; sin 4)  = V, 
Pz P2 

where 1/(p2 + 6  cos 4)  was expanded as ( 1  - 6  cos 4 /p2) /p ,  and ln(p2 + 6  cos 4)  as In p, 
+ 6  cos 4 / p , ,  and terms of order d2 and higher were neglected. Equating coefficients of cos 4 
and sin 4 ,  we get 

Examining Eqs. (3.69) and (3.70) shows that the relations between A,  and Ab are the same 
ones derived in the coaxial case, and therefore they take the same values calculated above. 
The relations between B1 and B; derived from both boundary conditions can be satisfied 
only when B ,  = B', = 0. On the other hand, there is a nonzero solution for A ,  and A',: 

Therefore the potential is 

The fact that the potential depends only on the harmonic cos 4 ,  which is the same harmonic 
involved in the geometry R = p, + 6 cos 4 indicates that all the other harmonics could have 
been dropped early in the solution. Consider the following special case of the above results. 
When the two cylinders are kept at the same potential (namely, Vl = V2 = V) ,  then Eq. (3.71) 
becomes 
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In the coaxial case, 6 = 0; hence Eq. (3.72) yields @(p, )) = V.  Equation (3.68) shows that the 
corresponding charge on the inner cylinder is zero, as expected. In the nonaxial case we find 
it has the density 

- 26 VE, 
a 1  =- cos ) 

(P: - P:) 

Example 3.10 An Angular Charge Distribution 

This example involves an angular charge distribution held at a cylindrical surface. Consider a 
long cylinder of radius po with a surface charge density a = Q ,  sin 2 )  + a ,  cos 4 ,  where 4 is 
the angle measured from the x axis and a ,  and a ,  are constants. 

In the regions outside and inside the cylinder, the electrostatic potential satisfies Laplace's 
equation. Moreover, the expansion for the inside region should not include p-" and In p 
terms since the potential at the center of the cylinder should be finite. On the other hand, the 
expansion for the outside region should not include pn terms. Therefore, the potentials inside 
and outside the cylinder, @, and @,, respectively, are given by the following expansions: 

@,(p, )) = Ab In p + (A:, cos n )  + B: sin n))p-" p > po (3.75) 
n = l  

As was discussed in Example 3.9, the term Ab In p arises when the total charge on the 
cylinder is nonzero. In this particular example the total charge Q on the cylinder is 

where L is the length of the cylinder. The integration gives 

Lalpo  cos 2 4  + L Q , ~ ,  sin 4 = 0 I' 
Therefore the constant Ab equals zero. Since potentials are arbitrary within a constant, one 
can pick A, = 0 to make @ = 0 at p = 0. 

The rest of the constants can now be evaluated from the boundary conditions at the 
surface of the cylinder: 

1. At p = p,, the potential is continuous: @,(p,, 4 )  = @,(p0, 4 )  or 

m m x (A,  cos n 4  + En sin n4)p", 1 (A; cos n 4  + B', sin n4)pGn (3.76) 
n =  1 n =  1 

Equating coefficients of cos n 4  and coefficients of sin n 4  on both sides gives 

An = p,'"A; and Bn = pi2"% for n 2 1 (3.77) 

2 At p = p,, the normal components of the fields satisfy the relation 

where (E,).? = -d@Jdp. Substituting for ai from Eqs. (3.74) and (3.75) yields 

m m 

1 (A, cos n 4  + En sin nd)np", + 1 (A: cos n 4  + 4 sin n4)np,("+ ') 
n = l  n = l  
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Equating coefficients of cos n4 and coefficients of sin n4 on both sides of this equation gives 

A; 0 2  A, +1=- and A,= -p;2nAL f o r n r 2  
Po 60 

and B,, = -p;2nB; for n f 2 B2+,=- 
Po 2 ~ 0 ~ 0  

Solving the relations between the coefficients in Eqs. (3.77) and (3.78) yields the following 
nonzero coefficients: 

Therefore the potentials are given by 

01 @,(p, 4)  = a, p cos 4 + - pZ sin 24  
260 4&0 PO 

0 2  P; alp; sin 24 (b2(p,4) =--cos+ +-- 
~ E O  P 460 pZ 

The fact that the determined potentials depend only on the harmonics cos 4 and sin 24, 
which are the same harmonics involved in the given charge distribution, indicates that all the 
other harmonics could have been dropped early in the solution-that is, in Eqs. (3.74) and 
(3.75). This of course would simplify the algebra. 

3.4.4 Laplace's Equation in Three Dimensions-Rectangular Coordinates 

Laplace's equation in rectangular coordinates, 

can also be solved by the method of separation of variables. We take @ to be equal 
to the product F,(x)F2Cy)F3(z). Upon substitution of the product we get 

Both sides of the equation are taken to be equal to a separation constant ci2, 
yielding 

which has, for ci2 > 0 ,  cos a x  and sin a x  solutions, and 

Again the x and the y dependence can be separated by equating both sides of Eq. 
(3.84) to a second separation constant, -B2. This gives 
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The equation for F2 is similar to that for F, and therefore, for f12 > 0, has cos fly 
and sin fly solutions. On the other hand, the equation for F, has sinh yz and cosh yz 
solutions, where y = (a2 + f12)li2. 

The nature of the separation constants are not known at this point. However, the 
physical boundary conditions can be satisfied if one takes a and fl to be propor- 
tional to integers m and n, respectively. So we will take a and fl to be proportional 
to integers and thus the most general solution consists of eight infinite expan- 
sions, with the following combinations: sinh yz sin ax cos fly, sinh yz sin ax sin fly, 
sinh yz cos ax cos fly, sinh yz cos ax sin fly, and the other four possibilities are 
the above ones with sinh yz replaced by cosh yz. 

A special case arises when the separation constants are zeros. In this case Eqs. (3.83), 
(3.85), and (3.86) give F, = a,x + b,, F2 = a2y + b2 and F, = a,z + b,, where ai and 
b, are constants, and thus the most general solution is 

where A, to A,  are constants. 
Below are two examples of the boundary value problem in cartesian coordinates. 

--- 

Example 3.1 1 Conducting Box 

Consider a box of dimensions a, b, and c, as shown in Fig. 3.8. The top face at z = c is kept at a 
voltage V,(x, y), and the other faces are isolated from it and kept at zero potential. Because the 
potential on the faces passing through the origin is zero, then only one of the eight expansions 
will satisfy this condition-namely, sinh yz sin ax sin By. 

The separation constants a and can now be restricted by invoking the conditions at x = a 
and y = b. For the potential to be zero at these planes it is required that sin aa = sin Bb = 0, 
which yields a = nn/a and B = mnlb, where m and n are positive integers. Therefore, for the 
potential inside the box, we write 

rn rn nnx mny 
@(x, y, Z )  = 1 1 A, sinh y,z sin - sin - 

n = l  m = l  a b 

where y ,  = n(n2/a2 + m2/b2)'I2 and A, are constants to be evaluated from the rest of the 

J 
Figure 3.8 A box with one surface kept at a 
specified voltage and the rest are grounded. 
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boundary conditions. The last boundary condition is at the top face of the box: 
WX, y, c) = Vl(x, y) is a given function; thus, 

m m nnx mny 
V1(x, y) = C C A, sinh y,c sin - sin - 

n =  1 m =  1 a b 

which is a double Fourier series. Since the sine functions are linearly independent [see Eq. 
(3.63)], then multiplying both of its sides by sin (nnx/a)sin(mny/b) and integrating over x and 
y from 0 to a and 0 to b, respectively, we get 

4 nnx mny 
A, = dx dy Vl(x, y)sin - sin - 

ab sinh ymnc 1; 1; a b 

In the case V1(x, y) = Vo = a constant, then A, = 16Vo/(mnn2 sinh y,,c), where m and n are 
odd integers, and therefore 

16V0 sinh ymnz . nnx . mny 
WX, Y, Z) = 1 1 ---- sin - sin - 

n = 1 . 3  .... m=1.3 .... mnn2sinhymnc a b 

We consider now the case where two faces are kept at specified nonzero potentials. Let 
Wx, b, z) = V2(x, z) in addition to @(x, y, c) = Vl(x, y). The rest of the faces are kept at zero 
potential. The potential can be determined by superimposing the potential for the case where 
all the faces are grounded except the y = b face, and the solution derived above, Eq. (3.91). 
The solution for the ungrounded y = b face can be determined by the same procedure used to 
arrive at Eq. (3.91) with the roles of z and y are interchanged. We finally note that the method 
of superposition can be generalized to include more general boundary conditions. 

Example 3.12 Three Intersecting Planes 

Consider three conducting planes intersecting at right angles, as shown in Fig. 3.9. The planes 
are kept at potential Vo. Because this volume is not enclosed, the potential is described by the 
expansion in the case where the separation constants are zeros. Using Eq. (3.87) and the 
boundary conditions at x = 0, y = 0, and z = 0 gives 

Vo= A4yz+ A6y+ A,z+ A, (3.92) 

Vo = A,xz + A,x + A,z + A, (3.93) 

Vo= A2xy+ A,x+ A6y+ A, (3.94) 

These relations give A, = Vo and A, = A, = A, = A, = A, = A, = 0. Thus 

Wx, Y, z) = A~XYZ + Vo (3.95) 

Figure 3.9 Half of a box with the surfaces kept at 
potential Vo. 
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The knowledge of the total charge on one of the planes allows the evaluation of A,. Let us 
take the total charge on the x-y plane to be Q and its area to be S. Therefore 

or A, = -Q/4S2, and hence 

3.5 The Method of Images 
We now relax the condition employed above, which assumes that all charges exist 
on the surface of conductors, and consider electrostatic problems where the charge 
density is not zero in the space not occupied by conductors. However, only point 
charges and line charges will be considered in detail. The generalization to con- 
tinuous charge distributions can then easily be made. We note that these problems 
are not best treated by the boundary value problem methods developed above. To 
solve these problems we introduce the very powerful method of images; in fact, it is 
an impressive illustration of the power of application of the uniqueness theorems 
discussed above in Section 3.2, Uniqueness of Solutions to Electrostatic Problems. 
To find an electrostatic solution for these problems, we must require that the 
solution (1) satisfies the equipotential conditions only at the conductor surfaces 
bounding the region and (2) satisfies Laplace's or Poisson's equation everywhere in 
the region. Once a solution has been obtained, we then know it is the true solution. 
If charges reside in the space outside the conducting surfaces, the requirement that 
Poisson's equation be satisfied is equivalent to the statement that a portion of the 
solution must'be that due to the charges in the space. The remainder of the solution 
will "force" the correct boundary condition at the conductor surfaces. This remain- 
der, or other part of the solution, will in fact arise from the charge distribution on 
the conductor surfaces. However, it turns out that often simpler, "unreal," charge 
distributions outside of the region where a solution is sought will provide the correct 
boundary conditions on the surfaces of interest. 

3.5.1 Point Charge and Plane 

We illustrate these points by considering a point charge, q, at distance z' above a 
large, plane, conducting sheet, which effectively may be considered infinite in extent 
(see Fig. 3.10). Since this sheet is grounded, its potential is zero.* We wish to find the 
potential and electric field in the space containing q. In the figure this is the region 
of space z 2 0. We locate the origin just beneath the charge q, on the surface of the 
conductor. 

Cylindrical coordinates are appropriate for this problem since there is clearly 
symmetry about the z axis. We note for this problem that realizing a zero potential 
for the plane z = 0 is simply achieved by adding to the potential due to q, a 
potential due to an imaginary image charge, -9, located a distance z' beneath the 
plane z = 0. Consequently the potential and electric field for z 2 0 is simply that 

* For the problem at hand this is not essential; rather it is a convenient choice. If we had left the 
potential to be arbitrary, it would simply mean that the potential of the point charge at infinity was 
chosen to be nonzero also. 
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Conductor 6 

Figure 3.10 A point charge q near a large, 
grounded conducting plate. Also shown is an image 
charge -q  whose field when added to that of the 
real one gives the correct field. 

due to two point charges q and -q  separated by a distance 22'. We examine this 
solution. It may be written 

In cylindrical coordinates, r = pj3 + 22, and Ir * z'2 l 2  = p2 + (z f z')~.  The electric 
field may be obtained from the expression E(r) = -Vcp(r) or, more directly, from 
Coulomb's formula for two point charges: 

For z = 0, r = pj3; thus we get 

From this result, we can obtain the actual surface charge density on the z = 0 face 
of the conductor. It is given by 

The induced charge, as expected, is negative. It has its maximum value at p = 0, and 
falls off as l/p3 as p becomes large compared to z' (Fig. 3.11). It is this induced 
charge plus the original charge q that produces the actual solution, even though we 
have imagined the solution to be due to q and its "image charge," -q. One may 
note that the unique solution in a given region of space may be given by nonunique 
charge distributions outside this region. Only when the charge distribution is re- 
stricted to the physical boundaries of this region is the charge distribution unique. 

It is easy to verify that the total induced surface charge Q is equal to -q, 
implying that all the lines of force terminate on the conductor. Integrating the 
charge density over the area of the conducting plane gives 
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Figure 3.11 The induced surface charge den- 
sity on a grounded conducting plate due to 
the presence of a point charge nearby. 

The charge q experiences a force that attracts it to the conductor surface. The 
trajectory of a charged particle near a conducting plane surface is shown in Fig. 
3.12. The force has a magnitude determined by the electric field of the induced 
surface charge. Since this field is identical with the field of the image charge, the 
force is easily obtained as the force between two point charges: 

This image force contributes in large measure to preventing electrons from leaving 
the surfaces of conductors and is associated with the "work function" of conducting 
materials. 

Figure 3.12 The lines of force between a point 
charge and a nearly grounded conducting plate. 
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With knowledge of the solution to the "point and plane" problem other problems 
involving conducting planes may be solved. Utilizing the superposition principle, 
the solution to any fixed charge distribution (near an "infinite" plane conductor) 
can be simply constructed by superimposing the solutions for the individual charge 
elements, each real charge element having its (mirror) image in the plane. The 
solution can then be formally written, as follows: 

The subscript I refers to the mirror image distribution. (See Example 3.13). 

Example 3.13 A Dipole and a Conducting Plane 

The method of superposition can be illustrated by considering an electric dipole near a large 
grounded conducting plane shown in Fig. 3.13. The dipole, of moment p, is at a distance z, 
from the plane, and at an angle 8, with respect to the normal to the plane. 

We use a coordinate system whose origin is just beneath the dipole on the surface of the 
plane, and the z axis goes through the dipole. To find the system of images needed to produce 
a zero potential on the z = 0 plane, we represent the dipole by two charges q and - q  
separated by distance I such that p = ql where I is in the direction of p. Satisfying the 
potential requirement at z = 0 requires introducing two image charges. The first image 
charge, of magnitude -9 ,  is the image of the q charge of the dipole and is placed beneath the 
plane at an equidistance. The magnitude of the second image charge is, on the other hand, 
q;  it is the image of the - q  charge of the dipole and is placed beneath the plane at an 
equidistance. 

It is clear that the system of image charges constitute a dipole placed at distance 2, just 
beneath the plane. In terms of the real dipole moment, the image dipole moment, p', has the 
components: p: = p cos 8, and pi = - p  sin 8,. Therefore, in general, the component of the 
dipole that is normal to the plane has an image dipole of the same magnitude and direction 
placed at the same distance beneath the plane. The component of the dipole that is parallel to 
the plane, on the other hand, has an image dipole of the same magnitude but of opposite 
direction, and its position is also at the equidistance just beneath the plane. 

Figure 3.13 Determination of the fields produced by 
an electric dipole placed near a large conducting plate 
using the method of images. 
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We are now in a position to calculate the potential in the z > 0 region: 

The force exerted by the dipole on the plane is equal to the force exerted by the dipole on 
its image. In Chapter 2 it was shown that a dipole moment p in an external field E experi- 
ences a force p .  VE (see Eq. (2.65)J. In this problem one takes E to be the electric field 
produced by the dipole at the location of its image. Let us calculate the force in the case 
where the dipole is perpendicular to the plane; that is, 8, = 0. According to Eq. (2.47), E. is: 

(r - r') - - 
Ir - rr13 I 

where r' = k,. At r = -z02, the location of the image dipole, the field components in the x 
and y directions vanish and the z component is given by 

Differentiating E, with respect to z and evaluating the result at (0,0, -2,) gives 

Therefore the force between the dipoles 

3.5.2 Point Charge and Sphere 

We consider the problem of finding the solution to the problem of a point charge 
q,, external to a grounded (@ = 0) conducting sphere of radius R (Fig. 3.14). The 
question is whether we can find a convenient set of imaginary point charges, located 
inside the sphere, that will force the potential of the sphere to be zero when the 
potential of q, (located at z,) is added. The answer is yes, but it can be only guessed 
at beforehand. 

By the symmetry of the problem, the image charge distribution must be sym- 
metric about the line connecting q, to the center of the sphere at 0. We attempt to 
find a single image charge, of magnitude q' and located at z = z', that will satisfy out 

Figure 3.14 The method of images applied to a point charge 
placed near a grounded conducting sphere. 
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the zero-potential condition. The sign of the image charge must be opposite to that 
of qo if we are to get "potential cancellation." 

The geometry is sketched in Fig. 3.14. We require that 

where R = PR. We must try to solve this equation for q' and z', given qO, R, and 2,. 

A solution is immediately suggested if we write it as 

[This factorization is the only one that makes sense; if we factored out R on both 
sides, we would have found (see below) no solution to be possible.] To obtain 
equality, the numerators and denominators of Eq. (3.108) may be set equal, respec- 
tively, to obtain 

These two simultaneous equations are easily solved. For example, squaring the 
denominators gives 

and so equality is achieved if we let zo/R = R/zr;  that is zozr = R2. The two relations 
in Eq. (3.109) therefore give 

These values are realizable and show that indeed (only) one image charge whose 
location and magnitude are now determined is required to solve the problem. We 
may now write expressions for 0 and E = - V 0  for any point r 2 R. The potential 

simply that of two point charges qo and q'. The electric field is obtained from Eq. 
(3.1 1 1) as follows: 

In terms of the angle 8, one finds that the field, as r approaches the surface from 
outside the sphere, is given by 

As expected, it is perpendicular to the spherical surface. Consequently, the surface 
charge density a there is a(R) = e,[E(r = R)-fi], or 
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Figure 3.15 The induced surface charge density on a 
grounded sphere due to the presence of a point charge nearby. 

Figure 3.15 gives the induced charge density as a function 8 for two values of z,/R. 
As expected, the charge density is maximum at 8 = 0" and minimum at 8 = 180". 

The total charge on the (outer) surface of the conductor is just q'. This may be 
verified by direct integration of the above expression for a over the spherical sur- 
face. It is a necessary consequence of the fact that the total flux due to the image 
charge over a surface just enclosing the sphere must equal the total flux from the 
surface charge. 

The force exerted on the point charge by the induced charge on the sphere is 

When (Rlz,) < 1, 

like the force due to a dipole of moment q, R. As z, approaches R, that is, as (z,/R) -+ 

(1 + 6) where 6 6 1, 

as in the point charge and plane case. Figure 3 .16~  gives the line of force between 
the charge and the sphere. 

Finally, we have supposed in this problem that our sphere was at zero potential; 
and thus had a charge q'. If we are interested in a problem where the sphere is given 
a potential @ = V, then the method of superposition can be used. It is clear in this 
case that the charge on the sphere will differ from q'-say, by an amount q". In 
other words, a charge q" is required to bring the spherical surface up to a potential 
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(b )  
Figure 3.16 (a) The lines of force between a point charge and a grounded 
conducting sphere. (b) The force between the point charge and a charged 
sphere as a function of distance between them. 
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V. In terms of image charges, we can immediately discern that q" should be placed 
at the origin, and is given via the equation 

In terms of surface charge, q" is distributed uniformly over the sphere. The total 
surface charge density would then be given by a = a (0 = 0) + (V&,)/R, and thus the 
total charge on the sphere is 

Q = q' + q" (3.1 16) 

To summarize this case, two image charges are required to force the potential of the 
sphere to assume the value V # 0. One of these is at the center of the sphere. The 
potential outside the sphere is given by 

Figure 3.16b gives the force between the charge q and the charged sphere as a 
function of the distance between them for a number of values of Q/q,. It shows that 
even when q,Q > 0, the two will attract each other at short distances. 

If we placed a neutral conducting sphere near a point charge q, we would find 
that the potential of the sphere would be nonzero, and the potential outside the 
sphere would again require two image charges for its calculation. The potential of 
the sphere would be equal to (- 1/4xc0)(q/R). (Why?) 

If we had placed a point charge at a distance z' from the center of the sphere-i.e., 
inside the sphere-we would have a problem almost identical to the one discussed 
above (the "external" problem). In fact all the formulas given there are valid if we 
understand that in this case the image is charge q, and is located at z,, whereas the 
interior charge q' is located at z', both specified. R is then the distance from the 
origin to the interior surface of the sphere. The only possible distinction in the 
problems comes if we let the sphere be at a potential V # 0. This is simply achieved 
by having a charge q' = 4x&,RV uniformly distributed over a spherical surface of 
radius greater than R. In the actual problem this charge would be located on the 
outer surface of the conducting spherical shell. The E field inside the sphere would 
not be affected by such a charge distribution. 

An idea central to the idea of the image technique is that one can "replace" any 
closed equipotential surface determined from some (point or distributed) charge 
distribution with a conducting shell tailored to the geometry of the equipotential 
surface and having the correct potential. In the example above of the point and 
sphere, one may conceive of the problem first as that of the point charges alone. 
Having located this spherical equipotential surface, one replaces the equipotential 
surface by a conducting shell at the appropriate potential. The image charges will 
now appear on the shell in the form of a charge density. One should be cautioned, 
however, that for a conducting shell of finite thickness, an equipotential surface can 
be fit by only one side of the shell, and the fields will be identical to the original 
fields only on this side of the surface. 

Example 3.14 A Dipole Near a Conducting Sphere 

When an electric dipole is brought near a grounded sphere, then the potential and the field of 
the dipole are modified. The method of images can be used to determine the changes. We will 
represent the dipole by two point charges separated by a small distance as shown in Fig. 3.17 
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Figure 3.17 A dipole near a grounded conducting sphere. 

and use the rules developed above for treating a point charge near a sphere. Having done 
this, we will derive rules for treating a dipole due to an arbitrary charge distribution. 

The dipole moment p is taken to be at any angle a with the z  axis, at a distance z, from the 
center of a sphere of radius R, and is represented by q and - q  charges separated by a 
distance I, such that p = ql. 

We resolve the dipole moment into two components, one going through the center of the 
sphere and the other perpendicular to this direction, as shown in Figs. 3.18 and 3.19, respec- 
tively. Consider first Fig. 3.18. According to Eq. (3.110) the image charges q; and q; are 

R q; = - ---- 
R 

q cos a q; = - q cos a 
z ,  + 112 2, - 112 

and located at 

respectively. In the dipole limit 1 can be taken to be small, and therefore the magnitudes and 
positions can be expanded in powers of l / zo .  The first-order terms are 

Because q; is different from q;, then the image of the parallel component of the dipole 
consists of (1) an image dipole of moment p' located at a distance b = %b, + b,) from the 
center of the sphere 

R2 
2 p  cos a, b = - 

20 

Figure 3.18 Method of images applied to a dipole placed near a grounded conducting 
sphere along a diameter. 
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\ - q sin a 

'c7- q sin a 

Figure 3.19 Method of images applied to a dipole normal to a diameter of a 
grounded conducting sphere. 

and (2) a charge located at a distance R2/zo from the center of the sphere and of magnitude 
41, given by 

Rp cos a 
q1 = q', + 4; =- (3.1 19) 

2; 

Figure 3.19 shows the two charges comprising the perpendicular component of the dipole. 
They are symmetric with respect to the center of the sphere; therefore their image charges will 
be scaled by the same factor. This results in an image dipole only. To evaluate the image 
dipole and its location, we again use the rules for a charge near a sphere. The image charges 
to zero order in I/z, for q sin a and - 9 sin a are q', = (- Rq/zo)sin a and q; = (Rq/zo)sin a h  
respectively. Both are located to zero order in l/z, at b, = b, = b = R2/z0 from the center of 
the sphere. The separation between the image charges I'll = b/zo = R2/zg. The dipole moment 
p' is then equal to 

p'= - psina (3' 
and located at b = R2/zo from the center of the sphere. 

Example 3.15 A Dipole at the Center of a Conducting Sphere 
The method of images can be used to solve for the effect of introducing an electric dipole at 
the center of a grounded sphere (Fig. 3.20). We represent the dipole by two point charges 
separated by a small distance I .  Because one charge is above and the other is below the center 
of the sphere, then their image charges are located at opposite sides of the sphere, and 
consequently such an image system does not constitute an image dipole. 

Figure 3.20 A dipole placed at the center of a 
grounded sphere. 
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Let us consider the effect of the charge q located at distance b = 112. Its image charge is 
-(R/b)q and located at d = 2R2/1. The potential due to these two charges in the internal 
region is 

0 )  = - - Rqlb + 4 
(r2 + d2 - 2rd cos 0)'12 (r2 + b2 - 2rb cos 0)112 

] (3.121) 

Note that d is large while b is small because 1 is small; therefore the first term is expanded in 
powers of l /d  and the second term is expanded in powers of l / r .  Keeping terms of order 
(l/d)' and (l/r)' reduces Eq. (3.121) to 

1 91 1 qlr @ , ( r , 0 ) = -  --- +--cos0--- 
r (' ) 8nc0r2 8x60 R3 

Similarly, the potential due to the charge - q  placed at -112 is calculated from the above 
result by changing q to - q and 1 to - 1 .  The result is 

Adding Eqs. (3.122) and (3.123) we get 

1 pcos 0 @ ( r , 0 ) = - - - - -  pr cos 0 
4ne0 r2 4nc0 R3 

This result indicates that in addition to the potential produced by the dipole itself, first 
term, there is a potential that is due to a constant electric field: (1/4neo)p/R3. This extra field 
is caused by an induced charge distribution on the surface of the grounded sphere. Taking the 
normal gradient of 4 ( r ,  0 )  and using a = -cO a@/ar at r = R gives 

a=- 3 p  cos 0 
4nR3 

3.5.3 Parallel Cylinders 

We shall find the potential due to two parallel cylinders (both parallel to the z axis) 
by working backward-that is, by recognizing that the equipotentials due to two 
line charges of strength I (chargelunit length) and -1 are right cylindrical surfaces. 

Consider, then, two line charges as shown in Fig. 3.21 a distance 2a apart. Locate 
the origin on the z axis midway between the line charges. The potential of a single 
line charge has been derived in Example 3.1 and has the form 

where p is the distance from the line, and po is where the potential is assigned a 
potential equal to zero. In the present problem, both lines must have the same zero 
potential, which then must lie on the plane x = 0. The potential due to a super- 
position of the two line charges is then 

Thus 

which is seen to be zero when p- = p+-that is, on the plane x = 0. 
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Figure 3.22 Two infinitely long line charges of 
opposite sign along the z axis are used to 
explain the method of images of cylindrical 
problems. 

Equipotential surfaces are generated for this problem when the logarithm of Eq. 
(3.126) is constant-that is, when 

Values of m between zero and one yield negative values of potential. If m > 1, the 
potential will be positive. The shapes of the equipotential surfaces are easily seen to 
be circular cylinders whose centers lie on the x axis. The equation for such cylinders 
is 

with x, locating the center of the circle and R its radius. To show that Eq. (3.127) 
defines a circular cylinder, we square it and, as seen from Fig. 3.21, use 

p? = ( x  + a)' + y2 and p: = ( x  - a)' + y2 

Therefore Eq. (3.127) gives ( x  + + y2 = m2 [(x  - a)' + y2] .  Rearranging terms, 

which is just the equation of a circle whose center and radius are given by Eq. 
(3.128) above; that is, 

The potential of the cylinder characterized by m is given by 

Figure 3.22 gives a plot of the cylinders for selected values of m. With these 
results, we can now consider inverse problems. Suppose, for example, that we wish 
to find the potential due to a line charge 1 and a conducting circular cylinder of 
radius R whose center is a distance 6 from the charge. Consult Fig. 3.23, which 
shows the line inside the cylinder. To find the potential we seek the location of the 
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Figure 3.22 Surfaces of constant potentials produced by two 
parallel line charges of opposite sign. 

(image) charge -1 that will yield an equipotential on the cylinder. Thus we wish to 
find x,, a, and m, given R and 6. In fact, since 

we have only two unknowns to determine. Substituting Eq. (3.132) into Eq. (3.130) 
gives R2 = xg - a2 = 6(xo + a), which results in 

Equations (3.132) and (3.133) are now solved for a and x,: 

and x, = ($ + 1). 

The value of m is then fixed by either Eq. (3.129) or (3.130). Substituting for a and x, 
in Eq. (3.129) gives 

Figure 3.23 A line charge placed inside a 
conducting cylinder, parallel to its axis. 
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Figure 3.24 A line of charge placed outside a 
cylinder, parallel to its axis. 

and therefore 

The problem is now solved. The potential (inside the cylinder) is expressed in terms 
of the line charges, whose locations we have determined. For example, if R/6 = 2, 
then a = 3612, x, = 5612, and m = 2. The potential of the cylinder is given by 
@ = (A/2mO) In 2, but we are free to add a constant potential to the interior region 
to set it at any value we please. The potential outside the cylinder is independent of 
the interior problem. 

Had we desired to solve the problem where I R/61 < 1 (a line charge outside the 
cylinder, as in Fig. 3.24) we would apply the same equations as before. Here, how- 
ever, 6 < 0 and m = - R/6, a positive number. Everything proceeds as before. The 
potential of the cylinder will be negative. 

If we had taken as our origin the location of the center of the cylinder then 
defining x, = x, - a, and x, = x, + a, we see that x,x, = xi - a2 = R2, which 
is reminiscent of the image problem for the point and the sphere. The interior 
problem specifies that m = Rlx,. The exterior problem specifies that m = R/x,. 

Finally, in Fig. 3.25 we consider the problem of two cylinders of radii R, and R2 
whose axes are separated by a distance A. Each cylinder is an equipotential surface, 
so we now have, from Eq. (3.130), 

~2 - 2 - x,, - a2 and R: = xi2 - a 2 

From this equation, we find a to be given by 
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( b )  

Figure 3.25 Problem of two cylinders. (a) Interior prob- 
lem. (b) Exterior problem. 

Hence, m, ,  m,, x,, ,  and x,, can be determined. If the potential difference between 
the cylinders is specified as @, - @, = V, then the strength of the (image) line 
charge is adjusted accordingly: 

The line charge must have the magnitude 

The two kinds of problems treatable are sketched in Fig. 3.25. The potentials in the 
regions of interest are then given by 
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Figure 3.26 A point charge between two 
grounded conducting plates making an angle 
between them. 

35.4 Point Charge and Two Conducting Surfaces 

One may also solve problems by images for point charges near two conducting 
surfaces, e.g., two intersecting, conducting planes. In general, one requires more than 
one image charge to produce the correct equipotential boundary conditions here. If, 
in fact, the angle of intersection between the planes is 180°/n, where n = 1, 2, 3,. . . , 
then the number of image charges required is 2n - 1. An illustration is shown in 
Fig. 3.26. If the angle differs from 180"/n, an infinite number of images may be 
required, or it may not be possible to use the method at all. Other methods of 
solution may then be preferabie. 

Another example of this sort is a large plane with a small-radius semispherical or 
cylindrical boss (see Problem 3.12). 

3.6 Poisson's Equation 
We now go back to the case where the charge is not localized on conductors or 
distributed over discrete point charges. In this case the potential satisfies Poisson's 
equation: 

P V2@ = - - 
&o 

(3.3) 

Given a general charge distribution in addition to some boundary conditions, the 
potential can be found by first solving the homogeneous part of Eq. (3.3), Laplace's 
equation V2@ = 0. This solution is to be added to the particular solution of the 
Poisson's equation (the Coulomb law) 

Wr)= - --- 
I S "" 

+ solution of Laplace's equation (3.1 34) 
4 m 0  Ir-r'l 

where the integration is carried over the given charge distribution. The overall 
solution is then made to satisfy the boundary condition by choosing the appropriate 
constants in the solution of Laplace's equation. 

In Chapter 2 a number of applications of Eq. (2.40) were given. They involved 
various charge distributions. In this section, however, we will consider a special 
class of distributions where the charge density and the potential depend only on one 
variable. Moreover, we will assume that the charge distribution is bounded, mean- 
ing that either the charge occupies a limited region of space or falls off sufficiently 
rapidly at large distances. Examples of the latter case include exponentially decaying 
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distributions, or distributions dropping off faster than l/r2. Such restrictions allow 
us to arrive at the solution in a more direct way, as we will show in some examples 
below. 
- - -- 

Example 3.16 An Infinite Slob of Uniform Charge Distribution 

We examine here the potential function, @, associated with a charge distribution shown in 
Fig. 3.27 and given by 

1 1 
p = p o  for - - < z 5 -  

2 -  2 

and 
1 

p = O  for lz l>-  
2 

From the symmetry of the distribution, the potential function will depend only on the dis- 
tance from the z = 0 plane. Because of the infinite extent of the distribution, we cannot take 
woo) = 0, but it is convenient to take the potential to be zero at z = 0. 

There are three regions for which we must solve Poisson's (or Laplace's) equation. In each 
of these regions, wr) = Wz), and so the "Laplacian of @," V2@, simply becomes dz@/dz2. We 
give below a table of the equations and their corresponding solutions for the different regions 
of space: 

Region Equation Solution 

The five constants C, ,  C,, C',, C;, and K, are as yet undetermined [K, = 0 since @ 
(z = 0) = 0). These constants can be determined if we realize that certain relations must exist 
between the various solutions at the boundaries, i.e., at z = f 112. 

Figure 3.27 An infinite, uniformly charged 
slab. 
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1. The first boundary condition is the continuity of the potential across the boundary 
region. At z = -112, 0, = @,,  which gives 

and at z = 112, 0, = @,, which gives 

2. Remembering that there is no surface charge density (in this problem), the normal 
components of E, -d4/dz, are everywhere continuous; hence, from the boundary at z = - 112 
and at z = 112, we find that 

1 - 
1 P 1 P C' --'+ K ,  and C, = - -A+  K ,  

2 Eo 2 Eo 

3. The symmetry of the configuration requires that the electric field be zero at z = 0 [that 
is, E(z) = -E(-z)]; therefore K ,  = 0. Solving the above equations simultaneously results in 
the following expressions for the potentials: 

Example 3.17 Uniformly Charged Sphere 

We now analyze a case where the charge is distributed in a spherically symmetric way. Let a 
charge q be distributed over a sphere of radius R with a constant volume charge density p, 
and thus for r > R the charge density is zero. In the region r 5 R the potential satisfies 
Poisson's equation 

and in the region r > R, the potential satisfies Laplace's equation 

On can easily show that Eq. (3.135) has the solution 

and Eq. (3.136) has the solution 

The potential has to satisfy the following boundary conditions: (1) 4 (r -* a) = 0; 
(2) 4 (r -0) is finite since there are no point charges at the center of the sphere; 
(3) the two potentials should match at r = R; and (4) the total charge of this distribution 
is (47r/3)R3p. The first condition gives B, = 0. The second condition requires that A ,  = 0. 
A relation between B, and A,  is now found by imposing condition 3: 

Finally, the last condition can be used to evaluate A,.  Taking a gaussian surface, which is a 
shell of radius r > R with its center at the center of the charge distribution, gives: 
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The electric field outside the sphere can be found by taking the gradient of Eq. (3.138), 
yielding E = A,P/r2 and thus $ E .  8 da = 4nA,. Replacing the left-hand side of Eq. (3.140) 
with 4nA, gives A, = (R3/3c0)p. Substituting this value for A, in Eq. (3.139) gives 
B,  = pR2/2co. Therefore the potential is 

Equation (3.141) indicates that the potential inside the sphere is a quadratic function of r 
with the potential at the origin larger than that at the edge of the sphere. It is to be noted 
that the electric field is continuous at r = R. For r I R, E = (pr/3c0)P and for r 2 R, 
E = pR3/(3cor2)P, giving E = pR/(3co)P at r = R. This continuity is a direct result of the 
absence of surface charge at r = R. 

Example 3.18 Exponential Charge Distribution 

Consider a spherically symmetric charge distribution (of total charge q), which has the radial 
dependence p(r) = pee-". We mention here that this density describes the electronic charge 
distribution in the ground state of hydrogen. The potential at an arbitrary r satisfies 
Poisson's equation: 

The integral can be easily evaluated: 

where C is a constant. The potential can now be found be integrating again. The result is 

where D is another constant, and u3q/8n was substituted for p,. 
We now impose the boundary conditions in order to evaluate C and D. Since the charge 

density goes to zero as r -* co, we set the potential zero as r -* co. Therefore we take D = 0. 
To evaluate C, we apply Gauss' law on a closed shell of radius r and center at the origin. The 
electric field E = -d@/dr P is given by the negative of the right-hand side of Eq. (3.143). 
Therefore 

E . A d a =  p d v = 4 n p o  e-"r2dr f I I: 
which gives C = q/4nco. Thus the potential is 
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and the electric field is 

Example 3.19 Localized, Nonuniform, Spherically Symmetric Distribution 

Let us now consider a localized, nonuniform, spherically symmetric charge distribution. Con- 
sider a concentric shell of charge of radii R ,  and R ,  ( R ,  > R,) .  The charge density is given by 
p = B/r2 where f l  is a constant and r is the distance from the center of the shell. 

This example involves three regions of space where the potential will have distinct func- 
tional dependence. The potential satisfies Laplace's equation V 2 @ ,  = 0 for R < R , ,  Poisson's 
equation V 2 @ ,  = -p/cO for R 1  < r < R,, and Laplace's equation V 2 @ ,  = 0 for r > R,. The 
solutions for (0, and @, are easily derived: 

The potential inside the shell satisfies the following radial equation. 

This equation can be easily integrated twice: 

The six constants Ai and B, are now determined from the following four boundary 
conditions. 

1. Because the charge distribution is bounded, then the potential vanishes as r + co, which 
requires that B, = 0. 

2. Because of the requirement that the potential be finite as r + 0, it is necessary that 
A ,  = 0. 

3. The continuity of the potential at r = R ,  and r = R ,  gives the following relations: 

and 

4. The last boundary condition is that the charge distribution and the total charge be 
given. This fact can be utilized by applying Gauss' law. First, we apply it at a spherical 
surface whose center at the origin and radius r > R,:  

Substituting E = -V@,  = (A,/r2)P gives A,  = B(R, - Rl)EO. Similarly, we apply Gauss' law 
at a spherical surface of radius r, where R ,  .c r < R , .  The electric field is 

and the charge inside the surface is 4x/3(r - R,) ,  thus Gauss' law gives A, = BR,/co. Sub- 
stituting for A, and A,  in Eqs. (3.151) and (3.152). we get B, = B/co(l + In R,)  and 
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B,  = f l  l n ( R 2 / R 1 ) / ~ , .  Substituting the determined values of Ai and Bi in Eqs. (3.147), (3.148), 
and (3.150) gives the following expressions for the potential: 

Example 3.20 Charge Distribution Due to a Given Potential 

Since Poisson equation relates the potential to the charge density, then it can be used to 
determine the charge density of a given potential. Consider the potential @(r) = (q/4nsor)e-"'. 
The charge due to this potential is p = - ~ , v ~ @ ( r ) :  

where we added and subtracted q/4xe0r, the potential of a point charge at the origin, to @(r). 
Evaluating, we get 

where 6(r) is the Dirac delta function. This potential corresponds to the point charge q at the 
origin and a spherically symmetric volume distribution. The total charge of the volume 
distribution is p dv = -q ,  indicating that the total charge is zero. 

3.7 Electrostatic Shielding 
We now discuss the concept of electrostatic shielding, which has considerable prac- 
tical importance. The concept makes possible the creation of a region in space in 
which the electric field is vanishingly small. Such "field-free" regions are often re- 
quired in experiments or for reliable operation of electronic devices. 

By way of illustration, let us consider a charge-free cavity V inside a conductor, 
as shown in Fig. 3.28~.  The cavity has well-defined boundaries, and therefore the 
potential is completely prescribed inside the cavity if the potential of the conductor, 
a,, is specified. Then the potential inside the cavity, @, is simply the constant 0,. 
The condition of continuity of 0 at the boundary, and Laplace's equation V2@ = 0, 
are satisfied inside the cavity. Thus, E = 0 there, and there is no charge on S. 
Whatever happens outside of the conductor is irrelevant to the inside. 

This phenomenon illustrates electrostatic shielding. For example, if we placed a 
charged object inside the cavity, the electrostatic forces it would experience would 
depend not at all on conditions outside the conductor. These forces would depend 
only upon the charge, shape, and location of the object in the cavity. 

In fact, if we apply Gauss' law to a closed surface inside the conductor as shown 
in Fig. 3.28b, we know that since E = 0 everywhere in the conductor, then 
$,E da = 0, and consequently Qi,, = 0. Therefore we conclude that an opposite 
charge is induced on the inner surface of the conductor, which acts to annul the field 
of the charged object. The total charge is equal to the object charge. If the conduc- 
tor is electrically neutral, an equal charge must appear on the outer surface of the 
conductor. The manner in which this charge is distributed will depend only on 
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Figure 3.28 Illustrating electrostatic shielding. (a) A conduc- 
tor with a cavity. (b)  A positive charge inside the cavity. 

external conditions, not on the distribution of the internal charge (by the uniqueness 
condition). So, in a sense, the region external to the conductor also is "shielded" 
from the internal region. Only if the total charge in the cavity of the outer conductor 
surface is changed will the external field be affected.* The position of the cavity 
charge is irrelevant to the "external world." Physically, this is not unreasonable, 
because the induced charge on the interior surface of the conductor does not permit 
the cavity field to penetrate the conductor. Therefore, the surface charge on the 
outer surface is "unaware" of the existence of the internal cavity. (If there are no 
lines of force between two objects, they do not interact.) In fact, if the object inside 
the cavity were another conductor, then upon touching this conductor to the inter- 
ior surface, all the charge on the object would be transferred to the containing 
conductor and would appear on its surface. (Why?) 

The latter property can be used to remove the net charge that may exist on a 
conductor, or to transfer charge to a conductor. For example, if a conductor is 
constructed with a hollow interior that is linked to the outside via a hole, as shown 
in Fig. 3.29, the interior IEl field can be made arbitrarily small by making the hole 
small compared to appropriate other dimensions. If, now, another charged conduc- 
tor is inserted through the hole into the cavity where E initially was zero and is 
made to touch the interior surface of the cavity, the charge will flow from the 
initially charged conductor to the exterior surface of the larger one. This will occur 
irrespective of the conditions exterior to the large conductor. A device like this is 
sometimes called a Faraday cup. The same kind of phenomena are utilized when. 
one wants to "charge up" the high-voltage terminal of a Van de Graaff electrostatic 

* Even this effect can be eliminated if the (outer surface of the) conductor is grounded-i.e., kept at some 
constant reference potential. 
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Figure 3.29 Transferring charge using the 
concept of shielding. 

accelerator, a device used to produce energetic ions in nuclear physics (see Fig. 3.30). 
See Problem 3.26 for an example on shielding. 

3.8 Summary 

In the case of electrostatics, two relations that can be solved simultaneously are V.E = PIE, 
and E = - VcD. They may be combined into one equation-namely, V .(- VcD) = p/eO 
-customarily written as 

and called Poisson's equation. If p = 0 in some region of space, then G a t  region Poisson's 
equation becomes what is known as Laplace's equation, 

vzcD = 0 (3.4) 

A unique solution to the electrostatic field exists in the space free of charge, that is 
Laplace's equation has a unique solution, so long as certain boundary conditions are satis- 
fied: (1) The potential on each bounding surface is specified; (2) the net charge on each 
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+ + + + + + + +  - Charged belt 

Figure 3.30 Terminal of Van de Graaff machine. The 
belt charge removed by brushes flows to outside surface 
of terminal. 

bounding surface is specified; or (3) a mixture of (1) and (2), but for a given boundary one 
may specify either the potential or the total charge (not both at once). 

The method of separation of variables can be used to solve Laplace's equation in the three- 
coordinate systems, which gives solutions composed of products of functions each of which 
depend on only one coordinate. In case of some degree of symmetry, where one can argue 
that the potential is a function of one coordinate-i.e., r in spherical, p in cylindrical, and z in 
artesian coordinates-Laplace's equation reduces to a one-dimensional differential equation 
with straightforward solutions. In case of lower symmetry-i.e., the potential is a function of r 
and 8 in spherical systems and p and 4 in cylindrical systems-the solution is generally a 
linear combination of an infinite set of zonal harmonics and cylindrical harmonics, respec- 
tively. The uniqueness theorem will indicate if enough of these harmonics have been used to 
describe a given configuration. 

The method of images is a powerful technique for solving electrostatic problems in a 
volume V where the charge density is not zero in the space not bounded on surfaces. It is 
applied to problems involving point charges (can be generalized to general charge densities) 
near large conducting plates or conducting spheres. Also it is applied to long line charges 
parallel to long conducting cylinders. In the technique one introduces a configuration of 
fictitious image charges outside the volume V such that the potential of these image charges 
plus that of the real ones inside V satisfies the prescribed boundary condition for the poten- 
tial on the boundary of the space V considered. If this is satisfied, then the uniqueness 
theorem ensures that the chosen configuration does indeed give the correct potential and, 
hence, the correct field. 

The solution of Poisson's equation in general can be determined by adding the solution of 
Laplace's equation to the particular solution (Coulomb's law); that is, 

1 + solution of Laplace's equation 

where the integration in Coulomb's law is carried over the given charge distribution. The 
overall solution is then made to satisfy the boundary conditions by choosing constants in the 
solution of Laplace's equation. 

When Laplace's or Poisson's equation is solved in more than one region, the differential 
properties of the electrostatic field require certain relationships between the fields and also 
between the potentials at the common boundaries of the regions. The equation V  x E  = 0 
implies that 

El,  = E2, or @, = (3.6),(3.8) 

when one is crossing the boundary, where t means the component of E  tangent to the 
boundary. On the other hand, the equation V . E  = p/c0 implies that 
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where n means the component of E normal to the boundary, and a is the surface charge 
density at the boundary. Near an isolated point charge q, the electric field should approach 

where F is the distance from the point charge. Similarly, near an isolated long line charge of 1 
per unit length, the field should approach 

where p is the distance from the line. 

Problems 

3.1 An infinite conducting plate is grounded. A conducting cone of angle 8, and large 
height is placed normal to the plate with its vertex at the plate. The cone is insulated 
from the plane and kept at potential V. (a) Determine the potential and the electric 
field in the region between the plate and the cone. (b) Determine the charge density on 
the plate. 

3.2 Consider two large metallic plates forming a wedge capacitor, as shown in Fig. 3.31. 
The plate at 4 = 0 is kept at zero volts while the plate at 4 = /3 is kept at V volts. 
Neglect fringing effects. (a) Write down the differential equation satisfied by the poten- 
tial inside the capacitor and determine the potential. (b) Determine the charge density 
and the total charge residing on the plates. 

Figure 3.31 

3 3  Consider the conic capacitor discussed in Example 3.4. Determine the electric field 
inside the capacitor and the charge distribution on the cones. 

3.4 Consider a spherical surface of radius R that is kept at a potential @(R, 0) = Vo cos 0, 
where Vo is a constant and 8 is measured with respect to a z axis passing through its 
center. (a) Write down expressions for the electric potential in the regions r < R and 
r > R. (b) Write down the boundary conditions and determine the potential in both 
regions. (c) Determine the electric field on the surface of the sphere. Can the spherical 
surface be a conductor? (d) Determine the charge density at r = R. (e) What is the 
electric dipole moment of the sphere? 
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3.5 Consider the nonconcentric spherical capacitor discussed in Example' 3.5. Determine 
the field between the spheres and the charge distribution on the spheres. What is the 
total charge residing on the outer sphere? 

3.6 An insulating thin spherical shell of radius R is kept at a potential V = Vo cos 28, 
where Vo is a constant and 8 is the angle relative to a diameter of the sphere. Deter- 
mine (a) the potential everywhere and (b) the charge distribution on the shell. 

3.7 An insulating thin spherical shell of radius R has a surface charge distribution given by 
a = ao(cos 8 - 1)'. Determine the potential produced by the sphere everywhere. 

3.8 A long, insulating cylinder of radius po has a charge density a = a, cos 34,  where a, is 
a constant and 4 is the angle from the x axis. Determine (a) the potential inside and 
outside the cylinder and (b) the electric field inside and outside the cylinder. 

3.9 A plane rectangular trough shown in Fig. 3.32 is of lengths yo and z,. The sides oa, oc, 
and a6 are connected together and grounded. The side cb is isolated and kept at 
potential V,. Calculate the potential inside the trough in the y-z plane (see Example 
3.1 1). 

Figure 3.32 

3.10 Two grounded conducting planes intersect at 45" and a point charge q lies between 
them. Determine the positions of the image charges that will give the electric field 
between the planes. 

3.11 A charge q is placed at a distance 112 from the center of a grounded conducting sphere 
of radius R such that 1 < R. Determine the charge distribution on the sphere and the 
force exerted on the charge. 

3.12 A conducting plate has a semispherical boss of radius R with a center on the plate as 
shown in Fig. 3.33. The plate is grounded and a point charge q is brought next to it at 
a distance D > R. The charge is on the normal to the plate passing through the center 
of the boss. (a) Determine the image charge needed to replace the plate. (b) Determine 
the potential on the side of the charge. (c) Determine the charge induced on the boss. 
(d) Determine the force between the charge and the plate. 

Figure 3.33 
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An electric dipole of moment p is placed near a conducting sphere of radius R, at a 
right angle with the line between the dipole and the center of the sphere. Determine the 
force between the dipole and the sphere (a) when the sphere is grounded, and (b) when 
the sphere is isolated and carries a charge q. 

Calculate the torque acting on the dipole of Problem 3.13. 
An electric dipole of moment p is placed near a conducting grounded sphere of radius 
R, along the line between the center of the sphere and the dipole. Determine the force 
and the torque between the sphere and the dipole. 

A long, conducting cylinder of radius R is parallel to a large, grounded conducting 
plate and at a distance d from it. The cylinder carries a charge 1 per unit length. 
Determine the charge distribution of the plate. 

Consider two parallel, conducting cylinders each of radius R. The axes are placed at a 
distance A from each other. The cylinders carry a charge of +A per unit length. 
Determine (a) the charge distribution on the surfaces of the cylinders and (b) the force 
per length between them. 

Consider a very long cylinder of radius p,, charged uniformly with a volume charge 
density a. For p > p, the charge density is zero. Determine the potential inside and 
outside the cylinder. 

A concentric shell of charge of radii R, and R, (R, > R,) has a charge density of 
p = b/r, where B is a constant and r is the distance from the center of the shell. 
Determine the potentials everywhere (see Example 3.19). 

Take the electric charge of an atomic nucleus, ze, to be uniformly distributed over the 
volume of a sphere of radius R,, where z is the atomic number and e is the magnitude 
of the charge of an electron. Determine the electric potential at a distance r 5 R, from 
the center of the sphere. 

The charge density in the region -z, < z < z, depends only on z ;  that is, 

112 
p = Po cos - 

20 

where p, and z, are constants. Determine the potential in all regions of space. 

Consider a periodic .volume charge distribution p(x, y, z) = p, sin a,x sin a, y sin a,z, 
where p,, a,, a,, and a, are constants. Determine the electric potential as a function of 
x, y, and z. 

Consider a periodic surface charge distribution 

where a,, a,, and a, are constants. Determine the potential (a) in the x-y plane and (b) 
at any point in space. 

The electrostatic potential due to a volume charge density is given by 

where a is a constant. Calculate the volume charge density. 

Determine the charge distribution that produces the potential 

where a is a constant. 

Suppose we have a uniform electric field over a region of space and we insert into this 
space a thin, but very large, conducting plate, as shown in Fig. 3.34. (a) Determine the 
potential in the regions z < 0 and z > a. Take the potential of the conductor to be zero 
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Sources of E 
are in this 
region 

(not grounded). (b) Determine the charge density at z = 0 and z = a. (c) Sketch the lines 
of force of the electric field. Now the plate is grounded. (d) Determine the charge 
densities at z = 0 and z = a, and the electric field in z > a region. (e) Sketch the lines of 
force of the electric field. Is there any shielding effect? (f) Determine the force per unit 
area on the plate before and after grou'nding. 



FORMAL THEORY 
OF DIELECTRIC 

ELECTROSTATICS 

In this chapter we shall take on electrostatic problems that involve dielectric media. 
The treatment thus far concerned itself with charge distribution "in vacuo" where 
charges resided on conductors or were given in specified volume, surface, or line 
distributions. When considering charge distributions in the presence of matter, we 
have to deal with the fact that these distributions induce charge distributions in the 
atomic and molecular constituents (polarization) that are otherwise neutral. These 
induced charge distributions produce fields, which in turn may affect the external 
distributions. It is the purpose of this chapter to describe some techniques for 
treating these effects on electrostatic problems. 

4.1 Polarization and Dipole Moment Density 
In this chapter we shall not get into detailed microscopic questions regarding the 
dielectric properties of various kinds of matter. Rather, we shall assume that matter 
has certain microscopic properties to be regarded as given, and we shall attempt to 
describe the electrostatic situation in terms of these properties. Nonetheless, it is 
useful to keep in mind the relevant underlying microscopic phenomena. We start, 
for example, by postulating that the macroscopic fields produced by the atomic 
aggregates of matter, hereafter simply called molecules, are characterizable com- 
pletely by their monopole and dipole moments, higher multipole effects being 
negligible. Since we shall be concerned only with dimensions much greater than 
molecular dimensions and molecules that are electrically neutral, the dominating 
electrical effects for a collection of neutral molecules will be dipole effects. 

Our immediate aim is to describe matter in a macroscopic way so that it can be 
directly related to macroscopic fields, by which we mean fields averaged over 
macroscopic spacial dimensions and time intervals. Because of this point of 
view, we tend to focus upon the dipole moments of macroscopically small volume 
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elements, which will in general contain the order of 10'' molecules or more. This 
implies that the electrical condition of these volume elements will tend to vary 
smoothly within the material. By this we mean that in the material there exist 
dipole moment densities P(r) that are smooth functions of position. Thus the vec- 
tor sum dp of the dipole moments in a volume do is 

where P, the dipole moment density, is usually called the polarization of the medium 
at do. It is the (vector) field that is used to characterize the dipole properties of the 
medium. Those media that are well described in terms of a polarization are called 
dielectrics. It is clear that for a volume V of dielectric, its dipole moment will be 
given by 

4.2 Fields Due to a Dielectric Medium 
We consider now a medium in which the polarization is finite everywhere and is 
continuous except possibly at the bounding surface. Consider Fig. 4.1. For every 
element dv', located by r', of this medium, we have a dipole potential contribution to 
the potential at a point r = (x, y, z). Using Eq. (2.44), we get 

Using Eq. (4.1), we can write this potential in terms of the polarization 

1 P(rl). 4 dv' 
d@&) = - 

41180 t3 
The term g/t3 is now written as -V(l/();-thus- 

Figure 4.1 A polarized piece of material. In- 
side S' the polarization is continuous and may 
be discontinuous at S. 
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where the operator V involves derivatives with respect to the coordinates of the 
point r(x, y, z). The total contribution from the medium, which we assume to occupy 
a volume V, is therefore the finite result 

This potential can be rewritten in terms of V' by noting that 

whereas V' involves derivatives with respect to the coordinates of the point 
r'(xf, y', z'). Thus 

Consider now a volume V' (shown in Fig. 4.1) contained in V so defined that 
everywhere in V' the polarization is continuous and equal to its value in V; hence 
V x V' + 6V, where V has the surface of the medium as a boundary (where P is 
discontinuous). The volume V' is defined so that 6V + 0; thus V' is bounded by a 
surface S' that lies just inside the surface S that encloses V. Since P is finite every- 
where in V, and 5 is continuous everywhere in V, we may write 

Using the identity given in Eq. (1.57) we find 

which, when substituted into Eq. (4.8), gives 

V' . P(rl) 
(&(.I = Lye [=]do1 + Jv, - ---- dvl 

47180 5 4 ~ ~ 0  5 
Using the divergence theorem transforms 0, to 

V' . P(rl) 
@dr) = dv' 

As V' + V, S' becomes S, and the second integral involves only the continuous 
interior values of P, whose derivatives are finite. Thus 

P(rl) - A da' 

5 
where A is the outward normal from V on S. 

Now electrostatic fields are produced by charges, and in any physical problem 
there is a unique charge distribution* that produces a given electrostatic field. If we 
were given the charge densities associated with this charge distribution in V, we 
would write the potential as 

* We are assuming that {E, Q} is defined throughout all of space. 
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We are thus led to the supposition that the polarization P associated with the 
volume of material V gives rise to the physical charge distribution with volume and 
surface charge densities 

p, = - V' . P(rl) and a, = P(rl,). A (4.1 3) 

where da' = fi da', A being the outward normal from V at the location of the surface 
area da', r' and rl, denoting points in the volume and on the surface where P is being 
evaluated. 

The electric field produced by the polarized material can also be written in terms 
of the charge densities of Eq. (4.13); that is, 

In conclusion, we assert that a material region in which the polarization P is 
known can always be represented, insofar as exterior determinations of macroscopic 
electrostatic potentials and fields are concerned, by charge densities p, and a, given 
in Eq. (4.13). We call these charge densities the polarization or bound charge, in 
order to distinguish it from other "jiree" charge that is not conveniently associated 
with a polarization process. This free charge will, of course, make its own additional 
contribution to the electrostatic field. By superposition, Wr) = @,,(r) + W(r), 
E(r) = E,(r) + E'(r) = -V@,(r) - VW(r), where as we have shown above {W, E') are 
due to all other charges. We emphasize that {@, E} are static macroscopic fields, 
and represent a .space and time average over macroscopic volume elements. 

These charge densities can be used to determine the dipole moment or any other 
moment of the polarized material. For example, using Eq. (2.63), p = 5 r' dq, one 
finds (See also definition 4.2) 

p = oPr'da1 + pPr1 dv' I I 
or, explicitly, 

Polarization effects are likely to contribute significant macroscopic fields only 
when the matter density is reasonably high-i.e., in liquids or solids. The effects 
from gases are smaller by a factor roughly proportional to matter density. Also, it is 
useful to characterize matter by a polarization only if the (macroscopic groups of) 
molecular constituents acquire dipole moments. In most metals, for example, the 
atoms acquire no discernible dipole moments (at least macroscopic groups of them 
acquire no net dipole moment), and so we assign no dielectric properties to most 
metals. Most insulators, however, will have macroscopic dipole (dielectric) 
properties. 

It is helpful to envision the process whereby P gives rise to pp and a, (see Fig. 
4.2). The creation of P means the creation of macroscopic dipole elements, which in 
turn means the creation of a charge separation-positive charges being displaced 
from negative charges. One may regard the dielectric medium electrically as being 
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After 
polarization 

Figure 4.2 The process whereby P gives rise 
to p, and a,. (a) A block of dielectric before 
polarization. (b) The block after polarization. 

composed of two superimposed macroscopic charge densities: p+ and p- (see 
Example 4.2 for a specific case). The p+ arises from the average charge density of 
the positively charged constituents of the medium (the atomic nuclei), and the p- 
from the negatively charged constituents (the electrons). If the medium is unpolar- 
ized, p+ = - p -  everywhere in the medium, and therefore in every little macro- 
scopic volume element, dv, of the medium, there is charge neutrality. On the other 
hand, when the medium is polarized, the p +  charge becomes displaced with respect 
to the p- charge by a tiny displacement 6s of the order of 10-l3 m, and is therefore 
infinitesimally small compared to the dimensions of macroscopic volume elements 
dv ( x 10- ~ m ) ~ .  Therefore, across any surface element imagined in the medium, da, a 
charge equal to [ds. da]p + will move. But, as shown below, p + 6s is just the polar- 
ization P(r) of the medium. Therefore Psda is the charge that moves across 
element da in the polarization process. 

Let us see why in our macroscopic model the polarization P is equal to p+6s. 
Consider a cubical volume element, do, of the medium (shown in Fig. 4.2). Before 
the medium is polarized, the charge in do contributes no dipole moment. After the 
medium becomes polarized, the p+ charge in du will have moved by an average 
displacement 6s relative to the p - charge. Orienting dv so that 6s lies along an edge, 
we can see from the figure that the charge originally in dv redistributes itself so that 
there are uncompensated regions of positive and negative charge around the two 
end surfaces of dv. The dipole moment thus acquired by the charge originally in dv 
is equal to [p+ da 6sr+ + p - da 6sr-1, where da is the area of a face of dv and r +  
and r- are vectors that locate the centers of the uncompensated charge regions. 
Consequently 
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Since, by definition, dp = P dv, we obtain the result 

For any volume element dv of surface area S, the charge that moves out of dv in 
the polarization process is then equal to 8, Peda. Since the material was electrically 
neutral originally, the charge remaining in dv is -$ Peda. Therefore the charge 
density in do is 

This is just the defining expression for the divergence of P [see Eq. (1.37)]. Thus, 
there is a polarization charge density given by p, = -V.P, as was given in Eq. 
(4.13). If p, # 0, a net charge equal to p, dv must have passed through S(dv) in the 
process of polarization, then on actual surfaces of a dielectric, because the charge 
that moves across the surface is uncompensated, one will observe a surface charge 
density a, equal to a, = (P.A), as was given in Eq. (4.13), where A is the outwardly 
directed unit vector perpendicular to the surface. In the model we have used, the 
charge on the surface actually resides in a layer of thickness (6s. A), which is 
negligible. 

In conclusion, we see that a knowledge of the polarization P allows one to deduce 
the macroscopic charge densities that exist by virtue of that polarization. These 
charge densities create the associated macroscopic fields. The truth of the latter 
statement is established by considering the equations of electrostatics in their micro- 
scopic derivative forms, Eqs. (2.33) and (2.37): V.E = and V x E = 0. Taking 
the space and time average of these equations over a volume element dv, we obtain 

Now we can take (V. E) = V. (E), and (V x E) = V x (E) (see Problem 4.21). 
This means that the equations governing the macroscopic electrostatic fields are 
given by 

These are the same forms as the fundamental microscopic equations. Thus the 
charge densities obtained from knowledge of the polarization are valid in calculat- 
ing the average electrostatic fields, whether they be inside or outside the polarized 
medium, although in point of fact it is rare that one wants to know the field (E) 
inside matter. In ordinary applications one usually has one's instruments outside of 
the medium itself, perhaps in little cavities carved in it. An exception to this state- 
ment concerns the passage of charged particles through matter. The net deflection of 
these particles does depend on (E), given above. 

Example 4.1 Polarization Charges-Cylindrical Electret-Dipole Layer 

As a first example we consider a solid right circular cylinder that has a constant polarization 
P = P2 along its axis (see Fig. 4.3). There do indeed exist materials that can maintain such a 
polarization in the absence of an applied electric field. Such materials are called electrets, and 
the associated phenomenon of a "residual" polarization is usually called ferroelectricity (see 
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Figure 4.3 A uniformly polarized cylinder 
along its axis is represented by surface polariz- 
ations at its ends. 

Chapter 5). In these materials the internal macroscopic electric fields maintain the polariza- 
tion; i.e., they keep the dipoles aligned. Clearly, such substances are highly nonlinear, not 
"simple." 

The macroscopic electric field generated by our electret may be found from the charge 
densities generated by the polarization a, = P.2 at end faces of rod, a, = 0 on cylindrical 
sides of rod, and the volume density p, = -V.P = 0. Consequently the rod is represented 
electrically by two circular disks of charge, with charge densities +P, separated by a distance 
21. The electric field on the axis of a charged single disk with a constant surface charge 
density was determined in Example 2.11. With a charge density a,, Eq. (2.49) gives 

With E pointing away from the disk if a, is positive, and lzl is the distance from the disk. If 
we have two disks, with charge densities - P  and +P, separated by a distance 21, and we 
take the origin at a point on the axis midway between the disks, then the field "outside" the 
disks on the axis is given by 

Equation (4.20) can alternatively be written in terms of the angles 8, and 8, shown in Fig. 
4.4a; that is, 

P 
E> = - [cos 8, - cos el] 

2% 
(4.21) 

Similarly, the internal field between the disks is given on the axis by 
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Figure 4.4 Fields and potentials of the uniformly polarized 
cylinder of Fig. 4.3. (a) Schematic diagram of the polarization 
charges. (b) The E field at the axis as a function of distance along z. 
(c) The limit of a short cylinder. 

Figures 4.46 shows a plot of E as a function of z on the axis of the cylinder. 
As the field point approaches the right-hand face of the disk (that is, z = I or cos 8, = O), 

we obtain from Eq. (4.21) 

and, from Eq. (4.23), 
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Subtracting Eq. (4.25) from Eq. (4.24) gives 

which shows that the normal component of E is discontinuous. The discontinuiiy is due to 
the existence of a, on the disk. 

Finally, we note that as 0, -+ 0, -+ n/2, which corresponds to a disk of infinite diameter, 
then Eq. (4.21) reduces to 

and Eq. (4.23) reduces to 

P E - - -  < - (4.28) 
Eo 

These fields are similar to the fields of an infinite-area parallel-plate capacitor to be discussed 
in more detail in Chapter 6. It is interesting to remark that as 1 -+ 0 (21 = 6) we may regard 
the resulting disk of area S as a dipole layer, Fig. 4.412, such that the dipole moment as- 
sociated with an element of area da of the disk is dp = P6 da 2 = P, da 2, where P, might be 
called the dipole moment per unit area of the surface. The potential due to this dipole layer 
can be determined using Eq. (2.44) 

where di2 is the element of solid angle subtended by area da with respect to the point of 
observation and is to be reckoned as positive when the polarization vector associated with da 
is such that P,.6 2 0; otherwise it is negative. If P, is constant over the surface area, then Eq. 
(4.29) can be easily integrated; hence 

where C2 is the total solid angle subtended by the disk with respect to the point of 
observation. 

It is interesting to examine the potentials just above and just below the dipole layer, @+ 
and @- respectively. Using (Eq. 4.30), we get 

P .2n P, - ps @ + ( z - + o + ) = - - - -  and @ - ( z - + O - ) =  -- 
4nsO 2c0 2&0 

These results indicate that @+ - @- = PS/cO. The potential is therefore discontinuous in 
passing through a dipole layer. The electric field is as a consequence highly singular. [At a 
dipole layer, it goes to infinity; see the discussion following Eq. (3.8).] 

Example 4.2 The Polarized Sphere-Two Superimposed, 
Oppositely Charged Spheres 

Consider a polarized dielectric sphere of radius R. We assume the polarization throughout its 
volume to be constant: P = P2. We wish to find the electric fields generated by this polariz- 
ation. These fields will be entirely equivalent to the field produced by the charge distribution 
associated with the polarization: 

p,= - V . P = O  and a , = P . P =  p($.P)= pcose (4.3 1) 

One could straightforwardly calculate the potential or field due to such a charge distribution 
using Coulomb's formulas, though the integrations involved are not trivial. Instead, however, 
we observe that a shortcut exists [see the discussion preceding and following Eq. (4.15)]. To 
see it, consider the following problem. 
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Figure 4.5 The fields and potentials of a polarized sphere. (a)  Representing 
it as two superimposed oppositely charged nonconcentric spheres. (b) En- 
largement of a section of the sphere. (c) Lines of force of the E field. 

Imagine two uniformly charged spheres of radius R displaced from each other by a small 
distance, 6 R (see Fig. 4 . 5 ~ ) .  Let the charge densities of the spheres be p+ = p and p- = 
-p ,  respectively. In the region where the spheres overlap, the net charge density is zero. Only 
on the periphery of the superimposed spheres will there be an unbalanced charge. Referring 
to Fig. 4.56, we see that the charge in a layer on the surface is given by dq = 
p dv = p da dr = p da(6 cos 9), so dqlda = a = p6 cos 9. We now observe that if we set P 
for our original problem equal to p6 [see Eq. (4.16)], we have identical charge distributions, 
and therefore identical electric fields, for these two problems. However, it is a simple matter 
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to calculate the electric fields or potentials for the problem of two superimposed uniformly 
charged spheres. Thus, by solving this problem, we will have solved the polarization problem 
also. 

Note that an unpolarized dielectric indeed may be thought of as two superimposed, uni- 
formly charged spheres of opposite charge densities: p + ,  p-  = -p+.  In the process of 
polarization, there will occur a displacement of the positive charge from the negative charge 
by a very small amount, 6, to produce the surface charge density p + 6  cos 0. Thus, the 
problem of the uniformly polarized sphere is in all ways identical to the problem of the two 
displaced, uniformly charged spheres. We simply recognize that p6 = P. 

Outside the spheres (at r > R), each uniformly charged sphere appears as I point charge 
[see Eq. (2.51)] of magnitude 

These point charges are separated by the displacement 6, where 6 / R  4 1. The field is a dipole 
field from a dipole of moment Q+ 6  (see Example 2.9): 

where p = P V  is the dipole moment of the sphere, and V is the volume of the sphere. Inside 
the spheres (r I R)  we use the results of Example 2.12b. Using Eq. (2.53) we write: 

The total field is the vector sum of these two fields: 

Using P = p6, we find that 

P E =  -- 
380 

The striking feature found is that the electric field is constant inside the sphere and is a simple 
dipole field outside. Figure 4 . 5 ~  shows the lines of force of the uniformly polarized sphere. 

If now the materials in this example are interchanged, then one gets a cavity in an infinite 
dielectric that is homogeneous and has uniform polarization P. The electric field in the cavity 
is the same as in the polarized sphere except in the opposite direction (see Problem 4.16): 

See Problem 4.18 for another method of solving the same problem (boundary value techni- 
ques, to be introduced in Section 4.6, the Solution of Electrostatic Boundary Value Problems 
with Dielectrics). 

4.3 Gauss' Law for Dielectrics 
We should explicitly indicate that macroscopic fields differ from their microscopic 
counterparts, even though they satisfy the same differential equations. Certainly, 
inside a dielectric they are very different; the microscopic fields change greatly from 



4.3 GAUSS' LAW FOR DIELECTRICS 137 

point to point due to the nearness of atomic charges, whereas the macroscopic fields 
change very smoothly. We shall not so distinguish these fields since it is typographi- 
cally cumbersome to do so. We must simply be mindful that in material media 
whose charge densities are governed by the macroscopic field P, macroscopic fields 
{E, P, a) are created. Thus, we shall continue to write the equations, V-E  = PIE,, 
and V x E = 0 as before, even in material media. There, however, a part of p is due 
to polarization charge, pp = -V-P. Denoting the remaining part of the charge 
density as p, (f for "free"), we have p = p, + p,; hence 

Defining a new vector field, 

D = e O E + P  

we have 

The new vector field D is called the electric displacement. Its divergence is related to 
thefree charge rather than to the total charge density. Its curl need not be zero, so 
that it is in general a nonconservative field. Equation (4.36) is the differential form of 
Gauss' law in the presence of material. 

We now drive the integral form of Gauss' law in the presence of material. Con- 
sider Fig. 4.6, which shows a dielectric material bounded by a number of surfaces: 
S,, S,, S,, and S,. Shown also in the figure is a gaussian surface S enclosing a 
volume V. In Gauss' law, $ E.da = Q / E ~ ,  Q represents the total charge in volume V 
enclosed by S. With dielectrics, there is a polarization charge to account for. We 
therefore write Q = Qf + Qp, where Qp is the polarization charge enclosed by S and 
Qf is the remaining charge inside S. The charge Qp may be due to surface and 
volume charge density distributions inside S, or 

where S' signifies all surfaces inside S where P is discontinuous, and I/' is a "sub- 
volume" of V exclusive of points where V. P is infinite. We would like to make the 
following two statements about the polarization charge Qp. The first statement 
asserts that the total polarization charge in all of the dielectric material is zero. This 
can be easily seen by taking Sf to include the very outer surface S, of the dielectric. 
Applying the divergence theorem to the second term of the right-hand side of Eq. 

Figure 4.6 A dielectric material bounded by 
a number of surfaces: S,, S,, S,, and S,. 
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(4.37) converts it to a surface integral that exactly cancels out the first term in the 
same side of the equation. This result is a direct consequence of the fact that the 
dielectric proper is, by definition, neutral. 

The second statement, on the other hand, asserts that the total polarization 
charge enclosed by a surface that does not include S, is not zero. It is 

The reason is that the dielectric proper is, by definition, neutral, and only the charge 
that in the process of polarization passes through S will "add" to the net charge in 
V. But this is simply the integral Qp defined above in Eq. (4.38). Inserting Qp into 
Gauss' law, Eq. (2.27), we have for any closed surface S 

That is 

Multiplying through by e0 gives the equivalent of Gauss' law for dielectrics: 

It is a law governing the macroscopic fields (E and P). The vector function D = 
E,,E + P is the electric displacement encountered previously in Eq. (4.35). We 
have obtained the general result that, for an arbitrary closed surface S, 

where Q, is the total free charge contained by S. If Q, can be everywhere character- 
ized by a volume charge density, p,, inside S, then 

implying V.D = p,, as before. The integral expression, Eq. (4.41), clearly has a 
greater generality than the differential one insofar as the charge Q, is not restricted 
to characterization as p,. It makes obvious the assertion that the flux of D (repre- 
sentable as lines of force of D) is continuous in regions of zero (macroscopic) free 
charge. We assert that D ought not to be regarded as a fundamental field of the 
status of E. It is rather a purely mathematical construct related to the way in which 
one seeks a macroscopic solution for E from the basic equations. Its physical con- 
ceptualization is difficult; it has no direct connection with the forces exerted on 
charges. 

4.4 The Equations of Electrostatics Inside Dielectrics 
The equations for macroscopic electrostatics may now be summarized either by 

P V . E = -  and V x E = O  or V . D = p ,  and V x E = O  (4.42) 
60 
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with 

E = - V @  and D = e O E + P  (4.43) 

In free space, pf = p, D = E ~ E ,  and the equations are identical. In dielectrics, 
p = p + pP = p - V - P, and the equations are again completely equivalent. In 
either case, the E fields are conservative, and we may make use of the potential 
function 0. 

If p is known everywhere, one can obtain (in principal at least) a solution to these 
equations, for then the curl and divergence of E would be everywhere specified, and 
this is sufficient to obtain a solution for E (or @). But in the presence of dielectrics, p 
is given only if P and pf are known. Once P and pf are known, the problem of 
obtaining E is no different from that treated heretofore. One calculates a, and p, 
from P, and hence E (or 0) by an integration. 

Often, it is assumed that pf is under our control and is considered as known; P, 
however, is not explicitly given. The problem then assumes a different form: 
Although one knows that V D = p and V x E = 0, one cannot find either D or E 
(even if we know pf everywhere) without knowing the relation of D to E. In other 
words, to determine D or E requires knowledge of both the curl and divergence of 
either D or E everywhere.* 

4.5 The Electric Constitutive Relations 

The relations between P (or D) and E are called constitutive relations. For example, 
there exists a class of dielectric materials for which this relation is expressed as 

P = E,XE (4.44) 

or 

D = ~ ~ ( 1  + x)E 

which can alternatively be written as 

D = coKE = EE 

where x is a dimensionless parameter called the electric susceptibility; K = 1 + x is 
called the relative permittivity, or dielectric constant, and is "relative" to regions of 
zero polarization, such as free space, whose dielectric constant is unity; and E = K 
is the permittivity of the material. 

It must be emphasized that the constitutive relations do not express laws of 
physics but merely adequate representations of the behavior of some materials. If x 
(or K) does not depend upon location in a piece of material, the material is called 
homogeneous. If x does not depend on E, then the material is called linear, and if x 
does not depend upon the direction of E in the material, the material is called 
isotropic. Most liquids and gases are homogeneous, isotropic, linear, materials at 
least at low electric fields. We shall refer to them as "simple" dielectrics. Most 
noncrystalline solids also are simple in this sense. However, many crystalline sub- 
stances do not satisfy these conditions. For example, the relationship between E and 
P for these may be better represented by the set of equations: 

* If p, is known only in a restricted region V, then to find E or D in this region we must also know the 
appropriate boundary conditions (see below) for this region. 
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and analogous relations hold for the y and z components of P. The set of nine 
coefficients determine the relations of E to P. These coefficients are called suscepti- 
bility coeficients and they may be functions of E in the case of nonlinear crystals. 
The set of coefficients is known as the susceptibility tensor. Such substances may be 
linear and homogeneous, but they are clearly not isotropic, for even when E = fE, 
one has different polarization components in the y and z directions. Only if 
xxy = xxZ = xyz = xyx  = xZx  = xzy = 0 and xxx  = xyy = xZz = x does one have a simple 
susceptibility. This nonlinearity observed in some crystals has recently been em- 
ployed in important practical applications. It has, for example, provided means of 
increasing the number of wavelengths available from lasers (harmonic generation). 

Even if simple, the electric susceptibility will depend on such parameters as tem- 
perature and pressure. In Table 4.1 are given representative values of x at standard 
temperatures and pressures (STP) for several simple dielectric materials. 

It is the task of materials research to understand why a substance has a particular 
dielectric constant, and how it is affected by environmental conditions such as 
temperature or pressure. Suffice it to say here that there commonly occur two types 
of dielectrics: polar and nonpolar. The molecules of polar dielectrics have permanent 
dipole moments, which under the influence of (applied) electric fields tend to align 
themselves with these fields. If the fields are zero, the molecules tend to be randomly 
oriented, resulting in zero polarization. Such dielectrics generally have considerably 
larger susceptibilities than the nonpolar kinds, whose dipole moments are "in- 
duced" via a distortion and displacement of the molecular electron clouds relative 
to the atomic nuclei. A substance such as water is polar, whereas atomic substances 
(nonmolecular) such as monoatomic gases tend to be nonpolar (see Chapter 5). As 
seen in Table 4.1, the common gases at STP have essentially unity dielectric con- 
stants for most applications, primarily because of their atomic densities are so low. 

Table 4.1 Dielectric Constantsa 

Dielectric Material K 

Porcelains 
Glasses 
Nylon 
Polyethylene 
Teflon 
Lucite 
Neoprene 
Water 
Ethanol 
Methanol 
Benzene 
Mica 
Paraffin 
Mineral Oil 

Air 
co2 

H2 
0 2  

"Compiled from AIP Handbook, 3rd ed., 
1972 (New York: McGraw-Hill, 1972). 
Values given are for STP. 
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There are instances where the existence of a polarization may be due to forces 
other than those due to imposed electric fields. Thus inertial or gravitational forces 
may affect a charge separation in atoms or molecules creating an effective polariz- 
ation. Mechanical stresses may also produce a polarization. This occurs, for 
example, in quartz, and the associated phenomenon is called the piezoelectric effect. 
It has many practical applications, as in the fabrication of electromechanical trans- 
ducers where a mechanical signal is to be converted into an electric signal or vice 
versa. 

Finally, we should mention that as the ambient electric field is increased, there 
will eventually occur a departure from linearity between P and E. If E achieves a 
certain critical value, the dielectric may "break down," implying that electrons have 
their bonds to their associated molecules or atoms broken. In this case the dielectric 
will no longer act as an insulator: The electrons are torn away from their normal 
positions in the material by the high fields. The critical value of electric field at 
which this occurs is called the dielectric strength of the material. For air at STP, it is 
about 3 x lo6 volts per meter. 

In the following we shall mainly consider cases where simple relations hold be- 
tween P and E. Note that the relation P = XE,E relates the total macroscopic~field E 
at a point to P, so that if a piece of dielectric is placed in an applied electrostatic 
field E,, the polarization induced in the dielectric is not P = p o E 0  but P = poE,  
where E includes both E, and the field produced by the polarized dielectric itself. 

Example 4.3 Conducting Sphere Enclosed by a Dielectric Shell-Gauss' Law 

In this example, Fig. 4.7, we shall assume we have a conducting sphere of radius R , ,  on which 
is placed a charge Q (=Q,). In contact and concentric with this sphere is dielectric material 
having a dielectric constant K that extends out to a radius R,.  We wish to find the fields and 
charge densities generated everywhere. 

Because of the spherical symmetry, it is expected that the electric field at a distance r from 
the center of the sphere will be radial and independent of 9 and 4. As a result, Gauss' law can 
be used to determine the fields easily. 

Applying Gauss' law to a spherical surface concentric with the sphere and of radius r, such 
that R ,  < r I R, ,  and taking D = DP, we obtain 4 D.da = 4nr2D = Q,, which yields 

and 

Figure 4.7 A conducting sphere enclosed by 
a dielectric shell. 
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where E = cOK is the permittivity of the medium. Similarly, the fields in the vacuum regions 
can be determined using Gauss' law; that is, 

Q/ D=-P and E,=.-/- 
4ar2 

Q p  r > R ,  
~ X E ,  r2 

(4.49) 

The fields inside the sphere, of course, vanish; therefore 

D = O  and E = O  r < R ,  (4.50) 

We can also find the polarization surface charge densities, at r = R,. Using Eqs. (4.44), (4.48), 
and (4.50), we find that the polarization P at r = R, is 

Hence a, = P . 8 = P . ( - P) gives 

where o, = Q,/4nR:. It is this negative charge density at R, that decreases the E field in the 
dielectric from what it would have been without the dielectric. 

The polarization charge at r = R, can be determined in a similar way. 

and hence 

One can easily show from Eqs. (4.52) and (4.53) that the total polarization charge at R, is 
equal in magnitude and opposite in sign to the total polarization charge at R,. This must be 
true because the dielectric is assumed to have no net charge, and there is no volume polariz- 
ation charge; hence p, = - V . P  = -(K - l)Eo(V.Ed) = 0. This is also seen to be true 
because, by assumption, no free charge exists in the dielectric, and the total charge density in 
simple dielectrics is proportional to the free charge density. 

Finally, the potential of the conductor, cD,, is determined by using Eq. (2.42). For 
@(a)) = 0, 

Substituting for the fields gives 

If the voltage, cDc, of the sphere had been initially specified rather than Q,, the relation 
between Q, and @, above would have been used in the equation for Ed and E, [see Eq. (4.55) 
in the following example]. 

Example 4.4 The Parallel-Plate Capacitor--Gauss' Law 

Consider two parallel conducting plates whose dimensions are very large compared to their 
separation, d (see Fig. 4.8). The surface area of the plates is A. A dielectric slab of thickness t 
was inserted between the plates. The dielectric has a permittivity E = K E ~ ,  and the potential 
difference between the plates is A@. 

Because the plate dimensions are much larger than the distance between them, we expect 
the electric field to be perpendicular to the plates and to be constant in the dielectric and in 
vacuum with values Ed% and E,P, respectively. 
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pillbox 

Figure 4.8 Parallel-plate capacitor with a 
dielectric slab inserted in it. 

In order to find the values E,  and Ed we utilize Eq. (2.41) 

and Gauss' law, 4 D.da = Qj. Applying Gauss' law to a Gaussian pillbox whose "top" side is 
inside the conductor, and whose "bottom" side is taken in vacuum (between the dielectric 
and the conductor) yields D ,  = of. Similarly, if the bottom side of the Gaussian pillbox lies 
inside the dielectric, Dd = D ,  = of, because the charge associated with the polarized dielectric 
is, by definition, "nonfree." From the equality of D, and D,, we then have E,  = K E , .  Insert- 
ing this into Eq. (4.55) gives the result: A@ = E,[t + K(d - t)], or 

Ed = 
A@ 

and E,  = 
K A@ 

t + K(d - t) t + K(d - t) 

This constitutes a solution to the problem. It is easily checked that as K + 1, Ed = E, 
+ A@/d, and that as t + d, Ed -+ A@/d. Other quantities of interest-the charge density on the 
conducting plates, of, and the charge density on the surface of the dielectric, a,-are as 
follows: 

K E ~  A@ K - 1  
a j  = cOEv = and o, = P.8 = -(T) or. (4.57) 

t + K(d - t) 

Note that, in terms of charge densities, 

4.6 The Solution of Electrostatic Boundary Value Problems 
with Dielectrics 

I t  follows from the relation V . D  = p,, that V-(&,KE) = p, in a medium character- 
izable by a dielectric constant K. If K is simple (constant), then 
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Taking E = - VQ, gives 

This is Poisson's equation as applied to points in simple dielectric media. Its form is 
identical to the more general condition V2Q, = -PIE,. Thus, such a dielectric 
medium acts very much like free space. Evidently, the effects of the polarization 
charge density are accounted for simply by replacing the E,  of free space by E~ K (in 
free space, K = 1). If pf = 0 in the media, Laplace's equation, V2Q, = 0, is satisfied 
just as in space free of any charge. It is then clear that, for simple media, pf = 0 
implies that p = 0, since p = -E,V~Q,. Thus, pp = 0 also there. 

4.6.1 Uniqueness 

Just as Poisson's (or Laplace's) equation has unique solutions for regions of free 
space when appropriate boundary conditions are specified, so do the analogous 
equations applied to dielectric materials have unique solutions. If we are considering 
a finite region of space, a unique solution will exist (for VQ,) in that region if the 
electrostatic potential is specified on all the surfaces bounding the region. These 
conditions are no different than they were for the electrostatics of free space (see 
Section 4.6.2 below). Thus again, as before, if a part of the bounding surface of the 
region is a conductor, it will be sufficient to specify the total (free) charge on the 
conductor instead of its potential. In any of these cases, we must know something of 
the dielectric characteristics of the media within the region of interest to find the 
solution. 

4.6.2 Boundary Conditions for Dielectric Media 

Since the boundary conditions are essential to the specification of the solution, we 
now enunciate these conditions for dielectric media with the help of Fig. 4.9. 

From Gauss' law we have seen that 

D, 

Figure 4.9 Application of Gauss' law to a 
pillbox at the interface of two dielectric media 
to determine the boundary conditions on the 
displacement vector D. 
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where A is a unit vector pointing from medium 1 to medium 2, normal to the 
separating surface, and a is the total, net, surface charge density on the surface. We 
may distinguish the polarization surface charge density from the free charge density 
contribution to a by a = a, + a,. The surface charge contribution from polariz- 
ation of medium 1 alone is given by P, . A ,  where P, is evaluated in medium 1 at a 
point arbitrarily close to the surface. Similarly, we have a surface charge contri- 
bution due to the polarization in medium 2 alone equal to P2.(-A). The total 
polarization surface charge is therefore given by 

Therefore 

which, upon substitution in Eq. (2.35), gives 

( E ~ E ~  + P2).A - (eOE1 + P1).A = a, 

In terms of D = cOE + P, we obtain 

This is the equation pertinent to the interface between two dielectric media, and 
relates the normal components of D "across" the interface. 

The boundary condition given by Eq. (4.61) can also be derived directly from 
Gauss' law for dielectrics [Eq. (4.40)]. Consider the gaussian pillbox shown in Fig. 
4.9. Its flat surface area AS is taken to be small, and its height 21 is taken to be much 
smaller than the diameter of the flat surface. Using Eq. (4.40) we get 

where only the surface charge contributed since I is taken to be very small; the 
lateral surface area did not contribute for the same reason. Thus 

(D, -D,) .A = a, 

which is just Eq. (4.61). 

We now consider a number of special cases of Eq. (4.61). 

1. When a, = 0, then the normal component of D is continuous across the inter- 
face; that is, 

2. If the two media are characterizable by dielectric constants K, and K ,  or their 
permitivities E, and c2, we have E,E,. A - &,El . A  = a, or, expressed in terms of the 
corresponding potentials @, and @,, 

3. If medium 1 is a conducting medium, then El, Dl ,  and P, are equal to zero 
and the relevant boundary condition is 
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where we have identified D, with D and have assumed that the polarization inside 
the conductor is zero (see page 129). 

The equations relating the tangential components of the electrostatic field arise 
from the equation, still valid in dielectrics, V x E = 0, or $, E.dr = 0. It states that 
the tangential component of E is continuous across any interface; that is, 

As in the case of free space, the conservative nature of the E field implies continu- 
ity of the potential; that is, 0, = a , ,  where al and 0, are the potentials in regions 
1 and 2 as this interface is approached. Therefore, the boundary conditions on the 
potential function most often employed are summarized as follows: 

We might now summarize how we attempt to find the electrostatic fields for a 
problem involving dielectrics where the polarization is not explicitly given. We 
simply employ to advantage whatever we know. We use Gauss' law for dielectrics 
where symmetry allows. We use the fact that a potential function cP exists and 
finally we use the constitutive relations between D (and P) and E wherever possible. 

Example 4 5  Point Charge on a Plane Interfacc+Laplace's Equation 
In One Dimension 

This example deals with a situation where a point charge q is placed on the plane interface of 
two homogeneous infinite dielectrics 1 and 2 with permittivities el and e,, respectively, as 
shown in Fig. 4.10. At points away from the point charge, one can see from Eq. (4.59) that the 
potential satisfies Laplace's equation; thus the potentials 4 ,  and 4,  in regions 1 and 2, 
respectively, can be written as follows: 

where C, ,  C, ,  B,, and B, are constants. Since the potential is due to a localized point charge, 
then it should go to zero as r + co, thus yielding B, = B, = 0. 

The fact that the potential is continuous at the boundary gives: C ,  = C2 = C and 
4,  = 4, = 4. We can evaluate C by using Gauss' law. The electric displacement D = -e V 4  
takes the value (e,Cq/r2)P and (eZCq/r2)P in regions 1 and 2, respectively. We take a spherical 

Figure 4.10 A point charge at the interface of 
two dielectric materials.. 
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surface S with its center at the point charge. Applying Gauss' law on S (Eq. 4.40) yields 
C = 1/27r(c1 + c,), and thus 

The electric field and displacement vectors can now be easily determined. 

for all r 

where D, is the displacement vector in the ith region. 
The polarization P = D - cOE may now be evaluated: 

In the absence of the materials, namely when the charge is in vacuum, the electric field is 
E = (1/4nco)(qr/r3). Thus the presence of the materials weakens the electric field. This is due 
to the fact that the induced charge in the media screens the charge q. The induced charge 
component p, = -V.P is zero for r # 0; the surface density, a ,  = P.n, however, is not zero 
close to the surface of the charge. 

The total charge induced, q, = a ,  da, is 

where a is taken to be the radius of q. The assignment of a radius to the point charge is just 
an intermediate step to facilitate evaluating the induced charge since the final result was 
derived in the limit of a becoming very small. 

The total charge is equal to the free charge plus the polarization charge, or 

This result gives the screening effect where the total charge, when viewed from inside the 
dielectric material, appears to be less than q. 

A special case of the above results is a situation in which a point charge q is embedded in a 
single dielectric material. The potential, electric field, displacement vector, polarization, and 
the charge distribution produced in this case are all given by the corresponding results of the 
above example in the limit c1 = c, = c, where c is the permittivity of the single medium. 

Example 4.6 A Conducting Charged Sphere Between Two Dielectrics- 
One-Dimensional Problem 

Let us take the point charge in the previous example to be distributed over a conducting 
sphere of radius R and center at the plane interface. As in the point charge case, the potential 
in both regions is "r) = Cq/r, where C = 1/2n(c1 + 6,). We can now determine the charge 
density on the sphere. Since the electric field in a conductor is zero, the charge density on the 
surface of the sphere is given by Eq. (4.64); thus a , ,  = Dl,  and a,/ = D2, are the charge 
densities on the two halves of the sphere. The normal component Din is easily evaluated on 
the surface of the sphere: 

D. = - &  
a@ 

cn - evaluated at r = R ar 

yielding 

1 and a,, = 
q-52 

0 1 ,  = 27rR2(cl + E , )  2nR2(c1 + c,) 
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The total free charge on the sphere can be easily shown to be equal to q,  as expected, by 
integrating the charge densities in Eq. (4.71) over the surface of the sphere: 

Q = 2nRZ(a l  + a,,) = q 

We now calculate the polarization charge densities on the surface of the sphere. First we 
calculate the polarizations P I  and P ,  in media 1 and 2, respectively: Pi = D i  - cOE, with 
i = 1, 2. Thus 

The polarization volume charge density pi = - V . P i  in the materials is zero. The surface 
densities, however, are not zero and are equal to 

The total polarization charge on the sphere, q p  = 2nR2(a lp  + a,,), is 

It is to be noted that q p  is independent of the radius of the sphere. In fact it is identical to the 
charge induced on the surface of a point charge (see the previous example). As a result the 
same screening effect arises here as was encountered in the point charge case, namely, the 
total charge on the sphere is reduced by the same factor. 

Example 4.7 A Long, Dielectric Cylinder in an Electric Field- 
Two-Dimensional Problem 

We consider here a boundary value problem where the potential is a function of two vari- 
ables. Consider a long, dielectric cylinder of permittivity c placed in a uniform electric field 
that is normal to its axis. We choose a cylindrical coordinate system with the origin taken at 
the axis of the cylinder and the x axis along the electric field. 

Since there is no free charge on the cylinder, the potential in the x-y plane satisfies 
Laplace's equation. The potentials @ ,  and @, inside and outside the cylinder, respectively, 
depend on p and 4 .  We expect these potentials not to depend on z because the cylinder is 
long. Therefore, the potentials are given by the cylindrical harmonics that were derived in Eq. 
3.65). We will now give some arguments, based on physical grounds, why only a subset of 
these terms will contribute: 

1. The potential @,(p ,  4 )  should not blow up as p + 0. This implies that it should not 
have terms of radial dependence l / p n  and In p. 

2. Far away from the cylinder, the potential should reduce to a uniform electric field in 
the x direction. Therefore @,(p, 4)  = - Eop  cos 4 + Vo, where Vo is a constant. Thus @,(p,  4 )  
should not have terms of radial dependence p" where n > 1. Also, because of this boundary 
condition, @, and @ ,  should not include terms of cos n 4  where n > 2 and terms of sin n 4  
where n 2 1. This result is directly related to the fact that sin n 4  and cos n 4  are linearly 
independent functions. 

3. Because the cylinder has no free charges, then @, should not include a In p term, since 
such a term is proportional to the total charge on the cylinder. 
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Using these restrictions we find that the potentials take the following expressions: 

The constants A,, A,, Bo, B,, and C1 can now be. evaluated using some more conditions. As 
p + large, 02(p, 4)  = - Eop cos 4 + Vo; therefore 

which gives Bo = Vo and C, = - E o  The continuity of the potential at p = po gives 

B I A, + Alpo cos 4 = Vo + - cos 4 - Eopo cos 4 
Po 

which gives A, = Vo, and A, = (B,/p;) - E,. Another equation between A, and B, can now 
be found from the continuity condition of the normal D components: 

which gives: -KA, = (B,/p$) + E,, where K = E / E ~ .  The relations between A, and B, give 
A, = -2Eo/(K + 1) and B, = p;E,(K - l)/(K + 1). Substituting the values of the constants 
in Eqs. (4.74) and (4.75) gives 

p$Eo K - 1 
@z(P. 4) = vo + - - cos 4 - Eop cos 4 p K + 1  

We now discuss an interesting limit of these potentials. If the material of which the cylinder 
is made has a very high dielectric constant-that is, K 9 1-then @, and @, reduce to 

@,(p, 4)  = Vo + @!! cos 4 - Eop cos 4 
P 

which are exactly the same potentials we would encounter in the case of a conducting 
cylinder placed in an electric field (see Problem 4.14). This leads us to infer that the dielectric 
cylinder in this limit is exactly equivalent to a conducting cylinder. 

Example 4.8 Dielectric Sphere in an Electric Field-Two-Dimensional Problem 

This example, which is sketched in Fig. 4.11~1, deals with a dielectric sphere in a uniform 
electric field. We use spherical polar coordinates with the origin at the center of the sphere. 
The electric field is taken along the z axis: E = E02. The permittivity of the sphere and the 
external medium are E, and E,, respectively. 

The potentials @, and @, inside and outside the sphere, respectively, satisfy Laplace's 
equation; moreover, they depend on r and 0 and therefore can be written as a series of zonal 
harmonics [those were derived in Eq. (3.28)]. 

The following arguments are used to eliminate many of the terms in these expansions. 

1. The potential inside the sphere, @,(r, O), should not contain terms of I/?, where n 2 1, 
because it should not blow up at the origin. 

2. The term proportional to llr should be dropped from the @, expansion since the sphere 
has no net charge. 
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(b )  ( c )  

Figure 4.11 Dielectric sphere in a previously uniform electric field. 
(a) Lines of force in the absence of the sphere. (b) Lines of electric 
displacement. (c) Lines of electric field. 

3. The fact that the spherical symmetry is broken by the presence of the electric field that 
gives rise to - Eor cos 6 + V, potential at r + co implies that only the lowest zonal harmonic 
contributes. 

4. The potential outside the sphere should not contain terms of r", where n 2 2. Therefore 
one writes 

@,(r, 9) = A, + A,r cos 9 (4.80) 

B 
@,(r, 8) = B, + B,r cos 6 + -2 cos 6 (4.8 1) 

r2 

where A,, A,, B,, B,, and B2 are constants to be determined from the boundary conditions. 

The boundary conditions used are as follows: 
1. As r +  a, 

@, = B,+ B,rcos6= -Eorcos6+ V, 

Thus B, = V, and B, = -E,. 
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2 On the surface of the sphere (r = R), we have @ ,  = @,. Thus 

B 
A,  + A ,  R cos 0 = Vo - Eo R cos 8 + -2 cos 8 

RZ 

Equating coefficients of powers of cos 0 gives A,  = Vo and 

3. On the surface of the sphere, the normal component of D is continuous. The continuity 
is due to the given fact that there is no surface free charge density. Thus -c,(a@,/ar) = 
-~ , (a@, /ar )  at r = R,  or 

Equations (4.82) and (4.83) yield 

3 ~ 2  EO A - ---- E l  - E 2  R ~ E ,  
1 - and B2 =- 

E l  + 2E2 E l  + 2E2 

Substituting the magnitude of the constants A,, A, ,  B,, B,,  and B, in Eqs. (4.80) and (4.81) 
gives 

3% Eo Q1(r,  0) = V, - - r cos P 
E l  + 2E2 

E~ - E Z  cos e @,(r, 8) = V, - E,r cos 0 + - E, R3 - 
& I  + 28, r2 

The electric field inside the sphere El = -V@ is uniform and is given by 

When the sphere has a higher dielectric permitivity than the surrounding medium, -5, > E , ,  

then El < E,. The reduction of E, inside the sphere is attributed to the induced charge on its 
surface. This induced charge, which will be shown below to have a cos 0 dependence, pro- 
duces a uniform depolarizationjeld in opposite direction with the external field (see Examples 
2.17, 3.6, and 3.7 for calculation of fields due to a cos 0 charge distribution). The name 
"depolarization field" is given because it tends to oppose the polarization and disorient the 
dipoles. On the other hand, El is greater than E, in the case -5, < E,.  In this case the field 
inside the cavity is strengthened. 

The electric field outside the sphere is: 

cl - E~ EOR3 
E ,  = E,& +-- [ 2 ~  cos 0 + 6 sin 01 

E ,  + 2-5, r3 

where 8 is a unit vector along the 0 direction. It consists of the external uniform field Eo2 and 
a field that is due to an electric dipole with a moment 

Figure 4.11b show the effect of the sphere on the lines of force of the initially uniform electric 
displacement field. Figure 4 . 1 1 ~  gives the lines of the E field. The sphere has a uniform 
polarization P along the z axis (along the external field); it is equal to p/V = p(4nR3/3)-', or 
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The polarization charge densities in the sphere can now be calculated. The volume density 
p = -V.P = 0, since P is uniform. The surface charge density is a, = P.8 = [ ~ E ~ ( E ~  - E,)/ 
(el + 2&,)]E0 cos 0. The dipole field induced outside the sphere is in fact due to this sur- 
face charge density. See again examples 2.17, 3.6 and 3.7 which show that a cos 0 charge 
distribution produces a dipole field. 

Let us consider a special case of the above results. We examine the case where the permit- 
tivity of the sphere E ,  becomes very large, &, $ &,. In this case the electric field inside the sphere 
[Eq. (4.86)] vanishes and the field outside the sphere, Eq. (4.87), becomes 

E,  R3  
E,(E, + a) = Eo2 + - [2P cos 0 + 8 sin 01 

r3 

These electric fields are exactly the same fields produced when a conducting sphere is placed 
in a uniform electric field [see Eq. (3.52)]. This result leads us to conclude that a conductor 
can be regarded in a sense as a medium of infinitely large polarizability (large dielectric 
constantFmeaning that the charge displacement is unbounded. 

Now we present a different way of solving this problem. We'will rely on the fact that when 
a dielectric sphere is placed in an electric field, it gets polarized along the external field. The 
resultant field, E, will be a superposition of E,  and the field produced by a polarization 
charge induced on the sphere. We assume that the sources of E,  are undisturbed by the 
presence of the sphere. The latter field is called the depolarization field, here labeled E', and 
E = E, + E'. Now, we shall assume that the dielectric sphere is polarized by E, such that the 
polarization, P is P = PE, ,  proportional to E,  and constant. If this assumption is valid, we 
shall be led to a self-consistent solution that will be ~redicted in terms of the dielectric 
constants. If it is invalid, we will not be able to find a self-consistent solution. 

If P = $E,, we expect to find that on the surface of the sphere there will be a polarization 
charge density a = BE, cos 0 = a ,  cos8, where B is another constant that must be due to 
polarizations in both dielectric media, but its exact value remains to be determined. In any 
case E' will emanate from the surface charge a,. Now the field inside the sphere (see again 
Examples 2.17, 3.6, and 3.7) will be given by 

The field outside will be given by 

E =  E 0 2 + -  BE'R' [ 2 ~  cos 0 + o sin 01 
3&, r3 

where we have recognized that the surface charge distribution produced a dipole field with a 
dipole moment p = ($)nR3ao = ($)nR3BEo. If these fields are consistent, they will satisfy the 
required boundary conditions at r = R-that is, that the tangential components of the 
electric field are continuous and the normal components of the displacement vector are also 
continuous. Using the above assumed field, we find that the tangential condition seems 
automatically satisfied. The normal condition determines B for us. The result is 

With B determined, the problem is completely solved, and it is easy to show that this solution 
is identical to the results of the first method. 

Example 4.9 A Dipole at the Center of a Dielectric Sphere 

This example deals with a boundary value problem where the potential is a function of an 
angle as well as a distance. The angular dependence is produced by inserting a dipole of 
moment p at the center of a dielectric sphere of radius R and permittivity c, .  The permittivity 
of the material external to the sphere is e , .  



4.7 METHOD OF IMAGES FOR DIELECTRIC INTERFACES 153 

We describe the system by spherical polar coordinates with the origin at the center of the 
sphere and the z axis along the dipole. Away from the dipole the potential satisfies Laplace's 
equation, and therefore it can be represented by an expansion of zonal harmonics. Since near 
the origin the potential is that of the dipole: (1/4n~,Wp cos 8/r2), and in the absence of the 
dipole, the problem is spherically symmetric, then we expect only the lowest-order zones to 
contribute. Thus the potentials inside and outside the sphere @, and a,, respectively, are 
represented by the following expansions: 

A, cos 8 
@,(r ,8)  = A,rcos 8 + - r < R 

r2 

B, cos 8 
@,(r, 8 )  = B,r cos 8 + - r > R 

r2 

where A, ,  A,,  B, ,  and B, are to be determined from the boundary conditions: 

1. @,(r,  8 )  goes to @/4n~,)(cos 8)/r2 as r + 0. Thus 

A, cos 8 p cos 6 - 
rZ 4n.5, r2 

yielding A, = p / 4 n ~ , .  
2. @,(r, 8 )  goes to zero as r + m. Thus B,  = 0. 
3. The potential at the boundary is continuous: @,(R,  8 )  = @,(R, 8). This gives a relation 

between A ,  and B,: 

4. The normal component of the displacement vector is continuous at the boundary: 
E ,  a@,/ar = E ,  aQ2/ar at r = R. This condition gives another relation between A,  and B2: 

Solving Eqs. (4.92) and (4.93) simultaneously for A,  and B2 gives 

Thus 

Note that as E ,  + c2 ,  the potentials reduce to the potential of a dipole in an infinite dielectric 
material as expected. 

*4.7 Method of Images for Dielectric Interfaces 
In Example 4.5 we considered a point charge placed at the plane interface of two 
semi-infinite dielectrics. Because of the symmetry of that situation, Gauss' law and 
the solution of Laplace's equation in a single variable were applicable, thus making 
the determination of the fields straightforward. 

Now we consider the case where the point charge is placed not at the plane 
interface but at a certain distance from it. The relocation of the charge breaks the 
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symmetry, and therefore simple methods as mentioned above are not very useful; 
the fields become dependent on distances and angles. 

Previously, in Chapter 3, we saw that the solution for the fields of a point charge 
q placed near a highly conducting plane surface were conveniently determined by 
the method of images. It was found that the system is equivalent to the original 
charge plus an image charge - q  placed just under q at distance d on the opposite 
side of the plane. To solve the dielectric case, we resort to the method of images; 
however, because of the drastically different boundary conditions needed to be 
satisfied at the boundary, the system will not be equivalent to the point charge and 
its image. 

We will take the approach of first choosing a reasonable number of image 
charges with reasonable locations. These choices can then be tested by requiring 
that the produced fields satisfy the boundary conditions. Consider Fig. 4.12, where a 
point charge q is placed at a point P, which is at a distance d from the boundary of 
two semi-infinite homogeneous dielectrics of permittivities E ,  and E,. We take the 
potential in region 1 to be represented by the charge q and an image charge of 
magnitude q' located in region 2 at distance d on the x axis. The potential in region 
2, however, will be only that of an image charge q" located at P (that is, at the 
location of the original charge q). Thus 

1 q 9' 
~ , ( r )  = ( +  ~ K E  

for x < 0 

for x > 0 

where r = [ (x  + d)2 + y2 + z ~ ] ~ ~ ~  and r' = [(x - d)2 + yZ + z2]' I2,  and q' and q" 
magnitudes of the image charges, which are not yet known. 

The above solution can now be checked by finding out whether it can satisfy the 
boundary conditions by determining physical values for these unknown charges: 

1. The potential should be continuous at x = 0; that is, 

Thus 

1 4" 
- (q + q') = - 
El E2 

Figure 4.12 Application of the method of images to a 
point charge placed near a plane interface of two dielec- 
tric materials. 
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2. The normal component of the displacement vector is continuous on the bound- 
ary since it has no free charges; that is, Dl,(x = 0, y, z) = D2,(x = 0, y, z), or 

aal/ax = eZ am2/ax at x = O. T ~ U S  

Solving Eqs. (4.97) and (4.98) simultaneously gives: 

E 2  - E l  q' = - --- 2% q and q" = ---- 4 
E l  + 62 E l  + Ez 

Thus the potentials are given by 

E 2  - E l  
@I='[:-(--)>] 4x8, E l  + Ez and 0 , =  ~ K ( E ~  2q + EZ) 1 r (4.100) 

Because 0, and 0, satisfy Laplace's equation and the boundary conditions, then 
the solution is unique, and therefore the above two image charges are sufficient to 
determine the fields uniquely. 

We now give a qualitative description of the lines of force produced by q. Figure 
4 . 1 3 ~  shows the case E, > E , .  In this case q' has the opposite sign of q. Therefore in 
region 1 the lines of force look like the lines of force between two charges of 
opposite sign (dipole lines). In region 2 the lines of force are described by one charge 
of same sign as q and emanating from the position of q. 

Figure 4.13b shows the case 8, < 8,. In this case q' has the same sign as q. 
Therefore in region 1 the lines of force are similar to those of two charges of same 
sign. In region 2 the lines of force are described by a point charge emanating from 
the position of q. 

The presence of charge q in medium 1 produces polarizations P, and P, in 
mediums 1 and 2, respectively; Pi = -(ci - E ~ ) V @ ~ ,  where i = 1 and 2. The polariz- 
ation charge density has two components: a volume charge density -V.Pi and a 
surface charge density Pi.  A. Since Pi is proportional to E,, which satisfies V. Ei = 0, 
then the volume charge density vanishes except at the point charge q itself. Using a 

Figure 4.13 Field lines of a point charge implanted in E, material near 
the plane interface with a material of E,. (a) E, > E , .  (b) E ,  < E , .  
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unit vector f normal to the interface and pointing from material 1 to 2, the surface 
charge density is: a, = -(P2 - PI).%, which can be easily shown to be 

*Example 4.10 Forces Between Charges Embedded in Dielectric Materials 

This example shows how the method of images can be used to find the forces between 
charges embedded in dielectric media Consider Fig. 4.14, showing two semi-infinite homoge- 
neous dielectrics 1 and 2 with permittivitics e l  and E , ,  respectively. Two charges q ,  and q, 
are placed in media 1 and 2, respectively, each at a distance d from the interface and with the 
line between the charges normal to the interface. 

The charge q, experiences two types of forces; one type is due to the presence of charge q, 
and the other is due to its proximity to the interface. We first calculate the first force. The 
force is equal to q,E, where E is the electric field caused by q, at the site of q,. From the 
previous example, the field caused by charge q ,  in region 2 is produced by a charge 
q = 2E2q1/(cl + E,) located at the position of q, [see Eq. (4.99)]. Therefore the force exerted 
by q,  on q, can be easily calculated using Coulomb's law, as follows: 

where is a unit vector along the line joining the charges. 
Another force acting on q, is produced by the induced charge at the interface. This force 

can alternatively be calculated from the image charges. The field due to charge q, in region 2 
is produced by q, and the image charge -(el - E,)/(E, + e2)qZ placed at the q ,  position. 
Therefore the force acting on q, is 

Adding Eqs. (4.102) and (4.103) gives the total force F,  = F,, + F,,, acting on q,: 

Similarly one can show that the force acting on q,  is: 

Figure 4.14 Force between two point charges 
placed on opposite sides of an interface of two 
dielectric materials. 
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It appears that the magnitude of the forces acting on 9, and 9, are not equal. This is simply 
explained by the fact that the forces are due not only to q, and q, interaction but also to the 
induced charge at the interface. 

Thus far the method of images has proved successful in solving problems involving point 
charges near plane dielectric interfaces. The next situation that will arise involves point 
charges near spherical dielectric interfaces. Such cases arise when a point charge is brought 
near a dielectric sphere or a spherical cavity in an infinite dielectric medium. Again one 
would like to find out if there is a finite set of image charges that can be used to satisfy the 
boundary conditions, and thus generate a unique solution for the interaction. Unfortunately 
and contrary to the case where the sphere is a conductor, there is no finite number of charges 
that can satisfy the boundary conditions in the dielectric case and hence the method is not 
useful in this respect. 

4.8 Forces on Charge Distributions 
The electric force on an element of charge dq, placed in an external electric field E(&) 
is, by definition, dF = dq E@). The charge element itself has an electric field, and 
since the charge can exert no net force on itself, we may in general write that 
dF = dq E where E represents the total field at the location of the charge element. 
The total force F acting on a distribution of charge that is characterized by a charge 
density p is given by 

where V denotes the volume where the charge density is nonzero. The force on a 
surface charge, having a surface charge density a, is similarly expressed as 

The trouble with Eq. (4.107) however, is that E on a surface is not well defined. 
When the surface has a charge density a, a discontinuity in the E field exists. In this 
case E is ambiguous, but it is not unreasonable to expect that the field that should 
be used is the average of the field on the two sides of the surface. To verify this 
conjecture, consider Fig. 4.15, which shows a surface which has a charge density a, 
and which separates space into the two regions labeled 1 and 2, with E fields given 
just on opposite sides of the boundary as El and E,. The total field anywhere may 

Figure 4.15 Forces on surface charge distri- 
butions in terms of the total field of the 
distribution. 
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be considered to be due to the E'"' of the charged surface element da plus fields due 
to all other charges E(O) (external to the element itself) 

Therefore, we write E, = Ey) + EIO), i = 1 or 2. Consider two points located just on 
opposite sides of the boundary at da. To calculate the fields at these points we 
assume that as the surface is approached, the surface element da appears like a 
uniformly charged plane with a charge density a. Using Eq. (2.21) of Example 2, 
which deals with a uniformly charged plane, we find that 

a a 
E',")=-(-A) and E';)=-(+A) (4.109) 

260 2 ~ 0  

However, the field E(O) must be continuous across da, and therefore the total field at 
these points is as follows: 

a a E 1 - ---d+E(O) - and E,=-A+E(O) 
280 2 ~ 0  

We now provide more information about the nature of Eq. (4.110). Subtracting the 
first relation from the second, we get 

The tangential and normal components of Eq. (4.1 11) give 

a 
EZ1 = Elt and E,, - El, = - 

Eo 

respectively. The second relation of Eq. (4.1 12) was previously encountered [see Eq. 
(2.35)]; it was derived using Gauss' law. The first relation of Eq. (4.1 12) expresses the 
continuity of the tangential component of the electric field [see (Eq. 3.611. 

We now calculate the force on the element da. We note that since the net 
electrostatic force acting on da is due to E(O) alone, then 

Adding the equations for El and E, given in Eq. (4.110) we obtain 

1 
E(O' = j (El + E,) 

Substituting this result in Eq. (4.1 13), we find for the force per unit area 

This verifies our initial guess that the field acting on the surface charge should be 
taken as the average field of the fields on the two sides. 

A common case of a surface charge density is that of a surface density on a 
charged conductor (see Section 2.6), Conductors and Insulators. In this case, El = 0 
and E, = E = AE, which is the field just outside the conductor. We therefore Nave 
as the force on an element of surface of the conductor 
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The pressure P = dF/da on the conductor surface is therefore 

It always points outward. 

Example 4.11 Force Between Two Halves of a Charged Sphere 

A conducting spherical shell of radius R is charged to a potential V. The shell is sliced into 
two separate hemispheres and kept in place (Fig. 4.16). We use here the ideas developed in 
this section to find the force exerted by the hemispheres on each other. The charge density a 
on the surface of the shell is equal to Q/4nR2, where Q, the total charge on the shell, is given 

Figure 4.16 Uniformly charged sphere sliced 
in two halves in place. 

by Q = ~ R E ~ R V .  Thus a = E ,  V / R .  The force on an area element da located at angles 6 and 4,  
is given by Eq. (4.116); that is, dF = (a2/2Eo)da b, where B = P is a unit vector normal to the 
differential area. We note that the component of dF normal to the z axis does not contribute 
to the total force because of the symmetry about the z axis. Thus the contributing component 
is 

a 2  
dF, = - cos 6 da 

2 ~ 0  

The total force is then determined by integrating over the area. Using da = R2 sin 0 do d 4  
gives 

- a2R2 cos 6 sin 0 d6 d 4  

The integration over 4 gives 271 and the integration over 0 gives 112; therefore 

Example 4.12 Force on a Conducting Sphere Placed in an Electric Field 

Consider a conducting shell of radius R and total charge q placed in an external electric field 
Eo2. The space surrounding the sphere is filled with a dielectric material of permittivity E. To 
find the force exerted on the sphere we have to find the charge distribution and the electric 
field at the surface of the shell. These in turn can be determined by first determining the 
electric potential outside the sphere. 
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The potential outside the sphere satisfies Laplace's equation and therefore can be ex- 
panded in zonal harmonics. Keeping only terms of up to PI(@) = cos I9 angular dependence, 
we write: 

B B 1 
@(r, 8) = A, + 2 2  + A,r cos 0 + - cos I9 (4.1 18) 

r r2 

where A,, B,, A,, and B, are constants. The term B,/r is just the Coulomb potential pro- 
duced by the charge on the sphere; therefore, B, = q/4nc. For the evaluation of the rest of the 
constants see Example 3.7, which deals with a conducting sphere placed in vacuum in the 
presence of an external electric field. Thus the potential is 

and the  .electric field, E = - V@, is 

2 ~ 3 ~ ~  
E(r, 9) = (L + E, cos O + - (4.120) 

4ncr2 r3 

where V, - A,. The surface charge density, a = cE(R, O), is 

a = p  q + 3cE0 cos I9 
4nR2 

The force dF on a unit area d a  on the surface of the sphere can be written using Eq. (4.1 16): 
dF = (1/2c)a2 d a  P. Because of the symmetry along the z axis, only the component of dF along 
the z axis contributes. Thus dF,  = (1/2&)a2 d a  cos 0. Integrating dF,  over the surface of the 
sphere gives F = Eoq2. This result indicates that the force is independent of the radius of the 
sphere, and it is just equal to the product of q and the field in the dielectric E,. This relation 
in fact reaffirms the definition of the electric field in terms of the force per unit charge exerted 
on a test charge. 

4.9 Summary 
A dielectric material is said to be polarized if the macroscopic sum of the dipole moments of 
its atomic constituents is not zero. The polarization P of the medium is just defined as the 
volume density of such dipoles 

The electrical properties of a macroscopic piece of polarization P can be calculated by 
replacing all of the atomic dipoles by an effective volume and surface charge densities 
(polarization charges, or bound charges) p, and a,: 

p, = -V .P  and a,= P.A (4.1 3) 

The electrostatic potential a,, and hence the electric field take the expressions 

and 

In the presence of external charges (free charges), Gauss' differential law becomes 

V.E=-= Pf + Pp (p, - V. P)/&, 
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It is convenient to define what is called the displacement vector D such that 

Thus we get the following for Gauss' law in the presence matter 

V.D = pf (4.36) 

The integral form of Gauss' law in matter immediately follows from the differential one 

D - 8 d a  = pf dv = Qf h J: (4.40) 

The response of a material to an external field E depends on the microscopic structure of 
the material. In here we classify materials according to their macroscopic response 

where x is called the electric susceptibility. If x is independent of E (magnitude and direction), 
independent of space, the material is said to be linear (simple). For linear materials P = E,xE, 
and hence 

where E is the permittivity of the material and K is the relative permittivity of dielectric 
constant. 

The basic equations of electrostatics in the presence of dielectric materials are 

V.D = p, and V x E = 0 

In a linear material of permittivity E, this divergence equation becomes V.E = p , / ~ .  The curl 
equation, on the other hand, implies that E = -V@; hence 

In regions where p, = 0, then 

V 2 @ = 0  for pf = O  

When a given space is made up of regions of different dielectric properties, then the fields can 
be determined using boundary value techniques. The equation for @ is solved in the different 
regions independently, followed by matching these solutions at the interfaces of the regions 
according to the following rules. 

and 

where t and n stand for tangent and normal to the interface, respectively. 
In certain geometries the method of images can be used to solve boundary value problems 

in the presence of dielectrics. The usefulness of this technique, however, is limited. 
The electrostatic force on a given charge element dq of a larger surface charge distribution 

is caused by the electric field E(O) at the site of the element due to the rest of the distribution 

dF = dq E(O) = a da E(O) (4.1 13) 

where a and da are the density and area of the charge element. In many cases however, it is 
easier to determine the total electric field at the element that includes the field due to the 
element itself. In this case the force becomes 
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where El and E2 are the total fields on both sides of the element. If the element is a surface of 
a conductor, where E2 = 0 and El = E, then 

From Gauss' law at the surface of a conductor we have E = (a/&)& then 

Problems 

4.1 A hemisphere of dielectric has its flat surface in the x-y plane. It is polarized in the z- 
direction: P = P2, with P a constant. (a) Find the bound volume charge density. Find 
the bound surface charge density on the flat and on the hemispherical surface. (b) Find 
by integration the net bound charge on the hemisphere. (c) Explain why your answer 
to (b) is expected for physical reasons. (d) Find by integration the dipole moment of the 
bound charge relative to an origin at the center of the flat surface. Calculate the dipole 
moment also by using the definition of the polarization P. Do the two answers agree? 

4.2 A hemicylinder of radius R and length L has a uniform polarization P in the direction 
normal to its rectangular surface. Find its dipole moment and the polarization charge 
densities. 

4 3  The interior of a circular cylinder x2 + y2 = R2 is occupied by a polarized material, 
with the polarization being P = (ax2 + b + cy  + a)x9 + pxj. Find the volume and 
surface polarization charge densities. 

4.4 A uniform cylindrical volume charge distribution of density a occupies the space be- 
tween p = p, and p,. The charge distribution is surrounded by a cylindrical shell of 
dielectric material of outer radius p,, and dielectric constant K. (a) Determine the 
electric field and the displacement vector in all regions of space. (b) Determine the 
electric polarization and the polarization charges in all regions of space. (c) Calculate 
the potential difference between p = 0 and p = p,. (d) What charge distribution at the 
axis of the cylinder replacing the original charge and the dielectric will result in the 
same electric field for p, < p < p,? 

4 5  Two concentric conducting spheres of inner and outer radii a and b carry q and - q  
charges, respectively. The space between the spheres is half filled in the form of a 
hemispherical shell with a dielectric of permittivity E. (a) Determine the E field between 
the spheres. (b) Determine the charge distribution on the inner sphere. (c) Determine 
the induced surface charge density on the inner hemispherical surface of the dielectric. 

4.6 A parallel-plane capacitor of area A and separation d has a slab of dielectric of permit- 
tivity E and thickness t < d inserted between the plates at a distance h from one of the 
plates. The slab is implanted with external charges by some means prior to its insertion 
with a volume charge density p. Given that the surface charge density at the inner 
surface of the plate at a distance h from the slab is a,. (a) Find D between the plates. (b) 
Find the induced volume and surface charge densities. (c) Find the surface charge 
density at the inner surface of the second plate. 

4.7 Consider a concentric spherical capacitor with inner and outer spheres of radii a and b, 
respectively. The region between the spheres is filled with an inhomogeneous dieleitric 
with E = cO/(c - ur) where c and u are constants. A charge q is placed on the inner 
sphere, and the outer sphere is grounded. (a) Determine the displacement vector D 
between the spheres. (b) Determine the volume polarization charge density between the 
spheres. 
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4.8 Two parallel capacitor plates enclose a dielectric material that has a spatially varying 
dielectric constant, K = eax, where a is a constant (see Fig. 4.17). Find the electric field 
E(x) inside the plates when they are charged to a potential difference V. 

k d 4  

Figure 4.1 7 

4.9 A concentric cylindrical capacitor consists of two conducting cylinders of radii a and b 
(where b > a) and length L, which is large compared to the radii. The charges on the 
inner and outer cylinders are + q  and -9. (a) Determine the E field between the 
cylinders if the space there is empty. (b) Show that, by introducing a material whose E is 
a function of position, the E field between the cylinder can be made constant in 
magnitude. 

4.10 The displacement vector in region x < 0 is D l  = 1.5P - 29 + 32 C/m2. If E, and 2 . 5 ~ ~  
are the permittivities of regions x < 0 and x > 0 and there is no free charge at x = 0, 
determine (a) the electric field E, in region x > 0 and (b) the angles 8,  and 0, which D l  
and D,, respectively, make with the x = 0 plane. 

4.11 Apply the boundary conditions on D and E to an interface between two ideal dielec- 
trics of dielectric constant K ,  and K,, respectively, to find a "law of refraction" for 
lines of E at the interface. That is, find a relationship between the directions of El and 
E, in terms of K ,  and K, .  

4.12 Two infinite dielectric slabs, 1 and 2, each of unit thickness and with dielectric con- 
stants K ,  and K,, have a face in common and separate two infinite, thin plates 
of conducting material. The plates are kept at zero and V potentials (see Fig. 4.18). 
(a) Determine the potential as a function of x in regions 1 and 2. (b) Find the sur- 
face density of free and bound charges at x = 0. (c) Find the surface density of 
bound charge at x = 1. 

Figure 4.18 
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A dielectric sphere of radius a and permittivity E, is surrounded by a dielectric of 
permittivity E, and inner and outer radii a and b. The potentials inside the sphere and 
the shell are @, = Are and @, = Aa28/r, respectively. Determine the polarization 
charge densities in both materials and the real (free) charge density at the surface of the 
sphere. 

A cylindrical shell of dielectric of permittivity E and inner and outer radii a and b 
surrounds a very long, conducting cylinder of radius a. The system is placed in an 
electric field E,, perpendicular to the axis of the cylinder. (a) Find the potential in the 
regions r < a, a < r < b, and r > b. (b) Find the charge per unit area at r = a as a 
function of the angle measured from the direction of E,. 

A dielectric cylinder of permittivity E, is placed in a homogeneous liquid dielectric of 
permittivity E,. The system is placed in a uniform external electric field. Determine the 
orientation of the cylinder. What would it be for a thin disk of permittivity E,? 

Consider an infinite dielectric that is homogeneous and has a uniform polarization P. 
A spherical cavity is now introduced in it. Determine the electric field E in the cavity 
when the introduction of the cavity (a) does not change the polarization in the sur- 
rounding dielectric (as happens in electrets-see Chapter 5) and (b) changes the polariz- 
ation as a result of the changes in the electric field P = (E - E,)E (as happens in normal 
dielectrics). 

A point charge q is brought to a position a distance d away from an infinite plane 
conductor held at zero potential. (a) Find the force between the plane and the charge 
by using Coulomb's law for the force between the charge and its image. (b) Find the 
total force acting on the plane by integrating a2/2~,  over the whole plane. Compare 
with the results from (a). 

Use the boundary value problem techniques of Section 4.6 to solve for the potential 
and the fields of a dielectric sphere of radius R and uniform permanent polarization P 
[see Example (4.2)]. 

Consider a cylinder of wax of length I and radius a I .  It is uniformly polarized along 
a direction normal to its axis: P = POI. Determine the potentials and the fields 
everywhere. 

An electric dipole is placed at a distance h from the plane interface of two semiinfinite 
dielectrics of permittivities E, and E,. The dipole is in the E, material and makes an 
angle 8 with the normal to the interface. Use the method of images for charges to 
derive the image dipoles needed to solve for the potentials and fields in the dielectrics. 

Consider E = Ix" in V/m and Av = Ax Ay Az. (a) Calculate 

(b) Determine (d/dx)(E). (c) Calculate (dE/dx) using the same procedure as in (a) and 
show that it is equal to (d/dx)(E). Since this result can be generalized to more general 
functions, then this proves that the operations of averaging and differentiation are 
indeed interchangeable. 

In a stationary material medium of permittivity E, a unit positive charge (1 coulomb) is 
put at various points to find the electric field E. Suppose that the force on the test charge is 
found to be given (in newtons) as 

What is the charge density in the medium? Use the following two methods. (a) Take a 
small cubic volume element Ax Ay Az at the point (x, y, z), compute the net flux out of 
the surface of the volume element, and find the total charge inside the cubic element 
and then the charge density at the point (x, y, z). (b) By using the equation div D = p,. 



PROBLEMS 165 

4.23 A dielectric slab of permittivity e and uniform charge density pf fills half of the volume 
of a parallel plate capacitor as shown in Fig. 4.19. (a) Determine the potential every- 
where between the plates and sketch it for the case e = %,. (b) Calculate the force per 
unit area on the conducting surfaces at x = 0 and x = 2d. (For the former you may 
assume that there is a very small gap between the plate and the dielectric.) 

i Charge density p 
permittivity e 

Figure 4.19 



THE MICROSCOPIC 
THEORY OF DIELECTRICS 

In the previous chapter we took the point of view of dealing with the dielectric 
properties of matter from a macroscopic limit; namely, we used fields averaged over 
macroscopic spatial dimensions of the order of cm which in general contained 
some 10'' molecules or more. In this chapter we examine spatial dimensions of the 
order of cm, which in general contain on about 10-100 molecules. The pur- 
pose of this examination is to study the fields near individual molecules, or from a 
microscopic point of view. Because of the averaging involved, we expect the macro- 
scopic field to be different from the field near individual molecules. One of the aims 
of this chapter is to find how the fields in these two limits are related. This chapter 
also examines the response of individual atoms and molecules to external fields 
using a simple model of the atom. 

5.1 The Molecular Field 
The molecular or local electric field at the site of individual molecules in a dielectric 
material is due to all fields generated by sources external to the dielectric and to all 
fields produced by all the molecules in the material excluding the seIf-jeld of the 
molecule itself. Because it is impossible to treat discretely all fields due to all molecules, 
we follow a reasonable approach where only the molecules in the vicinity of the 
molecule in question are treated from the microscopic point of view. 

The procedure to be used is described in Fig. 5.1, where a dielectric material is 
placed in a uniform external electric field E,. The molecular site in question is 
labeled m, the individual molecules in its vincinity are labeled by dots, and the 
molecules outside the cavity c are shown as a continuum. The fields produced by 
the bulk of the material can be calculated by using the polarization charges induced 
in the material. The volume polarization charge density p, = -V-P = 0 for uni- 
form external fields. There are, however, surface charge distributions on the surface 
of the cavity and on the faces of the dielectric material normal to the external field. 
There the electric field due to the surface charges on the outer surfaces is -P/eO 
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Figure 5.1 A schematic diagram of a model for 
the calculation of electrical effects at the site of an 
individual molecule of a dielectric material polar- 
ized by an external electric field. In the model the 
molecule is considered to be in a cavity, along with 
N other identical molecules, with the rest of the 
material treated as a continuum. 

Thus the molecular field is written as the sum of the following fields 

where E = E, - is the macroscopic field in the materials, E, is the electric 
field due to the charges on the cavity surface, and Ei is due to all the molecules 
inside the cavity. 

In the presence of an electric field, a neutral molecule gets polarized and thus acts 
as a dipole. We will just use this fact for now; however, later in this section a simple 
model will be used to derive this result. Thus according to Eq. (2.46): 

1 " P  E. = - 1 (2Pk cos 6' + 6 sin 6') ' 
4ne0 k = 1 rk 

where p is the induced molecular dipole moment, rk is the distance of the kth 
molecule from the site m, 8' is the angle between p (which is along the external field) 
and r,, and n is the number of molecules inside the cavity. In a number of cases the 
above sum vanishes; these include cubic-crystal lattices and liquids or gases where 
the positions of the molecules in the cavity are random. In general the sum does not 
vanish in anisotropic materials; however, it does vanish in many isotropic materials. 
In this discussion we will only consider materials where it vanishes. 

From Example 4.2, one can easily show that the field inside a spherical hole in a 
dielectric with polarization P is (P/3eo). Therefore Em becomes 

If a molecule of the dielectric is considered to lie in such a spherical hole, its 
polarization can be determined by Em. Moreover, its resultant dipole moment p 
would be expected to be proportional to Em if the material were linear. We write 
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where a is called the molecular polarizability. If we consider that these molecular 
dipoles do, in fact, constitute the dielectric and there are N such molecules per unit 
volume, we will have for the polarization 

If the dielectric were simple, it would also be true that 

P = X E ~ E  

Substituting this in Eq. (5.4)'gives 

The same relation can be solved for K or x in terms of a: 

This equation, which is known as the Clausius-Mossotti equation, relates the 
macroscopic susceptibility x or the dielectric constant to the microscopic polariz- 
ability a and the molecular density N. Its (approximate) validity is appropriate 
to gases and liquids. For solids, the model on which it was constructed is overly 
naive. 

Example 51 The Molecular Polarizability of 0, and N, 

Equation (5.5) can be used to calculate the molecular polarizability from the macroscopic 
susceptibility. Consider air, which is composed mainly of N, and 0,. From Table 4.1 the 
dielectric constant K of air is 1.00059. At standard temperature and pressure (STP), the 
number of molecules per cubic meter in air is equal to 2.7 x 1025/m3. Therefore 

Note that in this calculation we have not distinguished between 0, and N,, and therefore the 
above value for a is to be understood as a weighted average of their polarizabilities. 

5.2 Interaction of Atoms and Molecules with Electric Fields 
Now we turn to the interaction of individual atoms or molecules with electric fields. 
As we discussed on page 140 we classify molecules into two categories: polar and 
nonpolar molecules. In a polar molecule the center of the electronic charge is perma- 
nently displaced from the center of the nuclear charge, and thus the molecule, 
though neutral as a whole, exhibits a permanent electric dipole moment. An 
example of polar molecules is the water molecule (see Fig. 5.2). On the other hand, 
when the centers of positive and negative charges are not displaced relative to each 
other, then the molecule does not exhibit a permanent electric dipole (nonpolar 
molecules). Examples of nonpolar molecules include 0 , ,  N,, and H,. Table 5.1 
gives the dipole moment of some polar molecules. 
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Oxygen 
nucleus 

Figure 5.2 Schematic diagram of the atomic 
and nuclear charge of a water molecule show- 
ing the asymmetry in the distribution that 
gives the molecule its permanent electric 
dipole moment. 

When molecules are placed in an electric field, the field induces a separation of 
the centers of electronic and nuclear charges along the field in the case of nonpolar 
molecules and causes additional separation of the centers in the case of polar mole- 
cules. This results in what is called induced polarization or induced dipole moment. 
The electric field' also exerts torques on the permanent dipoles in the case of polar 
molecules causing a degree of alignment. 

5.2.1 Induced Dipoles 

We begin by considering nonpolar molecules in an electric field. The derivation of 
expressions for the induced dipole moment will be approached, however, using a 
simple atomic model. The applicability of such model to molecules is not universal; 
however, it may be used in the case of symmetrical diatomic molecules. The total 
polarizability of the molecule is then determined by simply adding the polariza- 
bilities of its atomic constituents. 

In the model, the electronic charge, -Ze ,  is taken to be uniformly distributed 
over a sphere of radius R and center at the positive nuclear charge Ze, where Z 
is the atomic number and e is the magnitude of the charge of an electron 

Table 5.1 Permanent Dipole Momentsa 

Molecule p Molecule p 

HCI 3.43 CO 4.0 
HBr 2.63 CH,CI 6.3 
H2O 6.03 NO 0.33 
H2S 3.06 NO, 1.33 

'In units of coulomb-meters. 
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Figure 5.3 A simplified model representing the electronic 
charge of an atom as a uniformly charged sphere with the 
nuclear charge at its center. The presence of an external 
electric field displaces the centers of the distributions resulting 
in an induced dipole. 

(1.6 x 10-l9 C). Under the influence of an external field Em, the positive charge 
moves relative to the center of electron cloud until the attractive Coulomb force 
between the cloud and the nucleus balances the force ZeE,. For an amount of 
separation between the cloud center and the nucleus, 6s (Fig. 5.3), the balance 
condition is 

ZeE, = qZe 
4n~,(6s)~ 

where q is the charge inside the sphere of radius 6s. Taking q = (4~/3)(6s)~p = 

Z ~ ( ~ S ) ~ / R ~  in Eq. (5.7), we find that the induced dipole moment p, = Ze6s is 

where a, which can be called the deformation polarizability, is as follows: 

For a diatomic molecule this model predicts an induced dipole equal to 2ciE,. 
In Section 5.1, The Molecular Field, the molecular polarization was assumed to 

be proportional to Em, and thus this result supports that assumption. Moreover, Eq. 
(5.6) implies that K, the dielectric constant, is a constant quantity when a is inde- 
pendent of the field. It is interesting to note that even at an extremely strong field of 
Em = 10'' V/m, one finds from Eq. (5.8) that 6s z 10-l2 m, which is much smaller 
than the macroscopic dimension or the atomic size (10-lo m). 

Example 5.2 Polarizability of Hydrogen 

A more realistic model of the electronic c h a r g ~ . g . ,  in the hydrogen atom-is a spherically 
symmetric, exponential charge distribution of the form p = -(e/na:)e-2'la0, where a, is a 
constant (Bohr radius zz 10-lo m) and e is the magnitude of the charge of an electron. This 
distribution extends over all space compared to the above model, where the charge is uni- 
formly distributed over a sphere. 

To calculate the polarization of the hydrogen atom in the Em field, we follow the same 
procedure we used above with regard to the simple model. We calculate the field produced by 
the charge distribution at a distance 6s from the center of the distribution, by applying ~ a u s s '  
law, to a Gaussian spherical surface with center at the origin and radius 6s. The field is 
expected to be radial. Therefore, 
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Thus 

where 

For 6s G a,,  G can be expanded in a Taylor series; keeping the lowest order terms in 6s gives 
G = 6s3/3 and hence 

The balance condition requires E = -Em; therefore 

If the total charge was distributed over a sphere of radius a,, then Eq. (5.8) gives 
pm = 4neoa;Em. Therefore the polarizability constant a' = $a. This example shows that the 
model is very approximate and yields an order of magnitude only. In fact, accurate quantum 
mechanical derivations yield 18e,a; for the polarizability of hydrogen. 

Example 5.3 Effect of Atomic Interaction on Molecular Polarizability 

In applying the atomic model to a diatomic molecule, we noted above that the induced 
molecular polarization is twice the induced atomic polarization. This example shows that 
when the actual interaction between the induced atomic dipoles is taken into consideration, 
the molecular polarizability will not be just twice the atomic polarizability. 

Consider a molecule that is made up of two identical spherically symmetric atoms each of 
polarizability a and at a distance R from each other, as shown in Fig. 5.4. The molecule is 
placed in an electric field, Em, parallel to its axis. The polarization of each atom is 

p = a(Em + E') (5.14) 

where E' is an additional electric field to Em produced at each atom by the induced dipole of 
the other atom. In turn the electric field E' produced by each atom at the site of the other 
should be produced by the polarization of the atom given in Eq. (5.14). Using Eq. (2.46) for 
the field produced by a dipole and taking 6' = 0 gives 

- ............ .......... ................... ............ - Q .. ................................. ................. ... .. ~ o ~ e c u ~ a r  axis 
..................... 

................... - :<*;;; : < : . p : ; l ~ ?  i:ii- :.: ........ ...., :. ::.. .: . 
..................... .................. . . . .  .................. - . . . .  ....... ......... .::.::::.. ................... ...... ............. ......... ...... - - I I 

W R -  

Atom A Atom B 

Figure 5.4 Calculation of the polarizability of a diatomic 
molecule placed in an external field along its axis, taking 
into account the dipole-dipole interaction between the indi- 
vidual atoms. 
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which yields 

Substituting this result in Eq. (5.14) gives 

The total molecular polarization is twice the above result, and therefore 

This result reduces in the limit, u/4nsoR3 4 1, to a' = 2u, which is simply the sum of the 
individual polarizabilities of the atoms neglecting the interaction between them. 

When the external electric field is perpendicular to the molecular axis, then the induced 
atomic dipoles will be normal to the molecular axis, and therefore the additional electric field 
at each atom produced by the other is different from the above case, and hence the molecular 
polarizability will also be different. We will leave the determination of such polarizability as 
an exercise (see problem 5.6). 

5.2.2 Permanent Dipoles 

When a polar molecule with a permanent electric dipole is placed in an electric field, 
then the electric field produces two effects: It induces a change in the molecular 
polarization, and it exerts a torque on the permanent dipole of the molecule that 
results in a certain degree of alignment along the direction of the field (Fig. 5.5). 
Since we treated the first effect earlier, let us now turn to the second effect. 

The thermal energy of the molecules in a macroscopic piece of a polar dielectric 
tends to randomize the molecular dipole orientations. In fact, in the absence of an 
external field the vector sum of the dipole moments of all the molecules vanishes. 

Figure 5.5 Schematic diagram of a paramagnetic material. (a) A random distribution of the 
permanent dipoles in the absence of external fields. (b) Some degree of alignment is produced 
in the presence of an external field. 
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Figure 5.6 Calculation of the paramagnetic 
properties of materials in external electric 
fields. 

The degree of alignment of the molecular dipoles can be derived quantitatively 
using statistical methods. Consider an assembly of N o  polar molecules per unit 
volume at a temperature T. Classically, each dipole moment can make an arbitrary 
angle 8 with respect to a given direction such as the z axis (see Fig. 5.6). In the 
absence of an external electric field, the probability that the dipole will be between 
angles 8 and 8 + dB is proportional to 27t sin 8 do, which is the solid angle dR 
subtended by this range of angle. This probability leads to a zero average of the 
dipoles. When an electric field Em is present and is taken along the z axis, this 
probability becomes also proportional to the Boltzmann distribution e-'IkT, where 
U = - p . E ,  = -pEm cos 8 is the electric energy of the dipole when it is making an 
angle 8 with the electric field [see Eq. (2.6411, k is Boltzmann's constant, and T is the 
absolute temperature. The Boltzmann factor introduces the dependence of the 
probability on the electric field and on the temperature in a quantitative, well- 
defined way. 

Before calculating the degree of alignment we would like to consider some limit- 
ing cases of the Boltzmann factor. When UIkT @ 1, which arises in cases of high 
temperature orland weak electric fields, then e-'IkT x 1, and therefore the proba- 
bility becomes proportional to the solid angle only. A first-order correction to this 
high-temperature limit can be arrived at by writing e-'IkT x 1 - UIkT. On the 
other hand, when I UIkTI 2 1, then this factor becomes more important, and direc- 
tions where UIkT is negative and large in magnitude are weighted more heavily, 
hence resulting in a large degree of alignment. 

Taking into account both probabilities, the solid angle and the Boltzmann factor 
give for the average dipole moment 

where the denominator of Eq. (5.19) is introduced to normalize the average. Taking 
dR = 27t sin 8 d8 and writing p = p cos 8 2 + p sin 8 St, where 2 and St are unit vec- 
tors along the z axis and the x axis, respectively, we obtain 

j; : ( p  cos 8 2 + p sin 0 Q)e(PEmc"e)lkT d cos 8 
(P> = j; : e(~Emcos@lkT d COS 6 (5.20) 
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The component along the x axis averages to zero, whereas that in the z direction 
gives 

( p )  = p(coth q - $2 

where 

Equation (5.21) is known as the Langevin formula. At large fields, namely 
q = (pEJkT) % 1, the Langevin formula predicts that ( p )  = p2, which means that 
complete alignment (saturation) takes place. However, in most cases of dielectric 
materials the magnitude of p is such that q 4 1 at ordinary temperatures even if Em 
is taken as high as the dielectric strength of the material. In this limit the Langevin 
formula gives 

which indicates a linear relationship between the average dipole moment and the 
field. When q is not small, then ( p )  becomes a nonlinear function of the field. In 
Fig. 5.7 the relationship between ( p )  and q given by Eq. (5.21) is plotted; it shows 
the three regions discussed above. 

In an ensemble of N  molecules per unit volume, the total polarization is 
P = N ( p ) ,  and therefore the effective dipole moment per molecule is ( p ) .  Using the 
relation ( p )  = aEm gives what is called the orientational polarizability; that is, 

The dielectric constant of the medium can be determined using (Eq. 5.6) as follows: 

Figure 5.7 The behavior of the average dipole moment of 
a paramagnetic material per molecule placed in an external 
electric field E,  as a function of q = pE JkT. It is given by 
the Langevin function, which tends to 1 for large q 
(saturates). 
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When the induced polarizability discussed above a' is considered in addition to the 
alignment effect, the total polarizability becomes 

which is known as Langevin-Debye equation; it indicates that at higher tempera- 
tures a varies as 1/T. 

Example 5.4 Discrete Dipole Orientations* 

This example deals with a situation of actual physical interest where the direction of a 
permanent electric dipole in the presence of an external electric field is restricted to a small 
number of directions. Consider a solid of lattice separation a kept at absolute temperature T. 
Some of the atoms in the solid are replaced by some negatively charged impurity ions as 
shown in Fig. 5.8. Since each negatively charged ion has in its vicinity a positively charged 
ion, then the solid as a whole is neutral. 

Figure 5.8 An illustration of the situation in 
which the dipole orientations in an external E 
field are discrete; a simple two-dimensional model 
of a solid of lattice spacing a, containing nega- 
tively charged impurity ions and placed in an 
electric field. 

The positive ion is smaller than the atom and the negative ion and therefore it moves 
between lattice sites. There are four possible positions for the positive ion; these are at 
equidistances from the negative ion as shown in the figure. At each position the ions form a 
dipole whose moment is ea/@ where e is the magnitude of the charge of the electron. 

Since these four positions are equally probable, the average moment vanishes. In the 
presence of an electric field Em in the z direction, however, the average dipole moment will 
not vanish because of the effect of alignment discussed above. To calculate the electric 
pqlarization we use the Boltzmann factor e-utlkT, where Ui = (-ea/$)E, cos Bi, Bi is the 
angle between the dipole and the z axis, and i runs from 1 to 4, the possible positions of the 
positive ion. Therefore, 

*See F. Reif, Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill, 1965). 
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Substituting for U, in terms of Em and 0, and noting that only the z component of p, 
contributes, we get: 

ea C - 2 cos Oi@cOsei 

(P> = 
4 

C eOccner 

where 

and 2 is a unit vector in the z direction; or 

where g' = Gg. Thus the average dipole moment is 

ea 
(p) = - 2 2 tanh(3)  

5.2.3 Ferroelectricity 

We now consider some substances that have permanent electric moments even in 
the absence of external electric fields. These substances are called ferroeloctric in 
analogy with the well known ferromagnetic effect exhibited by a number of sub- 
stances such as iron. Barium titanate, BaTiO,, is an example of a ferroelectric 
material; it exhibits permanent (spontaneous polarization) in the absence of external 
electric fields below a somewhat elevated temperature T,  = 118°C. Above this tem- 
perature it is an ordinary dielectric material, however, with a very large dielectric 
constant. 

For this effect to take place, the molecular constituents must have a certain 
polarizability. To determine such condition on the polarizability we consider Eq. 
(5.2). Taking E = 0 gives 

This equation indicates that the permanent polarization P produces a molecular 
field Em. For this to be self-consistent, the polarization P should be produced by the 
same molecular field. Therefore 

P = NuEm% (5.32) 

Equations (5.31) and (5.32) can now be solved for a. Eliminating Em gives 

which has two solutions: P = 0 (a trivial solution) and 

which is the condition for permanent (spontaneous) polarization. In most materials 
Na/3&, is less than one; these materials are ordinary dielectrics. This condition, 
however, is met in the case of some crystals such as BaTiO,, mentioned above. 

We now explain the temperature dependence of ferroelectric materials-namely, 
the temperature threshold. Equation (5.34) gives the condition at the critical tem- 
perature or the Curie temperature T,. At temperatures higher than T, and as T 



approaches T,, a small correction to this condition is introduced: 

where 6 4 1 (of the order of per degree Celsius). Substituting Eq. (5.35) into 
Eq. (5.6) gives 

3 - 36(T - T,) 
K - l =  z 

3 

6(T - T,) 6(T - T,) 
This is the Curie-Weiss law. It indicates that K is huge for temperatures just above 
the critical temperature. This result agrees with the experimental observation of 
ferroelectric substances. Having large dielectric constants such as those of ferro- 
electric materials near T, especially when T, is near room temperature would be 
very attractive in the construction of capacitors and in other applications. For this 
reason, there is continuing research to change the behavior of these materials in a 
controlled fashion (change T,). For example adding a small amount of BaLiF, to 
BaTiO, lowers T,  to near room temperature.* 

Comparing Eqs. (5.25) and (5.36) shows that the temperature dependence of an 
ensemble of a dipole gas differs from that of a ferroelectric material. Whereas in the 
case of a dipole gas K - 1 varies as 1/T, it varies as 1/(T - T,) in the case of 
ferroelectric materials. 

When one discusses the stability of ferroelectric materials, one has to worry about 
the effect of the depolarization field. A depolarization field is produced by the 
effective surface polarization charge resulting from discontinuities in the polariz- 
ation at the surfaces of a polarized dielectric material (see Examples 4.8 and 4.2). 
The effect of such a field is to depolarize the material, since it opposes the polariz- 
ation creating it. 

The depolarization fields in ferroelectric materials can be experimentally 
eliminated and hence render these materials very useful for some practical appli- 
cations. To show this, consider Fig. 5.9, which shows a slab of ferroelectric material 
snugly fitted in the space between two conducting plates. A large potential difference 

I I 
I I 

Figure 5.9 A piece of ferroelectric material 
placed snugly between the plates of a parallel- 
plate capacitor. 

* See for example, I. N. Belyaev et a]., Ivz. Akad. Nauk., Ser. Fiz., 33, (1969) 1144 and A. Benziada-Taibi 
et a]., Journal of the Fluorine Chemistry, 26, (1984) p. 395-404. 
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is applied to the plate. If a, is the free surface charge density on the right plate, then 
the polarization charge density on the same plate a, is of opposite sign. Moreover, if 
the material is ferroelectric, then Na/3co = 1, or K - 1 becomes very large shch that 
K - 1 x K. In this case a, approaches -a, [see Eq. (4.57)]. Hence the total charge 
at the surface of the material or the surface of the plate is a, + a, x 0, indicating 
complete neutralization, and hence complete elimination of the depolarization field. 

If the plates are now brought to the same potential by short-circuiting them with 
a wire of very small resistance, the following is likely to happen: (1) The state of 
ferroelectricity remains (energetically favorable), and (2) the free charge density a, 
stays in place, and neutralization continues. The external electric field inside the 
ferroelectric material in this state vanishes since there is no potential difference 
between the plates, and there is no depolarization field since there are no surface 
polarization charges. 

If now the same potential difference is established between the plates, there will be 
no charge flow through the external source and no change in the status of the 
material. If, on the other hand, a potential difference of the same magnitude but of 
opposite sign is established between the plates, then the polarization of the ferro- 
electric material will reverse direction, and all free and polarization charges will 
change sign. The reversal of the charge densities is induced by a flow of free charge 
through the external sources. The existence of these two distinct storage states 
allows a ferroelectric material placed between two-parallel plates to serve as the 
basic element of a memory device. 

If one goes through cycles of reversing of the potential difference between the 
plates (reversing the external electric field Eo + - E, + E,), the polarization state of 
the ferroelectric material attains the same value at the end of each reversal that is 
Po + -Po + Po. However, at intermediate values of E the value of the polarization 
depends on which half of the cycle the process is in. Figure 5.10 shows this effect, 
which is called the hysteresis effect. Hysteresis effects (meaning that the polarization 
effect lags the external electric field) also occurs in ferromagnetic materials where the 
magnetization lags the external magnetic field. See Chapter 9 and 10 for the details 
of ferromagnetism. 

Finally, permanent polarization can be produced to some extent in some kinds of 
wax. If the wax is melted in the presence of a strong electric field, the permanent 
dipoles of the wax become oriented along the field. These dipoles stay aligned when 
the wax is next frozen while keeping the field on. These permanently polarized 
substances are the analog of permanent magnets, and are simply called electrets. 

Figure 5.10 Hysteresis loop for a ferroelectric 
material under the influence of an external E 
field. 
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Because of the permanent nature of the orientation, the introduction of a small 
cavity in such a substance is expected not to change the state of polarization of the 
medium (see Problem 4.16). 

5.3 Summary 
Molecules are classified into two categories. Polar molecules have permanent dipole moments 
resulting from the permanent separation of the centers of the electronic charge from that of 
the nuclear charge. Nonpolar molecules have no permanent dipole moments since these 
centers are not displaced. When an atom is placed in an electric field Em, the electronic 
charge becomes deformed; that is, its center gets displaced relative to the center of the nuclear 
charge, thus making the atom exhibit an induced dipole moment p, given by 

where a = 4n&,R3 is the induced atomic polarizability and 4nR3/3 is the volume of the 
electronic charge. The total molecular polarizability can be simply calculated by adding the 
polarizabilities of the individual atoms in the molecule. 

If an isotropic dielectric material of molecular polarizability a is placed in an external 
electric field E, then each molecule exhibits an induced dipole. The density of these dipoles is 
just the macroscopic polarization of the medium. If this polarization is P, then the electric 
field at the site of each molecule is the sum of E and P/3&,; that is, 

The field Em is actually the field that induces the dipole moment in the molecule. That is, 

p, = aE, and P = aNE, 

where N is the number density of molecules in the material. A consistent solution of these 
relations give a constant susceptibility 

where 

Another consistent solution arises in the case where Na/3&, 2 1, even if the external part of 
the field E is zero. That is, Em = P/3e0 and P = aNEm imply that Na/3cO = 1. In this case the 
molecules are said to be very polarizable, and the material can exhibit spontaneous polariz- 
ation in a zero external field, as in ferroelectric materials. Barium titanate is one material that 
exhibits ferroelectricity. 

When polar molecules of permanent dipole moment p are placed in an external field Em, 
they exhibit additional polarizability resulting from the tendency of the electric field to align 
permanent dipoles along its direction. This tendency is opposed by collisions with other 
molecules, which tend to randomize this direction. 

This orientational polarizability, at a given absolute temperature T, is given by the 
Langevin function 

where q = pE,,,/kT, and ( p , )  is the average component of p along the field. At high tempera- 
tures or low p we get the Curie law: 

p2Em 
(PZ) " 3kT p2 and a =- 

3kT 
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Problems 

A material (acetamide) of density 1.0 g/cm3 and molecular weight 59, has a dielectric 
constant K = 4. Determine the polarizability of its individual molecules. 

A sample of polar dielectric of volume V = 10 cm3 kept at temperature T = 300 K, has 
N = 3.3 x 1022/cm3 molecules, each of which has a dipole moment p = 1.5 
x C . m, The material is placed in a uniform external electric field E, = 10 V/cm. 
(a) Determine the average of the angle between E, and p. (b) Determine the induced 
dipole moment and polarization of the block. (c) Determine the temperature at which 
the dipole moment becomes twice that in (a). (d) What is the dipole moment of the 
block if saturation is achieved? 

Consider a nonpolar molecule of polarizability a at a distance R from a molecule 
having a permanent dipole moment p. (a) Determine the induced dipole moment of the 
nonpolar molecule for a given relative orientation. (b) What is the interaction energy 
for this orientation? (c) Show that the interaction energy averaged over all possible 
orientations is U(R) = - ap2/8n2~tR6. 

An ensemble of gas at temperature T contains two types of molecules of moments p, 
and p,. Consider a pair one of each type at a distance R from each other. As a result of 
collisions with other molecules, their orientation will change such that statistical 
equilibrium applies. (a) Give an expression for the interaction energy U between the 
two dipoles for a given relative orientation. (b) Give an expression for the probability 
that they will assume a given mutual orientation. (c) Taking U/kT < 1, show that the 
average of U is 

A molecule is made up of two spherically symmetric atoms. An external electric field 
E, was placed on it along the line joining the atoms. If the dipole moment of the 
molecule is measured to be p,  when the distance between the atoms is R,A,* find (a) 
the polarizability of each isolated atom and (b) the molecular polarizability as a func- 
tion of R. 

Determine the molecular polarizability of a diatomic molecule of identical spherically 
symmetric atoms each of polarizability a and at a distance R from each other if the 
external field is normal to the molecular axis (see Example 5.3). 

An atom of radius R,, and a permanent dipole moment p, is placed in an external 
electric field E,. Plot the polarizability as a function of 1/T. What is the average dipole 
moment at very high temperatures? 

The inverse dielectric constant of a ferroelectric material near the Curie temperature 
was measured to be 0.0035 at T = - 140°C and 0.0105 at T = - 120°C. Determine 
the Curie temperature of the material. Plot the dielectric constant as a function of 
I/( 7- - 72. 
The dielectric constant of carbon disulfide gas (CS,) at 0°C is 1.0029. Can this gas be a 
ferroelectric material? The density of liquid CS, at 20°C is 380 times higher than the 
density of gas at O°C. Assuming that the basic atomic polarizability of CS, does not 
change when it condenses, calculate the dielectric constant of the liquid. Can it be a 
ferroelectric material? 

Show that a, x -a, if the dielectric slab in Example 4.4 is ferroelectric. 

* 1 angstrom (A) = m. 



ELECTROSTATIC ENERGY 

In this chapter we take on the problem of calculating the electrostatic energy of 
various charge distributions. These include an assembly of point charges, con- 
tinuous charge distributions, and charged conductors. We introduce two very useful 
concepts: the coefficients of potential and the coefficients of capacitance or induc- 
tion. Also, it will be shown that forces between the charge elements of the distri- 
bution can be conveniently determined from the knowledge of the electrostatic 
energy. 

6.1 Electrostatic Energy of an Assembly of Point Charges 
We now wish to calculate the energy associated with an electrostatic charge distri- 
bution. By this we mean the work necessary to assemble this charge distribution 
from a condition where all charges are not interacting; i.e., they are all infinitely 
remote from one another. We assume that in the assembly process no kinetic energy 
is imparted to the charges; the charges are assembled at rest from positions at rest. 
Thus the work done is interpreted as creating an increase in the electrostatic poten- 
tial energy of the system. In assembling the system we give the system an electrosta- 
tic energy U. 

Consider first the case where we have a number of point charges. We first place 
charge q ,  in position given by r , .  It requires no work to do this because q ,  is the 
only charge present in the space we are considering. Next, we place charge q ,  at 
location r2 a distance Ir, - r ,  1 = r , ,  from q , .  This requires an amount of work 
[@,(2)q2] = qlq2/4neorl , ,  where @,(2) = q,/4neor12 is the potential at the location 
of charge q2 due to charge q , .  Next, we place charge q ,  at location r , .  We now do 
work against the fields of both q ,  and q , ,  and so we must perform the work 
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Continuing this process, we find that when we bring in charge j, there are already 
j - 1 charges in place, so the work done at this stage will be 

In summation notation we may therefore represent the indicated series for U as 

where N is the total number of point charges. There will be N(N - 1)/2 terms in the 
expansion. The sum above is over all possible pairs of N charges. Noting that 
rij = rji, we may also write this expansion in terms of N(N - 1) terms as 

where we have simply split each term of the original double sum into two terms and 
rearranged the terms. Note that the terms with i = j are excluded since they repre- 
sent self-terms. 

The electrostatic energy U can alternately be written in terms of the electrostatic 
potential. The potential at the location of charge j, w), due to all the other charges, 
is given by 

so that 

It is important to understand three things here. 

1. w) is the potential at the location of qj due to the other charges. 
2. The factor comes into play because we are using a w) that is a potential 

due to all the other charges in the system, not just the charges that happen to 
be present when an additional charge is brought up from infinity. 

3. When dealing with point charges, we always assume that rij # 0. (We cannot 
do an infinite amount of work.) 

6.2 Electrostatic Energy of a Continuous Charge Distribution 
The preceding expression for U can be generalized to a continuous charge distri- 
bution. We merely employ the identifications: 

qj - dq(r) (located at r), Wj) ~ l -  @(r), and 1 - l 
Then, the general symbolic expression for U given in Eq. (6.3) becomes 



6.2 ELECTROSTATIC ENERGY OF A CONTINUOUS CHARGE DISTRIBUTION 183 

The integral sign merely represents the sum to be performed over all charge ele- 
ments. For example, if dq = p(r)dv, we write 

where V is the volume over which p # 0, or in fact any volume containing all the 
charge that has been assembled. If one has a continuously distributed charge, de- 
scribed by volume, surface, and line charge densities (p, a, and A), and point charges, 
the total work necessary to assemble this charge distribution is given by 

We do not answer thequestion regarding the energy required to assemble an indiv- 
idual point charge. We assume either that such charges are inviolate, and so never 
need to be assembled, or that they are really not points. 

Example 6.1 Uniformly Charged Sphere 

Consider a uniformly charged sphere of charge Q. Referring to Example 2.126 we see that the 
potential inside a uniformly charged sphere of radius R is given by 

where po is the uniform charge density.  heref fire integrating Eq. (6.5) over the volume of the 
sphere gives 

where Q = (4/3)xR3po is the total charge in the sphere. 
We may also calculate this energy directly [analogous to the process yielding Eq. (6.1)] by 

assuming that the sphere is built up by placing uniformly charged infinitesimal layers on its 
outer spherical surface. When the sphere has a radius r, its charge is q = (4/3)xr3po, and the 
potential at its surface will be q/4xeor [see Eq. (2.51) in Example 2.12bl. To add a spherical 
shell of charge dq = 4nr2 dr po to its surface will take an amount of work equal to the 
potential at shell x charge in shell, or 

4npg r4 
dU =- x (4nr2po dr) = - dr 

4n.5, r 3% 

To build up the sphere to radius R, will therefore require the work 

just as calculated above in Eq. (6.7). 

Example 6.2 Classical Radius of an Electron 

As an application of the result of Example 6.1, we can find the "classical" radius of an 
electron. We ask the question: How much energy does it take to make an electron? If the 
electron is not a point charge, but a uniformly charged glob of electricity, it takes a certain 
amount of energy to assemble this glob of charge into the small volume of the electron. Let 
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us assume that this energy is given by the proper mass of the electron, which, in units of 
energy (E = mc2), is approximately 0.5 x lo6 eV (electron volts) or 0.8 x 10- l 3  joules. Then if 
the electron is a uniformly charged sphere of radius R, U = mc2 = (3/5)e2/4m,R, and we can 
solve for R;  that is, R = (315) e2/41c~,mc2 = 0.6 x m = 0.6 fm, where fm stands for a 
femtometer (or fermi)-that is, 10- l 5  m. This size, 0.6 fm, is of the order of nuclear dimen- 
sions, which seems reasonable. The quantity R is called the classical radius of the electron. 
Unfortunately, we now know that the actual electron radius is much smaller, so that our 
assumptions are invalid. 

6.3 Electrostatic Energy of Conductors; 
Coefficients of Potential and Capacitance 

Now that we have a general expression for U ,  the work necessary to assemble a 
charge distribution, we shall consider the special case where all the charge resides 
on conductors. If {Qj, Qj) represent the {total charge, potential) of the jth conduc- 
tor of a system of N conductors, we have for the energy of the system, from Eq. (6.4) 
or Eq. (6.6), 

where a is the surface charge density, and we have split the integration of areas into 
the individual areas of the different conductor surfaces. 

We would like now to introduce two very useful concepts: the coefficients of 
potential and the coefficients of capacitance or induction. These coefficients relate 
the potentials of a system of conductors to their various charges. For a system of N 
conductors, one writes 

and 

where Pjk are the coeficients of potential, Cii are the coeficients of capacitance, 
Cjk # k) are the coeficients of induction, and mi and Qi are the potential and the 
charge of the ith conductor. We note that these introduced coefficients are inde- 
pendent of the potentials and the charges of the conductors. In other words, the 
potentials are linearly related to the charges, and the geometrical coefficients Pij  and 
Cij express this relationship. The truth of these statements can be established by 
using the principle of superposition (the linearity of the equations of electrostatics) 
and invoking the principle of uniqueness. 

Consider a single, isolated conductor having a total charge Q on its surface. The 
potential of the conductor is given by 0 relative to some point or equipotential 
region in space, usually taken at infinity. If we increase the charge density every- 
where on the surface of the conductor by a factor u, then the linearity of the 
electrostatic equations tells us that the potential and electrostatic field also increase 
by the same factor. But in increasing the charge density by a factor u, we have 
increased the total charge Q by a factor a. Because a given electrostatic field 
uniquely prescribes the charge on the conductor(s), and conversely, a potential 
(a@) necessitates a total charge on the conductor (uQ). This proves that we can 
write the potential anywhere in terms of the charge Q on the conductor as 
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where P(r) can depend only on the configuration of the conductor relative to the 
point r = (x, y, 2); that is, it is a geometrical constant independent of the values of Q 
or cP. In particular, the potential 0 at the conductor is given by cP = PQ where P is 
evaluated at the conductor. 

We will now prove the linearity of Eq. (6.9) in the case of two conductors. On the 
surface of the conductors, where the potentials are labeled cP, and cP,, we have, 
from Eq. (6.9), 

@ I  = PIIQI + P12Q2 (6.12) 

a2 = P ~ I Q I  + P22Q2 (6.13) 

A proof proceeds in three steps: 

1. Consider the case where conductor 1 alone has a charge: call it Q,. Then, by 
uniqueness [see Eq. (6.1 I)], 

Wl = P l l Q l  and a; = P2,Q,  

The potentials at any point in space are completely specified by the net charges on 
the conductors and linearity is ensured, just as in the case of a single conductor. In 
particular, this is true of the potentials, Wl and W,, of the conductors themselves. 
The P's depend only on the forms and relative configuration of the conductors. If 
the charge density, and therefor\: Q, is increased by a factor a, the potentials increase 
similarly. 

2. Analogously, consider the case where Q, = 0, but conductor 2 is given a charge 
Q,. We have 

cP;=PI2Q2 and W;=P,,Q, 

3. Now, invoking superposition, we know that the sum cP = W + W ,  of the two 
solutions above provide the solution to the problem where Q, and Q, are specified 
simultaneously. That solution is the same as Eqs. (6.12) and (6.13). 

This result can be easily generalized to the case where N conductors are present- 
namely, Eq. (6.9). Equation (6.10) is also expected to be linear because one can 
arrive at it by solving Eq. (6.9) for the charge Qj as a function of the various 
potentials of the conductors. 

The electric energy of N conductors can now be written in terms of the Pij or Cij. 
Substituting Eq. (6.9) or (6.10) into Eq. (6.8) gives the following expressions for U :  

We now consider some properties of Pi). The energy given by Eq. (6.14) can be 
used to show that the "off-diagonal" elements of the coefficients of potential are 
equal 

p.. = p.. 
11 11 (6.16) 

Consider the increase in electrostatic energy of a system of N charged conductors 
when an infinitesimal charge dQi is added to the ith conductor. If only charge Qi is 
thus changed, the change in U will be given by 
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Taking the differential of Eq. (6.14) gives: 

Since 

then the sums over j in the first term, and over k in the second term of dU in Eq. 
(6.17) include only those terms where j = i and k = i, respectively. Thus we obtain 

Replacing k by j in the first sum, we can write Eq. (6.18) as 

However, another expression for dU is simply mi dQi, by the definition of poten- 
tial. Therefore 

Comparing Eqs. (6.19) and (6.20), we see that equality is possible only if 

Another property of Pij is Pii > 0. This property implies the obvious statement 
that a positive charge produces a positive potential. Finally, we show that the 
diagonal coefficient Pii is larger or equal to the off-diagonal coefficient Pij for any j; 
that is, 

Consider a system of two conductors, conductor 1 bears a positive charge Q, and 
conductor 2 is neutral. There are two distinct configurations of the system: In one 
configuration, conductor 1 encloses conductor 2; in the other configuration, the 
conductors are exterior to each other. In the first configuration the potential of 
conductor 2, @,, is the same as that of conductor 1, a,. Using Eq. (6.9) we find that 
@, = P, ,Q, and a, = P,, Q,, and therefore P,, = P,,. In the other configuration, 
on the other hand, 0, > @,. This can be realized since all lines of force impinging 
on conductor 2 have to be traced back to conductor 2 as a result of the fact that 
conductor 2 is neutral. Thus this configuration gives P,, > P,,. Therefore both 
configurations imply that P,, 2 P,,. This result can be easily generalized to the 
case involving N conductors, hence establishing Eq. (6.21). 

Because the coefficients Cij are related to the coefficients Pij through Eqs. (6.9) 
and (6.10), then their properties follow from those of Pij. In fact, one can show that 

cij = Cji, Cii > 0, and Cij 5 0 for i Zj 
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Example 6.3 The Coefficients of Potential-Three Identical Spheres 

This example shows how the method of coefficients of potential can be used to solve some 
electrostatic problems. Consider three initially isolated and uncharged equal conducting 
spheres placed with their centers at the vertices of an equilateral triangle as shown in Fig. 6.1. 
Conductor 1 is now charged to potential V  and isolated, and it is found to have a charge Q ,  
on it. Conductor 2 is then charged to potential V  and isolated, and it is found to have a 
charge Q ,  on it. Conductor 3 is finally charged to potential V  and isolated. 

Figure 6.1 Three identical conducting spheres 
placed at the vertices of an equilateral triangle. 

This given information about conductors 1 and 2 can now be shown to be sufficient to 
yield information about the status of conductor 3, such as the total charge on it, and to 
determine the sizes and distances between the spheres. 

The coefficients of potential Pij where i ,  j = 1 to 3 are not all distinct. Since the spheres are 
identical, then P I ,  = P,, = P,,; and because of the symmetrical positioning of the spheres, 
then P , ,  = P , ,  = P,,.  Moreover, using the property Pij = Pji ,  Eq. (6.16), then there are only 
two distinct coefficients: P I ,  and P , , .  

The potential of the conductors is related to the charges on them by Eq. (6.9). In the first 
step, the charges on conductors 2 and 3 are zeros, and therefore the potential on conductor 1 
is related to the charges simply by 

In the second step, the charges on conductors 1, 2, and 3 are Q , ,  Q ,  and zero. The potential 
on conductor 2 is given to be V.  Therefore the potential on conductor 2 is related to the 
charges as follows: 

V =  PiiQ2 + PizQi  (6.23) 

Finally, the given potential V of conductor 3 is related to the charges by 

where Q ,  is the charge on conductor 3, an unknown quantity at this point. 
Equations (6.22) to (6.24) can now be solved for P ,  ,, P , ,  and Q, .  Equation (6.22) gives 

P , ,  = V / Q , ,  which upon substitution into Eq. (6.23) gives 

Substituting for P , ,  and P I ,  in Eq. (6.24) yields Q ,  = Q:/Q, .  The determination of the size 
and the distance between the spheres will be left as an exercise. 
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Example 6.4 Coefficients of Potential of Concentric Spheres 

This example shows how one determines the coefficients of potential of a given system of 
conductors of known geometry. We consider the spherical capacitor which was treated in 
Example 2.121 and was shown in Fig. 2.20. The potential between the spheres was deter- 
mined from the relation 4 = -j  E.dr, where the electric field was determined from Gauss' 
law, with the result 

The potential of the inner sphere, 4,, can be easily determined from this expression by taking 
r = R l ;  hence 

Similarly, one can determine the potential at the outer sphere, 4, by taking r = R,; that is, 

Comparing Eqs. (6.25) and (6.26) with the equation defining the coefficients of potential, 
Eq. (6.9), gives 

1 1  
P,,  = P,, = -- 

4n.5, R, 

1 1  
P,, = -- 

4n.5, R, 

It appears that PI, = P,, and thus only two distinct coefficients of potential are needed to 
describe this system. The equality between PI, and P,, is a direct result of the fact that one 
of the spheres is enclosed by the other. A special case of this geometry is when the outer shell 
is very thin such that R, - R,; in that case, 

1 1  1 1  
PI ,  = -- , P,, = PI,  = P,, = -- 

4x8, R ,  4 n ~ ,  R, 

6.4 Capacitors 
In this section we consider a special configuration of conductors wherein the 
charges on a pair of conductors are f Qi and hence the total charge of the pair is 
zero. Such a pair, called a capacitor, exhibits a shielding effect. In this shielding 
effect, the presence of other conductors affect the potentials of each conductor of the 
pair by the same amount and hence leave their potential difference unaffected. 

6.4.1 Capacitance of an Isolated Conductor 

We will first consider a single isolated conductor. Such a conductor can be con- 
sidered to be part of a capacitor whose other conductor has a radius that extends to 
infinity. In other words, there exists capacitance to "ground" or "earthw-that is, to 
the external world. From Eq. (6.11), the potential on the surface of an isolated 
conductor is 0 = PQ. Solving for Q  in terms of Q, gives 

Q = P - ' @ ~ C @  (6.27) 
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The geometrical coefficient C is called the capacitance of the conductor. Clearly it 
gives the total amount of charge an isolated conductor can carry when at a poten- 
tial of 1 volt. It measures the "capacity" of a conductor to hold charge. 

As an application of Eq. (6.27) we determine the capacitance of a single isolated 
conducting sphere. First we take the sphere to be placed in vacuum, and then we 
consider the case where the sphere is enclosed by a dielectric shell. In the first case, 
we simply note that the potential function 0 is given by 

and 

From the latter equation, and from the definition of capacitance given by Eq. (6.27), 
we see that 

C = 4ae0R (6.28) 

When the sphere is surrounded by a dielectric shell of radius R2 and dielectric 
constant K, as was considered earlier in Fig. 4.7, the potential of the sphere with 
respect to a reference at infinity is given by Eq. (4.54). The capacitance can then be 
easily determined 

where R, is the radius of the sphere and E = eOK. 
The unit of capacitance in the SI system is the coulomb per volt, called the farad. 

Because 4ne0 z $ x we see that the capacitance of most ordinary isolated 
conductors is of the order of lo-' farad. The earth itself, considered as an isolated 
conductor, has a capacitance of "only" about farad. Most laboratory sized 
objects have capacitances of the order of farad or smaller. Hence most com- 
monly encountered capacitances are conveniently expressed in picofarads or pF 
(10-l2 F), in nanofarads or nF F), or in microfarads or pF F). 

6.4.2 The Two-Conductor Capacitor 

The next simplest capacitor beyond the isolated one-conductor system is the iso- 
lated system of two conductors. Let ( a i  and Qi) be the potential and the charge on 
the ith conductor, where i = 1 and 2. An important special case of the preceding 
relations is one where Q, = -Q2, so that the total charge of the two conductor 
system is zero. For this system, 

Thus the potential difference between the conductors is proportional to the charge 
(on either one) of the conductors. This relation is more conventionally written 

Q I =  CQ12 (6.3 1) 

where 012 = Q, - 0, and C = (PI, - P12 - P2, + P2,)-' is an intrinsically posi- 
tive geometrical coefficient called the capacitance of the two-conductor system. A 
device consisting of two isolated conductors and used to store charge is called a 
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(b )  

Figure 6.2 Calculation of the capacitance of 
a parallel-plate capacitor. (a) Geometry of the 
capacitor. (b) A side view showing the charge 
distribution. 

capacitor (formerly "condenser"). It is useful to think of the capacitor as being 
charged by transferring charge between the originally neutral conductors. 

We shall find the capacitance of two identical parallel conducting plates of area 
A separated by a distance d ,  as shown in Fig. 6 .2~ .  We shall assume the plates large 
enough so that end effects may be legitimately neglected and the plates therefore 
considered as infinite in lateral extent (see Example 4.4). 

Assume that each plate is given a charge of magnitude Q, but with opposite signs. 
By symmetry, the distribution of charge on each plate will be the same, and conse- 
quently the electric field will exist only in the space between the plates. (Why?) 
Moreover, this electric field will be normal to the plates and approximately con- 
stant, and will be related to the surface charge density on the inner plate surfaces by 
cOE = a, where a = QIA is the surface charge density. This result can be derived 
using Gauss' law (see Example 4.4) or direct integration [see Eqs. (4.27) and (4.28) in 
Example 4.11. 

In order to find the potential difference between the plates, we evaluate the line 
integral 1 E . d r .  Using the notation of Fig. 6.2b and substituting for E = a/&,, we 
obtain 

Referring to our definition of capacitance in Eq. (6.31), the capacitance of the two 
plates is 

& o A  c=-  
d  

(6.3 3) 

We should note that if the capacitor had been filled with a dielectric material of 
permittivity 8, then the capacitance would have been ~ A l d .  (Show this.) 
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The capacitance per unit area and unit length of the conductors, C, and C,, are 
often used. These are defined as follows: 

where A is the charge density per unit length. 
These expressions for capacitance will be in error for actual plates of finite size. 

For the latter case, the capacitance is increased because near the edges of the plates 
the charge density is increased. For a circular parallel-plate capacitor of radius R, 
the capacity is increased by approximately 10 percent when the ratio d /R  equals &. 

Example 6.5 Capacitance of a Cylindrical Capacitor 

Suppose we have the long coaxial line shown in Fig. 6.3. The inner conductor of the line has 
a radius a, and the outer conductor has an inner radius b. In this geometry, the field will be 

Figure 6.3 Coaxial cylindrical capacitor. 

radial from the axis of the line if we are far removed from the ends of the line. By Gauss' law 
we find that the electric field is given by* 

E = O  for p c a and p > b 

where A represents the charge per unit length (per meter) on the inner conductor. An equal 
and opposite charge is present on the inner surface of the outer conductor. The electric field is 
zero for p > b because of our assumption that the total charge on the line is zero. With the 
knowledge of E, we can now find the potential difference @(a) - qb) .  We have 

Consequently, from the definition of capacitance per unit length given in Eq. (6.34), and from 
Eq. (6.35) we have 

~ S S ,  1 0 - ~  1 c=-=-- farads per meter 
In(b/a) 18 In(b/a) 

* Components tangential to the surfaces-that is, E, and E,-must be zero since they are zero at the 
surfaces, and they are constant otherwise. 
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Example 6.6 Concentric Spherical Conductors 

Consider a concentric spherical capacitor with R ,  and R ,  the radii of the inner and outer 
spheres, and Q and - Q are the charges on them respectively. This configuration was treated 
earlier in Example 2.12a, where it was shown that the potential for the region R ,  5 r 5 R ,  is 
given by 

It therefore follows that 

Therefore 

Let us take the size of the outer sphere very large that is R ,  + co. In this case the capacitance 
becomes 4ne0R1, which is exactly the result of Eq. (6.28), indicating that this limit is equiva- 
lent to a single isolated conductor. 

Example 6.7 Capacitance of a Plane and a Cylinder 

Consider an infinite conducting plane with a long, conducting cylinder placed parallel to it as 
shown in Fig. 6.4. The radius of the cylinder is R and its center is at a distance x,  from the 
plane. To find the capacitance of the system we first assume that the cylinder has the charge 1 
per unit length and the plane is grounded. Then we find the potential difference between the 
cylinder and the plane as a function of 1. This boundary value problem can be solved by the 
method of images, which was discussed in Section 3.5.3. In this method the potential between 
the conductors is given by a line charge placed inside the cylinder at the diameter normal to 
the plane and carrying the charge 1 per unit length, and an image line charge placed behind 
the plane at an equidistance from the first and with the charge -1 per unit length. 

The distance of the line charges from the plane are to be chosen such that an equipotential 
surface exactly coincides with the cylindrical surface. Using Eq. (3.129) and (3.130), 

Figure 6.4 Calculation of the capacitance of a conducting 
cylinder in the vicinity of a conducting parallel plate using the 
method of images. 
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These two relations are solved for m, where m = (p- /p+):  

and hence the potential of the cylinder is given by Eq. (3.131) with m given by this value. 

The capacitance of the system per unit length is then given by 

a C = - = 2% 
cosh - ' (xo/R)  

6.4.3 Combinations of Capacitors 

The symbol used to represent a capacitor is -/I-, that is, an object suggesting a 
parallel-plate capacitor. Consider now the situation where several capacitors are 
connected to each other. There are two simple configurations which are easy to 
treat, in which we consider the capacitors to be "in series" or "in parallel." 

In the series case, it is assumed that the conductors are arranged such that the 
lines of force terminating on any conductor originate on at most one other conduc- 
tor. Consider Fig. 6.5a, showing four capacitors of capacitances C,, C,, C,, and C, 
connected in series. The "end" conductors are attached to terminals A and B, and 
kept at a potential difference @,, = 0, - 0,. The conservation of charge requires 
that each capacitor acquire the same charge Q. Thus a,, = A@, + A@, + A@, 
+ A@, = Q/C1 + Q/C2 + Q/C3 + Q/C4, where Aai is the potential difference 
across the ith capacitor. This result can now be written in terms of an equivalent 
single capacitor of capacitance C. That is a,, = Q/C, where 1/C = 1/C, + 1/C2 
+ 1/C3 + l/C,. In the general case of N capacitors, we have 

The case of parallel capacitors is sketched in Fig. 6.5b, showing four capacitors so 
arranged that each has the same potential difference a,,, and charges Q,, Q,, Q,, 
and Q,. Again the conductors are assumed to be arranged so that lines of force 
terminating (or originating) on any one conductor originate from (or terminate at) a 
single other conductor. In other words, the electric field of a pair of conductors is 

I" 

(a )  (b)  

Figure 6.5 Combinations of capacitors. (a) Series connection. 
(b) Parallel connection. 
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completely contained between this pair. The total charge on the four capacitors is 
Q = Q1 + Qz + Q3 + Q4 = C1 Am1 + CZ A@, + C3 AQ3 + C4 A@,. But each of the 
potential differences is equal to @,,; thus Q = (C, + C, + C, + C,)@,,. In terms of 
an equivalent single capacitor of capacitance C, we write Q/@,, = C = Cl + C, 
+ C, + C,. In the general case of N capacitors we have, for parallel connection, 

N 

Finally we note that capacitors in parallel give a capacitance greater than that of 
any single one of them, whereas capacitors in series have a capacitance less than 
that of any single one. 

6.4.4 Energy Storage in Capacitors 

One of the primary uses of capacitors in electrostatic applications is as receptacle of 
electrostatic energy. In order to charge up a capacitor, work must be done to move 
the charge against the electrostatic forces present. Because electrostatic forces are 
conservative, the work done in the charging process is available subsequently as the 
electrostatic energy of the capacitor. Work can be done at the expense of this energy 
when the capacitor is discharged. 

If we have a single conductor at potential 0 (relative to infinity), an amount of 
work @dq is required to bring a charge dq up to the conductor surface (from 
infinity). To charge the conductor from a condition of zero charge to a total charge 
Q therefore requires an amount of work 

where C is the capacitance of the conductor, and V is the potential of the conductor 
when having a charge Q. 

Similarly, if we wish to charge a two-conductor capacitor, we start with the 
capacitor uncharged, and charge it by removing charge from one conductor and 
placing it on the other. The work necessary to charge the conductors to a final 
potential difference @,, = V and corresponding charge Q: 

where C = Q/0,, is the capacitance of the system. 
The result in this case is identical in form to the preceding case of a single 

conductor, as is expected, since as one of the conductors moves off to infinity, we 
are left with the case of a single conductor. 

Example 6.8 Electrostatic Energy of Two Charged Spheres 

Two identical conducting spheres 1 and 2 of radius R carry charges q ,  and q, ,  respectively, 
and the distance between their centers is r P R, as shown in Fig. 6.6. The electrostatic energy 
of the system can be calculated using Eq. (6.14); that is, 

where P , ,  and P , ,  are the only distinct coefficients of potential of the system. If charge q, is 
zero, then the potential of sphere 1 is (01 = P , , q ,  = q , /4m0R;  thus P , ,  = 1/4nc0R. Also the 
potential at distance r from the sphere is (O, = P, ,ql  = ql/4neor. Thus P I ,  = 1/4n&,r. 



6.4 CAPACITORS 195 

4 1 Qz 

Figure 6.6 Two identical, small, charged con- 
ducting spheres at a large distance from each 
other. 

Therefore 

Let us calculate the change in electrostatic energy when a thin wire is used to connect the 
spheres together electrically. After connection, each sphere carries a charge %q, + 9,). Re- 
placing both 9 ,  and 9 ,  in Eq. (6.46) with $9,  + g,) gives the energy of the new situation: 

The change in the electrostatic energy, AU = U' - U ,  is then equal to 

indicating a reduction in the electrostatic energy. 

Example 6.9 Expansion of a Spherical Capacitor 

The inner sphere of a spherical capacitor, shown in Fig. 6.7, has a radius R , ;  the outer 
concentric shell is very thin and has a radius R,.  The inner sphere is kept at a constant 
potential V by a battery. The outer shell is insulated and has a charge q, .  

The potentials @, and @, of the inner and outer conductors, respectively, are related to the 
charges on the conductors by Eqs. (6.12) and (6.13), that is, 

@, = P22q2 + p1291 
where q ,  (unknown at this point) is the charge on the inner sphere. Using the results of 
Example 6.4 we find that: 

1 1  
P , ,  = -- 

~ H E ~  R 1  

1 1  
P,, = -- 

~ ~ C E O  R2 

Substituting these in the above relations yields the following expressions for q ,  and @,. 

Figure 6.7 A spherical capacitor whose inner 
electrode undergoes expansion. 
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Using Eqs. (6.47) and (6.3) the electrostatic energy of the system is 

Suppose that the inner sphere now expands to radius R,.  As a result of the expansion, the 
electric energy changes and some mechanical work is performed by the attractive forces 
between the spheres. We first calculate the change in the electric energy. The charge at the 
inner sphere 9 ,  is determined by replacing R ,  by R,  in Eq. (6.47); hence 

Replacing q ,  by q ,  in Eq. (6.48) gives the new electric energy of the system: 

Thus the change in electric energy AU, = U ,  - U ,  is 

This result indicates that the electric energy increases upon expansion and decreases upon 
contraction of the inner sphere. 

Let us now calculate the mechanical work done by the attractive forces. From Eqs. (6.47) 
and (6.49), the charge on the inner sphere q, as a function of r is q, = q,r /R, ,  and hence the 
charge density or is qr/4xr2 = q1/4aR,r. From Eq. (4.116) the outward force F, acting on the 
sphere is given by 

F , = -  a ' d a  
2 ~ 0  S 

where S is the surface of the sphere. Hence 

which is independent of r. The mechanical work done when the sphere expands from R ,  to 
R,  is equal to 

Thus the energy supplied by the battery, AU, is the sum of Eqs. (6.51) and (6.52); that is, 

AU = AU, + AU, = 4nc0(R3 - R,)V V - - ( 4n::RR,) 

6.5 Electrostatic Energy: An Alternative Expression 
in Terms of the Field Distribution 

Let us assume that we have a particular charge distribution everywhere character- 
ized by a charge density p in vacuum. We then know that the electrostatic energy 
for this distribution is given as 
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We have indicated that the integration is over any volume V finite in extent con- 
taining all the charge in the distribution. We shall consider it a sphere with its 
center in the charge distribution. We can just as well choose V to be all of space; the 
contribution to the integral will be zero wherever p = 0. Substituting for p(r) from 
Gauss' law (V . E = p/cO), we have 

The form of this equation can be changed using the vector identity V.(@E) = V@ E 
+ @(V - E), whence 

Applying the divergence theorem to the first integral and using E = -V@ in the 
second integral, we get 

where S is a closed surface enclosing the volume V. Now, if the charge distribution 
is localized in space, and if surface S is considered as a spherical surface very far 
removed from the charge distribution,* then IEl on this surface will in good 
approximation be constant and proportional to IP/r21, and @ will be proportional 
to llr. Consequently, 

and as the spherical surface recedes to infinity, the surface integral becomes arbit- 
rarily small, and may consequently be neglected. Thus Eq. (6.56) becomes 

where the volume of integration must now include all space. If we assigned to each 
volume of space dv an energy u dv, we would say that the total energy in space 
would be just 

U =  u d v  S (6.58) 

On this basis we would be led to the energy density expression: 

If the charge density was embedded in space of permittivity E (dielectric constant 
K # l), then one can easily show that Eqs. (6.57) and (6.59) become 

* At "infinity," the charge distribution looks like a point charge of magnitude I, p dv. 
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We can call the results given in Eq. (6.59) or Eq. (6.61) the electro(static) field energy 
density. In this interpretation we would say that the energy associated with a charge 
distribution was really stored in the electric field of this distribution. This interpre- 
tation will be especially useful in nonstatic situations (to be discussed in later chap- 
ters), where the possibility of electromagnetic radiation exists. Energy may then 
indeed be transferred through space, and this energy will be associated with the 
electromagnetic fields that exist there. In the static situation, this interpretation can 
lead to ambiguities, and perhaps it is best to think of Eq. (6.57) as merely another 
way to calculate U. 

We calculate the energy associated with a uniformly charged sphere, employing 
Eq. (6.57). In order to use this formula we need to know what E is everywhere in 
space (due to the charged sphere). Referring to Eqs. (2.52) and (2.53) in Example 
2.12b, we have 

= " j  inside  do+^^ 4 x ~ ~  R3 outside ( L ) ' d v  4 x ~ 0 r 2  

Taking do = 4xr2 dr we get 

which, upon integration, gives 

verifying the result previously obtained in Example 6.1. 

Example 6.10 The Calculation of Capacitance Using the Energy Relation 

One direct use of the energy formulas is in calculating the capacitance of a two-conductor 
system. For such a capacitor, we know from Eq. (6.44) that 

Consequently, 

A knowledge of U can be used directly in calculating C. Below we use this definition to 
calculate the capacitance of a parallel-plate and a spherical capacitor. 

Consider the parallel-plate capacitor shown in Fig. 6.8~.  The area of each plate is A and 
the separation is d. The two plates are kept at V potential difference. The electric field 
produced by the plates was determined previously (see Example 4.4); that is, it is zero outside 
and V/d  inside. Therefore, for energy density, Eq. (6.59) gives 

inside and zero outside the capacitor. The total electrostatic energy can be determined by 
integrating the energy density over the volume of the capacitor. Since u is a constant, then 
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4 + - - v i - 
\ 

Area A 

(b )  

Figure 6.8 Calculation of capacitance using energy consider- 
ations. (a) Parallel-plate capacitor. (b )  Spherical capacitor. 

Equating the total energy to $CV2 gives 

Consider the spherical capacitor shown in Fig. 6.86 as another example. Here, if the inner 
conductor has a charge Q and the outer conductor a charge -Q,  the field outside the outer 
sphere is zero. The field between the spheres ( R ,  < r < R,) can be determined, using Gauss' 
law, as E = Q/4ncor2. Therefore 

and hence the total energy is 

Substituting dv = 4nr2 dr and integrating, we obtain 

R2 1 Q2 dr Q2 1 1 --.- =-.- --- 
= I., 2 4nc0 r2 4nco 2 ( R ,  i2) 

Using the second form of Eq. (6.62), we find that 

which is exactly the result arrived at in Example 6.6. 
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6.6 Self-Energies and Interaction Energies 
By the self-energy U@) of a charge distribution, one means the work required to 
assemble this charge distribution when it is outside the influence of any other 
charges external to the charge distribution. Thus, for a charge distribution charac- 
terized by the charge density p, UtS) = p@ do, where @ is the potential generated 
by the charge distribution itself. 

In contrast to this situation, one is sometimes interested in knowing how much 
work is required to place one distribution of charges in the field of another (distinct 
and disjoint) set of charges. Directly from the definition of electric potential, the 
work required is given by 

where 0'') denotes the potential function characteristic of the "external" charge 
distribution, and is assumed to be completely independent of the dq distribution by 
which it is multiplied. Note that the factor of is missing from this letter expression. 

These results may be seen to emerge formally if we write the total electrostatic 
energy to two charge distribution as 

where El and E, denote the electric fields of those charge distributions separately. 
Expanding the integrand of Eq. (6.63) we find 

It is now apparent that the first two terms on the right-hand side of this equation 
represent the self-energies of the two distributions, whereas the third term is evi- 
dently the energy of interaction of these charge distributions, U""'). 

The latter statement is proved directly as follows: Substituting -Val for El in 
the third term, we get 

El - E, do = -cO (V@,. E,)dv 

Using Eq. (1.57) yields 
S 

The first integral is zero if neither charge distribution is infinite in extent. (Why?) 
Thus 

Utin') = p2a1 do = dq I I 
We may associate p, dv with dq and @, with We', and thus the third term of Eq. 
(6.63) is indeed the interaction energy. Also one can easily show that 
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so that 

u(int) = S O l  dq,  = So2 dq,  

The interaction energy between two charge systems generally may also take the 
form : 

The latter expression appears automatically in the expansion of Eq. (6.4), 
U = J Q, dq, where Q, = 0 ,  + 0, and dq = dq,  + dq,. Thus 

Note that for two point charges, the self-energies are indeterminate (or infinite). The 
interaction energy is just 

Often, one is interested in the force experienced by a charge distribution placed in 
some fixed external field E")-that is, the interaction force between the charge 
distribution and the field E(". Clearly, a small displacement of each part of the 
charge distribution by the same amount will change the interaction energy of the 
whole system only. (By "system" is meant the sources of Ete) as well as the distri- 
bution acted on by E").) Therefore, in calculating the forces we can use U""') rather 
than the total U (see the following section). 

6.7 Forces and Torques Using the Electrostatic Energy 
We have observed that we must do work to assemble a charge distribution against 
the (conservative) electrostatic forces. Because the forces are conservative, we have 
been able to define a potential energy for the charge distribution that depends only 
upon the particular charge configuration we construct. It does not, for example, 
depend on the particular paths by which we bring up the charge elements from 
infinity. 

Thus an isolated system of charges possesses an electrostatic energy that can 
change only if the charge configuration itself is changed-as, for example, by chang- 
ing the location of the charges or by adding charge. We consider only static situ- 
ations where the charges are stationary, so there is no heating or cooling of the 
charge distribution. Therefore, if mechanical work is done on the charge distri- 
bution by some external agent, the work done, by definition, must increase the 
energy of the charge distribution; that is, 

dW = dU (6.66) 

If we imagine this work', dW, to be done mechanically in such a way that the 
external applied forces are always in equilibrium with the electrostatic forces during 
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the work process, then dW is just the negative of the work done by these electro- 
static forces, which we label dW(mech). In such a case, if the system of charges has 
no interaction with the outside (i.e., it is isolated) and the other charge of the 
system remains constant, we have 

d ~ ( ~ ~ ~ ~ )  = - dU Q = constant (6.67) 

Suppose, for example, that dW(mech) = F ,  d t ;  that is, suppose we have a system of 
conductors, one of which is moved through a slight displacement dg under the 
influence of the electrostatic force F. Since Fed5 = Fr d t ,  then F ,  d t  = - d U ,  where 
Q = constant on all conductors and dU is the change in electrostatic energy as the 
conductor is moved through d5. We therefore have 

giving the force Fr acting on the conductor in the direction. The vertical bar with 
its subscript Q is inserted to emphasize the constancy of Q on all conductors in 
taking this derivative. 

In some other applications Q will not be constant, and one should know what to 
do in this case. Suppose, e.g., that the potentials of all conductors are kept constant 
as the configuration of the system is changed. These potentials can in general only 
be maintained constant if the charges on the conductors are changed. But the 
charges can be changed only if some agent external to the conductors themselves 
provides the charge. Batteries will do the job, for example. In this case, then, if one 
of the conductors is permitted a virtual displacement and an increment of mechan- 
ical work dW(m"h) is done by the electrostatic forces in the process, additional work 
must be done to maintain all the conductors at a constant potential. Charge is 
supplied at the potential of the various conductors. It is now the sum of these effects 
that must be equal to the change in electrostatic energy. We have (keeping all 
potential constant) 

In words, the total work done by external agents [ -dW(mech)  + dW(B) ]  equals the 
increase in electrostatic energy. If the change in the charge on conductor m is called 
dQ,, then 

d W'B' = C 0, dQm 
m 

But U = 3X0,Qm, and so dU = &0, dQ, at constant potential. Therefore, the 
energy balance equation above may be written 

The work done by the batteries in keeping all the conductors at a constant potential 
is equal to twice the change in the electrostatic energy. The result of Eq. (6.70) leads 
to the expression: 

for the force on a conductor in the "t direction," when all potentials are fixed. 
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Finally, it should be noted that in our discussion of forces acting on conductors 
(via energy arguments), the expression for mechanical work - Fc d t  does not neces- 
sarily imply (force). (displacement). It can also represent (torque). (rotation). Conse- 
quently, in the formulas derived, 

5 - 

F ,  = + El (b) 
a t  o 

if 5 is a displacement (or rotation), then F5 represents a force (or torque) in the 
direction of 5. 

Example 6.11 Force on Plates of Parallel Capacitor--Constant Charge 

A simple example of the preceding discussion is afforded by the parallel-plate capacitor. Let 
us find the force acting on the top plate of the isolated (Q is constant) capacitor of Fig. 6 .9~ .  
We have seen that the electrostatic energy is given by U = fQ2/C. The only geometrical 
quantity in these equations is the capacitance C, where C = E~A/z.  In using the formula for 
force, we utilize the fact that Q is constant but the potential difference is not, implying that 
the energy expression Q2/2C is the appropriate one; that is, 

It is constructive to obtain this result without using the formula for F ,  directly. For this 
purpose, consider a small (virtual) displacement dz of the upper plate of the capacitor while 
keeping Q constant (the system isolated). The electrostatic forces acting on the plate do an 
amount of work F ,  dz in this displacement. Therefore the electrostatic energy must decrease. 
It decreases by the amount 4Q2/Cf - 3Q2/Ci, where C, and Ci are the final and initial 
capacitances. Since - d W(mech) = +dU, then 

- F ,  dz = U(z + dz) - U(z) = 

Figure 6.9 Calculation of the force between the plates of a 
parallel-plate capacitor using energy considerations. (a) The 
plates are charged and isolated. (6) The plates are kept at 
constant potential by an external source. 
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Substituting C = E ~ A / Z  gives 

Therefore, 

which is exactly the result of Eq. (6.73). 

Example 6.12 Force on Plate of Parallel-Plate Capacitor--Constant Voltage 

A simple illustration of the arguments presented above again comes from the parallel-plate 
capacitor. In Fig. 6.9b, since the potential is kept constant, we may express U = i C V 2 .  
Therefore, 

which shows that the force is the same as in the case of constant Q.  
Again let us do this problem from first principles. 

1. The mechanical work done (by external agents) in displacing the top plate by dz is 
- F ,  dz, the minus sign arising from the fact that the net force during the displacement is 
zero. F,  is the electrostatic force. 

2. The charge on the plates of the capacitor was originally Q, = VC, .  After the displace- 
ment, the charge is Q,  = VC,, so a charge of magnitude Q,  - Q, = V ( C j  - C i )  = V dC 
was supplied during the displacement. This charge was supplied to the upper plate at poten- 
tial V ,  so an amount of work was done on the system equal to (Q,  - Q,)V = V 2  dC. 

3. The sum of the work done in steps 1 and 2 above equals d U ;  that is, 

as derived above. 

Example 6.13 Force Exerted by a Capacitor on a Dielectric Slab 

In this example we analyze the force acting on dielectric materials by charged conductors 
using the energy method. Consider Fig. 6.10, which shows a parallel-plate capacitor with 
plate separation d and dimensions a and I.  A dielectric slab of permittivity E, thickness d, and 
dimensions a and 1 is partially inserted between the plates as shown. The plates are kept at a 
potential difference A@. 

To calculate the force exerted on the slab we find first the capacitance of the system as a 
function of x. For a given x, the system can be viewed as two capacitors connected in parallel. 
Using Eq. (6.33) one writes 

&ax 
C ,  =d and C 2  = 

~041 - x) 
d 
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Figure 6.10 Calculation of the force on a dielectric 
slab partially inserted between the plates of a capacitor. 

where C, is the capacitance of the part of the capacitor filled with the dielectric and Cz is the 
capacitance of the rest of it. The total capacitance is then 

The electrostatic energy of the system is then written, using Eq. (6.44). 

The dependence of U on x can now be utilized to determine the force experienced by the slab. 
Using Eq. (6.72) we find 

indicating that the force is attractive. 

6.8 Summary 

To assemble a system of N point charges from a condition where all the charges are not 
interacting, work must be done by an external source against the Coulomb forces between 
them. This work will be stored in the system as electrostatic energy of the system U: 

4.4. l N  U =  2 EL- -- C q j W )  
j= 1 i < j  4m0rij 2 , = ,  

where rij is the distance between charges qi and qj, and (00) is the potential at the location of 
qj due to the other charges. For a continuous charge distribution p embedded in a linear 
dielectric material, the potential energy becomes 

When the charges reside on conductors whose surfaces are equipotentials, this energy 
becomes 

The potential of each conductor is expressible in terms of the charges on all the conductors 
by the linear expansion 
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where Pjk are geometrical parameters independent of the charges and the potential and are 
called the coefficients of potential. The inverse relation 

is also a linear relation with Cjk called the coefficients of induction or capacitance. The 
coefficients have the following properties 

Pij  = Pji Pii 2 Pij Cii = Cji  Cii > 0 (6.16) 

Cij  5 0 for i # j (6.21) 

For a two-conductor capacitor with charges f Q on the conductors we have 

1 
Q = C @ , ,  and U = - Q @  

2 l 2  
(6.3 I), (6.44) 

where C is the capacitance of the system and @ , ,  is the potential difference between the 
conductors. For example the capacitance of a parallel-plate capacitor of area A. separation 
d, and filling material of permittivity E is 

The electrostatic energy of a charge distribution can alternatively be written in terms of the 
electric field produced by the distribution. This is convenient since it allows the introduction 
of an energy density; however, this energy density exists over all space since the electric field 
is a long-range field. In terms of E, the energy density u for a medium of permittivity E is 

The total energy is the integral of u over all space: 

U =  1 u d v  

Forces between the charge elements of a charge distribution can be conveniently deter- 
mined from the knowledge of the electrostatic energy. There are two cases to consider: The 
system is isolated, with constant charge on each conductor; and the system is not isolated, 
but instead the potential on each conductor is kept constant by external sources such as 
batteries. In the isolated case the force F on an element is the negative gradient of the 
electrostatic energy, or 

au 
F< = - ;it constant charge (6.68) 

In the case of constant potential we have 

a U 
Fc = + - constant potential at  

Problems 

6.1 Assuming that the electric charge Q of an atomic nucleus is uniformly distributed 
inside a sphere of radius R, determine the electrostatic energy using 4 p@ do. 

6.2 A volume charge distribution is distributed throughout space in such a way that the 
electrostatic potential at a distance r from the origin is given by @(r) = ~ e - " " ,  where A 
and a are constants. (a) Find the density of the corresponding charge distribution. 
(b) Calculate the electrostatic energy 4 p@ dv of the distribution. 
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Three identical spheres of radius a are placed at the corners of an equilateral triangle 
with side I B a. Each sphere carries a charge q. One of the spheres is now grounded 
until equilibrium is reached. The same procedure is repeated for the other two 
spheres. Determine the charge on each sphere at the end of the process. 

Consider two equal, fixed, insulated conducting spheres S ,  and S, .  Initially S ,  has a 
charge q ,  and potential V while S ,  is uncharged. It is found that the spheres attract 
each other with a force F. Then S ,  is raised to potential V by placing a charge q ,  on it. 
It is then found that the spheres repel each other with the force F. Sphere S ,  is now 
grounded. (a) Find the charge induced on it, and (b) show that the spheres attract each 
other with a force q2(2q: - qi)F/q:. 

Four small identical spheres of radius a are placed at the corners of a square of side I ,  
where I % a. Sphere 1 carries a charge q. Sphere 1 is then connected, using a thin wire, 
in turn to spheres 2, 3, and 4 until equilibrium is reached in each of the operations. 
(a) What are the coefficients P,,, where i = 1, 2, 3, and 4? (b) Find the coefficients 
P,, ( i  # j). (c) Find the charge on each of the spheres at the end of the operation. 

(a) A spherical capacitor consists of two concentric, spherical shells of radii a and b, 
with b > a. Find its capacitance. (b) If the radii of the capacitor differ by a small 
amount d, where d a, show that the expression for the capacitance reduces to that for 
a parallel-plate capacitor having the same surface area 

A conducting sphere of radius a is surrounded by an isolated, thick, spherical conduct- 
ing shell of inner radius b and outer radius c. The thick, outer shell is isolated and 
initially uncharged. A charge +Q is placed at the inner sphere. (a) Determine the 
electric field in all regions. (b) What is the potential difference between r  = oo and 
r  = a? (c) What is the capacitance of the system? (d) Show that the calculated 
capacitance is equivalent to two capacitors connected-in series. What is the capacitance 
of each capacitor? 

A parallel-plate capacitor has plates of area A, separated by a distance d. A potential 
difference of V is applied between the plates, after which they are isolated. (a) What is 
the energy stored in the capacitor? (b) An uncharged sheet of metal of thickness a is 
placed between the plates and parallel to them. Find its new capacitance. How much 
work is done by electric forces during the insertion of the metal sheet? (c) What is the 
potential difference between the capacitor plates after the sheet has been inserted? 

A spherical capacitor has its spheres assembled in a nonconcentric way. The departure 
from concentricity is very small. Determine the correction to the capacitance that is 
due to this departure from concentricity (see Example 3.5). 

A metal sphere of radius R in an infinite dielectric medium of permittivity e  bears a 
charge Q. (a) Determine the work that had to be done to charge it using the definition 
of work in terms of the charge and potential. (b) Use the fields E and D produced by 
the sphere to calculate the energy stored in the electric field. How does this result 
compare with (a)? (c) If the sphere expands to radius R', what would be the change in 
the electric energy? (d) Account for the energy change in (c). 

Use the concept of coefficient of potential to solve the following problems. (a) Two 
spherical conductors are located in vacuum, with a distance d between them. One of 
the spheres is of radius R and is grounded. The other has a very small radius and bears 
a charge q  (can be looked at as a point charge). What is the charge induced on the 
large sphere? (b) In part (a) the sphere is neutral and insulated. What is its potential? 
(c) Compare these results with the results of the method of images. 

Repeat Problem 6.1 using U = f eoE2 dv and compare results. 

Show that $8, I E2 dv gives the same result as part (b) of Problem 6.2, where E is the 
electric field of the distribution. 

Two identical spherical capacitors with inner and outer radii r ,  and r ,  are insulated 
and placed such that the distance between them is very large. Charges q,  and q, are 
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placed on the inner spheres. Determine the change in the energy of the system when 
the outer spheres are joined by a thin wire. 

Consider a large wedge capacitor defined by the plates 6 = 0 and 6 = n/6, which are 
insulated and kept at zero and - V, volts, respectively. Given that the voltage in the 
capacitor is given by @ = - (6+/n)Vo (see Example 3.3). (a) Calculate the energy density 
between the plates. (b) Calculate the energy stored between the plates for 0.1 m I 
p < 0.6m and 0 5 z 5 1 m and Vo = -10 volts. 

Two point charges q, and q2 are separated by a distance d. (a) Calculate the energy 
stored in this system using Eq. (6.2). (b) Repeat using Eq. (6.57). Explain the difference 
in sign between the results of (a) and (b). 

Calculate the energy stored in the volume bounded by 0 5 x, y, z I 1 m due to the 
potential V = 3x2 + 4y2. 

The potential due to a spherical conducting shell of radius R with center at the origin 
is V = V, for r I R and V, R/r for r 2 R. (a) Determine the stored electric energy in this 
system using Eq. (6.8). (b) Repeat using Eq. (6.57) and compare. 

Consider the two large metallic plates forming a wedge capacitor of Problem 3.2 
in Fig. 3.31. (a) Determine the potential inside the capacitor. (b) What is the charge density 
and the total charge residing on the plates? (c) Calculate the capacitance of the 
system. (d) Determine the torque between the plates. 

Determine the total force per unit area acting on the dielectric slab of Problem 4.6. 

An insulating rod of length 1 and negligible polarizability has two small conducting 
spheres of radius a < I attached to its two ends. The rod is attached at its center such 
that it can rotate freely about its center. It is placed in a uniform external electric field 
E,. (a) What are the equilibrium orientations of rod? Which of them are stable, neu- 
tral, or unstable? (b) Calculate the work needed to align the rod with field starting 
from a position normal to it? 

An electric dipole of moment p is located a distance d from an infinite conducting 
plane: It is inclined at an angle 0 with the normal to the plane. Referring to the results 
of Example 3.13, determine the work necessary to remove the dipole to an infinite 
distance above the conducting plane. 

(a) How much work is necessary to move a charge q from infinity to a distance r from 
the center of a conducting sphere (radius b) grounded by a resistanceless wire? (b) Will 
a current flow in the wire as a result of this operation? (c) If the sphere were isolated 
from ground and had a charge + Q on it, what would have been the work necessary to 
bring the charge to its above location? (d) Compare the results in (a) and (c) and 
explain the differences, if any. 

Determine the energy density stored in the uniformly polarized cylinder of Problem 
4.19. 
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So far in our study of electricity we have dealt with situations that were completely 
static; that is, all charge densities considered were independent of time. We have 
assumed that what we have studied applies to the real world in situations where 
macroscopic charge densities are constant in time. An important implication here, 
which we have not yet discussed, is that macroscopic time-independent charge dis- 
tribution can arise from time-dependent microscopic charge distributions. (Electrons 
tend to dance around.) Evidently, if we use coarse enough measuring instruments, 
nature performs a time and space average in such a way that the averaged, micro- 
scopic, time-dependent charge distributions appear truly static from a macroscopic 
point of view; moreover, the time and space averages of the microscopic electromag- 
netic fields (produced by the microscopic charge elements) appear identical with 
those that would be produced from the macroscopic, static charge distributions. The 
static macroscopic fields are related to the macroscopic densities via Eqs. (2.33) and 
(2.37); that is 

P V x E = O  and V.E=- 
Eo 

If the microscopic charge distributions discussed are time-independent,* these clas- 
sical equations also describe microscopic fields. 

In this chapter we will briefly discuss a situation where although charges are in 
motion, the con.;lition is static insofar as calculations of electric fields are concerned. 
The chief ingred.'ent here is that macroscopically all charge densities are constant in 
time, and any ctlrrents that exist also remain constant in time. In such a case, the 
equations of electrostatics remain valid. 

* A  detailed discussion of when we may consider the charge distribution to be microscopically time- 
dependent from the point of view of the equations above requires the consideration of quantum mech- 
anics. If the charges are in "stationary states" quantum mechanically, then charge distributions may be 
considered static. 
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7.1 Definition of Electric Current 
A conducting medium is one in which charges are free to move. A conducting 
medium is also one that contains a great number of mobile charges. Different 
species of mobile charges may coexist in a given medium (electrons, "holes," positive 
ions, and so on). Focus on a particular species in the medium that carries a charge 
q. The motion of members of this species are assumed to have an average velocity 
( v ) .  Thus, if there are n members of this species per unit volume, and N in a small 
volume, then 

1 N 
( v )  = - 1 vj  

N j = l  

where vj  is the velocity of a particular (j) member of the species. Thus ( v )  represents 
the drift velocity of the species, and is assumed to be a macroscopically smooth 
function of position in the medium. The number of charges of this species that in a 
time dt cross an area da is given by 

Since p = nq is the amount of charge due to this species per unit volume-that is, 
the charge density associated with this species-then 

If now there exist a number of species {i = 1,2,. . .), there will exist a current 
through da due to each one, the total current being the sum over Eq. (7.2); that is, 

The term in square brackets of Eq. (7.3) now conveniently defines the current 
density J: 

J E 1 ~ i < v i >  
species 

i 

so that 

Clearly, if only one species of charge carrier exists in a conducting medium, then 

The utility of the idea of a current density is analogous to that of the charge 
density. It is a (vector point) function that is assumed to vary smoothly (on a 
macroscopic scale) in a conducting medium. In terms of it, the current through any 
surface is given by 

The units of J in the SI system of units are coulombs per [(meter)2.second] = 
amperes/meter2; that is, C.m-' .s-' = A am-'. 

In discussing electric current, one often distinguishes among different types: con- 
vection current, conduction current, polarization current, displacement current, and so 
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forth. (In the next chapter we shall also encounter the "magnetization current".) A 
convection current is one wherein a material appears to move "en masse," contain- 
ing and carrying along with it whatever net charge is associated with it. It depends 
directly upon the motion of the observer, for if the observer were to move along 
with the moving charged material, the current density would appear to be zero. 
Thus an insulating belt onto which is "sprayed" a positive charge, when moving, 
would give rise to a convection current. A moving charged mass of gaseous ions, as 
in a particle accelerator, would constitute a convection current. In a convection 
current, there thus appears to be movement of mass relative to an observer at rest 
whose associated charge produces a current. 

A conduction current usually denotes movement of charge carriers through a 
neutral medium, as electrons through a wire, or ions through a solution. Here there 
may be no apparent mass movement. The crucial distinction is that the conduction 
current is independent of the *motion of the observer because of the relative motion 
of the positive and negative charges in the medium. Thus, if the drift velocity of 
electrons is v, an observer moving also with velocity v will not consider the electron 
drift as a current, but that observer will detect an opposite drift velocity for the 
positive charges that he or she will then perceive as a current. Since there are equal 
densities of positive and negative charges in this case, the current will be independ- 
ent of the velocity of the observer (for nonrelativistic velocities). 

A polarization current is associated with the movement of polarization charge as 
a medium is being polarized. Steady polarization currents do not exist because the 
charge movement is bounded. It may be easily seen dimensionally that the current 
density associated with polarization current is, in amperes, 

where P is the polarization in coulombs/meter2 and time t is in seconds. Referring 
to Eq. 4.16, we see that a polarization charge 6P is caused when a charge distribution 
of density p +  is displaced by 6s relative to the negative charge density distribution of 
p  - . Therefore 

Finally, there is the displacement current. It is not really associated with the 
movement of charge, but it is a construct required in electromagnetic theory in 
order to maintain a consistent theory. We shall discuss it in greater detail in Chap- 
ter 14. The current density associated with the displacement current is 

If we deal with static fields, then J, = 0 because aE/at = 0. 

Example 7.1 Drift Velocities in Wires 

We here acquaint ourselves with a typical magnitude of (v) in a conducting wire. We shall 
see that generally for currents in metallic wires, it is very small compared to the actual 
velocities of the electrons in the metal. Consider a wire with a square cross section of area 

m2 (1 mm x 1 mm) carrying a current of one ampere (1 A). If the current density in the 
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wire is uniform and along the wire, then J = I J I  = 1 A/10-6 m2 = lo6 A/m2. Now in the 
wire, the current is typically carried by electrons having a charge e x 1.6 x lo-'' C. There is 
approximately one such electron for each atom of the metal wire, distributed in the wire so 
that the actual charge density is zero. Consequently, Eq. (7.6) is relevant: n x lo2' electrons 
per cubic centimeter = lo2' electrons per cubic meter, and p = ne 2: lo2' x 1.6 x 10-l9 
2: 1.6 x lo9 C/m3. Therefore 

This is a rather small speed, compared to the actual electron speed, which may be estimated 
from the formula 

where k is Boltzmann's constant, me is the electron mass and T is the absolute 
temperature in kelvins.* We find that, at  room temperature, v - lo5 m/s, hence 
I (v)l 4 u. The actual electron velocities are essentially randomly directed in space, 
so their average is almost zero. 

7.2 The Continuity Equation: Local Conservation of Charge 
Local conservation of charge means that if a net charge leaves any volume of space 
V whose closed surface is S, then the charge within the volume must be decreased 
accordingly. Now 8, J . d a  is the charge per unit time leaving V through surface S, if 
da is taken outward from V. This is a current, dQ'/dt, through S. Consequently, the 
charge inside V is increasing at a rate dQ1/dt = -dQ/dt (i.e., it is decreasing if dQ/dt 
> 0) if charge conservation is to hold the quantity, where Q represents the total net 
charge in V at any time, and may be represented as Jv p dv. We may thus write 

The divergence theorem gives 8, J -  da = Jv (V. J)dv, and so 

Our argument holds for all possible volumes, V .  Therefore, the integrand must itself 
be identically zero; that is, 

This is known as the continuity equation and is a basic equation of electromagne- 
tism, relating the charge density at a point in space to  the current density at that 
point. It assumes that charge can be neither created nor destroyed. 

* Actually, the average electron temperature in a conducting wire turns out to be much higher than room 
temperature. For example, in copper a Fermi-Dirac theory predicts a temperature of 80,000 K, thus 
giving average speeds 14 to 15 times what we estimated above. See F. Reif, Fundamentals of Statistical 
and Thermal Physics (New York: McGraw-Hill, 1965), McGraw-Hill. 



In the presence of dielectric materials, the current density J is the sum of the 
external current density J, and the current density produced by the motion of the 
bound changes J,. Similarly the charge density p is the sum of p, and p,, that is 

As we noted in Chapter 4, it is customary to call the external sources free sources, 
hence, we use the subscript f in both J, and p,. The continuity equation as given 
by Eq. (7.9) now becomes 

But from Eq. (7.8) we have J, = aP/at, and from Eq. (4.13) we have p, = -V .P ;  
thus 

Hence, the continuity relation given by Eq. (7.9) is equivalent to 

If +/at = 0 everywhere, all charge densities are fixed in time, and 

V . J = 0 steady current (7.1 2) 

This result is the condition of steady currents. Clearly, if V- J = 0, then 8, J.da  is 
zero for all possible (closed) surfaces S. This means that the net current entering (or 
leaving) any closed surface is zero. Charge thereby cannot accumulate anywhere, so 
the "lines of current density" are continuous. 

7.3 Ohm's Law 
In many, but not all, conducting media there is a simple linear relationship between 
the potential difference of two boundaries of the medium and the (constant) current 
flowing between them, usually expressed as Ohm's law: 

where R is a constant, of dimensionality volts per ampere = ohms. In "ohmic" 
(linear) materials, R depends on the composition of the material and the geometrical 
shape between the "electrodes" (equipotential boundaries). The quantity V is the 
"voltage drop" between electrodes and the current I flows in the direction of the 
voltage drop. In a purely electrostatic environment, the voltage drop is simply the 
drop in potential. Alternatively, one occasionally writes the proportionality ex- 
pressed above as 

where G is called the conductance. 



Now, it may be seen that if everywhere in a material the current density is 
proportional to the electric field, then one obtains Ohm's law as stated above. In 
fact, the relation 

is itself often called (the differential form of) Ohm's law, where a, is called the 
electrical conductivity of the material. Its reciprocal l/a, = p, is called the resistivity. 
If a conducting medium is "ohmic" [if Eq. (7.13) is satisfied], has a well-defined 
constant cross-sectional area A through which current flows, and has a well-defined 
constant length 1 (like a wire with no kinks) then the current density J (and E) is 
constant in the medium (see Example 7.2), and the current flowing is just 
I = JA = a,EA = a,(V/l)A. Therefore V = (I/a,A)I, and the resistance is 

The electrical conductivity of a substance depends upon its atomic structure and 
its thermodynamic state. It is a function of the temperature of the substance, as well 
as its density, purity, and so forth. For certain crystalline materials, the relationship 
of current density to electric field is not a simple proportionality representable by a 
single number, a, (a scalar), but is rather a tensor relationship, for it depends upon 
the direction in which E is applied. Also, especially in gases, a, may itself depend 
upon E, so that the relationship between J and E is not a proportional (linear) one. 
Such a nonlinear dependence shows up in most substances at high enough values 
of E. 

Despite all of these caveats, under normal conditions most liquids and many 
solids are characterizable by electrical conductivities (which may be found in hand- 
books). The difference in the conductivities of different substances may be 
enormous. A metallic conductor has a conductivity of about (lo5 to lo8) R-'  per 
meter, whereas an insulator-a very poor conductor-has a conductivity that is less 
by a factor of perhaps of loz2. Conductivities of certain common substances are 
listed in Table 7.1. So-called superconductors have essentially an infinite conduc- 
tivity, but usually only at temperatures within a few degrees of absolute zero. In 
metals the conductivity generally decreases with increasing temperature-in fact, the 
resistivity changes by approximately 0.4 percent per degree Celsius at room tempera- 
tures. In semiconductors, like germanium and silicon, and in most solid dielectrics the 
opposite is true; that is, the conductivity increases with increasing temperature. The 
differences in behavior are related to the way in which charge transport occurs in these 
substances and is a proper concern of solid-state physics. 

It is of interest to know the time required for the charge that might be present inside 
a conductor to be neutralized and appear at the conductor surface. This characteristic 
time is called a relaxation time [see Eq. (7.17)]. In periods of time commensurate with 
the relaxation time a nonzero charge density may persist inside a conductor. In periods 
of time much longer than the relaxation time the charge that may have been present 
initially will have been neutralized. (We are assuming that all electric fields not 
emanating from the charge of the conductor itself are constant in time or varying with 
time characteristics much longer than the relaxation time.) Thus, given a conductor 
that is placed in an external electrostatic field at time zero, a time of the order of 
relaxation time will pass before charge appears at the conductor surface so as to 
neutralize the external field at all points interior to the conductor. In a conductor, 
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J = aCE. Assuming a, to be a constant in the conductor medium, then the continuity 
equation becomes 

Table 7.1 Table of Conductivities 
at Approximate Room Temperature 

Material Conductivity" Material Conductivity" 

Silver 
Copper 
Pure iron 
Steel 
Mercury 
Carbon 
Silicon 
Alcohol 

H2O 
Marble 
Wood 
Glass 
Oil 
Polyethylene 
Fused quartz 
True vacuum 

"Conductivities are expressed in (ohm-meters)-', or (f2.m)-'. 

Therefore, since V . E = PIE,, Eq. (7.15) gives the simple relation 

This first-order linear differential equation has the solution 

where &,/ac has the dimensions of time, and is called the charge relaxation time. In 
such a time, the charge density decays to e-' of its original value. Even for a 
relatively poor metallic conductor like iron, ~,/o, ~r 10-'8second. (For water, 
&,/ac x lo-' second; for glass, &,/ac x 2 seconds.) Therefore, for metallic conduc- 
tors, unless charge is continuously injected into the conductor, the charge density is 
zero even when the most rapidly changing electric fields (frequencies of the order of 
1012 Hz) exist around the conductor. 

7.4 Steady Currents 

7.4.1 Equations Governing J 

The current vector density J constitutes a vector field that may vary (macroscopi- 
cally) from point to point in a material. In a superconductor, J can be finite only if 
E = 0 there. In a perfect insulator, J is, by definition, zero. For the present dis- 
cussion, we shall assume that J = acE in a given medium. J being a vector point 
function, it will be completely and uniquely determined if its divergence and curl are 
specified within a region and if appropriate boundary conditions at the surfaces of 
that region are specified. 

For electrostatic fields, whether or not steady currents flow, Eqs. (2.33) and (2.37) 
hold; that is, V.E = p/c0 and V x E = 0. The electric field is still conservative, 
Gauss's law is still valid, and we can attempt to find E just as we did formerly. 
Having found E, it is a simple matter to find J using Ohm's law. 
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We will consider only ohmic materials. The equations of steady currents inside 
such media can now be derived. In fact the equations for E may be transcribed into 
equation for J. Substituting E = J/a, in the curl and divergence equations of E gives 

P J P V.E =-  + V . - = -  (7.19) 
E 0  'Jc Eo 

The integral equations corresponding to Eqs. (7.18) and (7.19) are 

and 

where Q is the net charge inside a volume V whose (closed) surface is S. If a, is 
constant, 

implying that p = 0 inside the medium. This is consistent with our discussion of 
relaxation times. [If a, is itself a function of position, the continuity requirement, 
V . J = 0, means that V . (J/a,) = J . V(l/a,) = PIE@ This indicates that in general the 
charge density will be nonzero in such a medium.] 

In this chapter we will consider only media with constant conductivities-that is, 
homogeneous materials. For a, a constant, Eqs. (7.18) to (7.21) for J inside the 
medium then become 

The surface integral f J.da = 0 might be called Gauss' law of currents. 

7.4.2 The Boundary Conditions 

If surfaces or line integrals cross boundaries of different media, then Eqs. (7.20) and 
(7.21) are especially relevant. Since in the case of steady currents V .  J = 0, then 
f J-da = 0. Using the same procedure used previously in Chapter 4 for the detCr- 
mination of the boundary conditions satisfied by the displacement vector D, we find 
that 

where J ,  is the normal component of the current density in the ith medium. The 
boundary condition on the tangential components of J follows directly from the 
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condition on the tangential components of the electric field. That is, the condition 
E l ,  = E,,, along with J = o c E ,  implies that 

J l t  - J2r 

a c 1  Cc2 

where J ,  is the tangential component of the current density in the ith medium. The 
same result can also be derived from the line integral of J ,  Eq. (7.20), by using the 
same procedure used previously in Chapter 4 for the determination of the boundary 
conditions satisfied by E. That is, 

J l t  - J 2 r  (7.24) 
Ocl ac2  

Let us examine the boundary condition given by Eq. (7.23) more closely in rela- 
tion to the dielectric properties of the conducting materials. Since J = acE,  then Eq. 
(7.23) requires that the normal components of the electric field at the interface to be 
related by 

If the two media have permittivities and E, ,  then Gauss' law in dielectrics requires 
that the displacement vectors in the media be related by D l ,  - D 2 ,  = a,,  or, in 
terms of the corresponding electric fields, 

where a, is the free surface charge density at the interface. Equations (7.25) and 
(7.26) of course have to be consistent if the fields are to be physical. In other words, 
there is a restriction on the magnitude of a, that can be stationed at the interface. 
Solving for a, shows that it depends on the permittivities and conductivities of the 
media and on the magnitude of the current, according to the relation: 

It is apparent from Eq. (7.27) that one should be very careful in dealing with 
boundary value problems that involve dielectrics with conductive properties (see 
Example 7.4). The problem should be treated from the point of view of currents, and 
the correct boundary conditions are those of currents [see Eqs. (7.23 and 7.24)]. 

Let us now consider some special cases of Eq. (7.27). No free charge exists at the 
interface if E ~ / E ~  = ac2/oc1 and conversely. If this is not the case (as is generally true) 
a free charge density must exist there. In the case where one medium is a much 
better conductor than the other (ac2 4 a , , ) ,  the boundary conditions become 

Qc 2 J Z n  = J l n  and J 2 ,  = - J l t  
(7, 1 

so that if J 1  at the interface is finite, J, ,  -+ 0 and J 2  = J,, .  This implies that the 
electric field is almost perpendicular to the better conductor outside this conductor 
and that the normal component of field in medium 2 is much larger than it is in 
medium 1. An electrode is usually considered to be a conductor whose conductivity 
is much greater than that of the medium in which it is immersed, so that the electric 
field is very small inside the electrode and the electric field outside it is perpendic- 
ular to the electrode surface. 
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Example 7.2 Carbon Resistors 

Consider the resistor in Fig. 7.1. Between two parallel aluminum plates is sandwiched a block 
of graphite of thickness t. The surrounding medium is air. The conductivities of aluminum, 
graphite and air are a, 2: 3.5 x lo7, lo4 and 10-l2 (R.m)-' respectively. Since the conductiv- 
ity of air is so low, essentially no current flows there, so if a potential difference V is applied 
between the plates, current will flow solely through the graphite. Now we note the following 
facts. 

1. The aluminum plates (electrodes) are essentially equipotential regions, and the conduc- 
tivity of aluminum is so large compared to that of carbon that E is perpendicular to the 
plates at the surfaces. 

2. At the air-graphite surfaces J is parallel to the surface because air is essentially a 
nonconductor, and J ,  in air is zero. It follows that E also is tangential to these surfaces just 
inside the medium. 

These conditions dictate that the E field in the carbon block is everywhere constant and 
points from the higher equipotential electrode to the lower. The reason is that, with such a 

field, the boundary conditions 1 and 2 are satisfied, and the equations V.E = p / ~ ,  = 0 and 
V x E = 0 are everywhere satisfied in the block. Uniqueness of the solution specifies the con- 
stant field solution. 

It is interesting to note that without the carbon block the field would not be uniform 
between the electrodes. If the area of the plates were small, edge effects would be severe. In 
order for the field to become uniform, when the carbon block was inserted the charge flowed 
to the surfaces of the block initially. Since the charge is confined to the block, a charge 
density was built up at the surface just adequate to modify the internal electric field and 
render it constant everywhere. 

Similar arguments show that the current density in ordinary wires is uniform and the 
electric field is constant.* However, some charge does exist on the surface of these wires. 
Since the potential difference from one end of the wire to the other is ordinarily small, the 
charge on the wires is correspondingly small. 

Figure 7.1 Schematic diagram of a carbon 
resistor. 

Example 7.3 Gauss' Law of Currents--Sphere in Conducting Medium 

Suppose a steady current I enters a sphere that is surrounded by an effectively infinite 
medium of conductivity a, and permittivity E,. The current I enters through a thin wire and, 
after a steady state is established, leaves through the medium as shown in Fig. 7.2. The 
conductivity of the sphere is very large compared to a,. 

*This is a practical result that assumes that the current flow is unaffected by the magnetic fields present 
in the wire. If the conductivity depended upon the magnetic field, the current density would not be 
constant. 
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Wire 

/ 
/ 
I 
I 
\ .  

Figure 7.2 Application of Gauss' law to cur- 
rent flow from a highly conducting sphere 
placed in a conducting medium. 

The sphere is here effectively an equipotential region. If we ignore the asymmetry caused 
by the wire.? we expect that a charge will build up symmetrically on the sphere, giving rise to 
a spherically symmetric electric field and current density distribution. We have for a spherical 
surface at r > R, 8 J .  da = r, J . d a  + ro J . da = 0, where the w and o labels refer to the wire 
and the spherical surface, respectively. Therefore 

Because of the spherical symmetry, J is radial and depends only on r, and therefore 

The electric field in the medium can be calculated using q r )  = J(r)/ac. Therefore 

Inside the sphere, however, the electric field vanishes because it is highly conducting. The 
potential of the sphere, V, as a function of the current can be calculated using Eqs. (2.42) and 
(7.28): 

The resistance of the sphere-medium system, R = Vl I ,  is 

The capacitance of a conducting sphere of radius R ,  placed in vacuum was calculated in 
Section 6.4.1. Taking E ,  to be the permittivity of the conducting medium surrounding the 
sphere, then the capacitance is given by Eq. (6.28) as C = 4n&,R0. It is instructive, however, 
to rederive the capacitance of the system in terms of our present example. Since inside the 
sphere, E = 0, then the charge density on the sphere is just a = &,E(r -+ R,). Using Eq. (7.28) 
gives 

t Presumed thin enough that a negligible charge lies on it and that it occupies a negligible volume. 



2U) STEADY CURRENTS 

The total charge on the sphere is Q = 4nRga = ~ ~ l / a ,  The potential of the sphere can be 
written in terms of total charge: 

The capacitance of the sphere is Q/V = 4 n ~ , R , ,  which is just Eq. (6.28). Moreover, the 
product of the resistance and the capacitance of the system is 

The previous example brings out a special relationship between the capacitance 
and resistance between two electrodes separated by a medium of conductivity a, 
and dielectric permittivity E,-namely, Eq. (7.33). In fact, this relation is a general 
result. Consider two electrodes kept at potential difference V and carrying charges 
+ Q f  as shown in Fig. 7 .3~.  The permittivity and conductivity of the medium be- 
tween them, E and a,, are constants and characterize the medium at all points of the 
surface S. We assume that the only free charge inside S is what resides on the 
electrode. Using the definitions of the resistance and the capacitance of the system 
(R = V / I  and C = Q f / V ,  respectively, where I  is the total current between the 
electrodes), we find that 

Vacuum 

( b )  

Figure 7.3 Two electrodes separated by a 
conducting medium. (a) Uniform material. (b)  
Nonuniform material. 
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Using Gauss's law [Eq. (4.40)] and the definition of the current in terms of J [Eq. 
(7.7)], we get: 

Using D = EE and J = u,E in this ratio, the general result-is 

Sometimes it happens that the conducting medium that lies between the 
electrodes is not uniform, such as that shown in Fig. 7.3b. In this figure, for example, 
a vacuum surrounds one electrode and a medium of finite conductivity surrounds 
the other. The charge will in general collect at the interface of the two media, so that 
Q, may not represent the charge that defines the capacitance. In this case, under 
steady-state current conditions, most of the free charge will have migrated to the 
vacuum interface, so it would make little sense to describe the capacitance as be- 
tween the original electrodes. (See the following two examples.) 

Example 7.4 Parallel Plates with Nonuniform Media 

Consider the parallel-plate configuration shown in Fig. 7.4. Between the two electrodes, 1 and 
2, are two media with constants e l ,  a,, and E,,  a,,,  respectively. Let us find the resistance of 
this system. 

Assume that the potential difference between the plates is V. The fields El  and E ,  and the 
currents J ,  and J ,  are expected to be normal to the plates and the interface, and to be 
constant in each material. Then using V = -J E.dr, we find that 

Now, one is tempted to carry on by saying that D ,  = D , .  But this is wrong because in 
general free charge a, will collect at the interface between the media [see Eq. (7.26) and the 
discussion following it]. Rather, we must say that a, = D ,  - D l  = c 2 E 2  - c 1 E l .  Also, since 
a, exists at the interface, the correct, normal, boundary condition on J gives Eq. (7.23); in 
other words, 

This equation and the equation for V yield the values of E l  and E , ,  as follows: 

+ 
Figure 7.4 Parallel-plate capacitor filled with 
a nonuniform conducting medium. 
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It is seen that a,,  -, 0, then E, -, 0, and E l  + V l t , ,  the value we would obtain for a capacitor 
of plate separation t , .  

The free charge at the interface is derived from a/ = c Z E 2  - & , E l ;  that is, 

a, = &,a,, - &lac, 
ac2t1 + C'Clt2 

The free charge densities at the two plates are unequal by just this amount. 
The resistance per square meter is a constant and is given by Eq. (7.12), or 

In terms of resistivities, one will recognize this configuration as equivalent to two resistors in 
series. 

Example 7.5 A Sphere Partially Immersed in a Nonuniform Conducting 
Medium-Gauss' Law 

This example deals with a simplified model of grounding an electric circuit using a spherical 
electrode. A system is grounded by using a perfectly conducting sphere of radius a with half 
of the sphere in contact with the ground, as shown in Fig. 7.5. The layer of earth of radius b 
that is in immediate contact with the sphere has a conductivity a,,, and the rest of the 
ground has a conductivity a,,. Assuming that there is a current I flowing from the sphere to 
the ground, then the current density in region 2 is given by Eq. (7.7); that is, 

where S, is a hemisphere with radius r. Because of the spherical symmetry, the current 
density is radial, and therefore 

where P is a unit vector in the radial direction. The corresponding electric field in this region 
is equal to E ,  = J,/a,,, or 

The current density and the electric field in region 1 can be similarly determined using Gauss' 
and Ohm's laws, as follows: 

I 
J ,  =-5P 

I 
and E l = -  

2nr 
P 

2aa,,r2 

Figure 7.5 Application of Gauss' law to cur- 
rent flow from a highly conducting sphere 
partially immersed in a nonuniform conduct- 
ing medium. 
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The pontential V of the sphere can now be determined using Eq. (2.42); that is, 

Thus 

I l l  
~=~(i)+%G(;-i) 2nac1 

The resistance R between the sphere and ground is equal to V/I; therefore, 

Example 7.6 Calculation of R using RC = &/a,-Coaxial Line 

Suppose a coaxial line, as shown in Fig. 7.6, has a material of permittivity E and conductivity 
a,, the potential difference between the electrodes (indicated by radii p, and p,) is V, and the 
charge per unit length on the inner electrode is I. Using Gauss law we find that the electric 
field between the electrodes is E = (I/2nsp)B. The potential difference between p, and p2 is 
now calculated using Eq. (2.42): 

The capacitance of the line per unit length C ,  is A/V, and therefore RC = &/ac gives 

where 1 is the length of the line. This is the (leakage) resistance of the line. 

Figure 7.6 Coaxial line filled with a conduct- 
ing material. 

7.43 Boundary Value Problems 

We will now show that boundary value problems of steady currents in conducting 
media can be described in an analogous way to problems in electrostatics. Under 
steady-state conditions, the rate of change of the charge distribution with respect to 
time vanishes, and therefore the continuity equation that expresses the law of con- 
servation of charge reduces to 
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For ohmic media, the current density is proportional to the total electric field-that 
is, the sum of the electric field E and the external electric field E,, which may include 
nonelectrical effects (electromotive forces-see Section 7.8). That is, 

J = a,(E + E,) (7.37) 

The current density J and the electric field E can be described by a scalar poten- 
tial according to Eq. (2.36): E = -V@. Substituting Eqs. (7.37) and (2.36) into Eq. 
(7.12) gives : 

V . (a, VdD) = V . (ocEe) = acV2dD + (Va,) . VdD (7.38) 

For a homogeneous medium, and in the absence of external sources, Eq. (7.38) 
reduces to Laplace's equation: 

V2dD = 0 linear material, no external emf. (7.39) 

The techniques developed previously in Chapter 4 for the solution of this equation 
can be used to solve the current problem. As we encountered before, the appropriate 
solution of Laplace's equation is determined by the boundary conditions. The ap- 
propriate boundary conditions satisfied by J are [see (7.23) and (7.24)] as follows: 

The condition on the tangential components of J implies that the tangential compo- 
nents of E are continuous at the boundary, and hence the scalar potentials are also 
continuous at the boundary. Therefore, the boundary conditions on the potential 
are given as follows: 

In the presence of external current sources, V.E, in Eq. (7.38) is not zero, and 
thus the boundary conditions become 

where J, = ocEe is the external current produced by the external electromotive 
force, and A is a unit vector normal to the interface and pointing away from 
medium 1. 

Thus it is apparent from Eqs. (7.40) to (7.41) that there is a close correspondence 
between this current problem and the analogous electrostatic problems considered 
in Chapter 4. The solution of the current problem may therefore be obtained by 
solving the corresponding electrostatic problem with the following replacements 
made: 

and 
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Example 7.7 Spherical Boundary-A Sphere with Angular Potential Distribution 

Let us consider a homogeneous, isotropic sphere with radius R, conductivity a,, and a surface 
kept at a potential Vo cos 0, where 0 is the angle measured with respect to an axis through the 
center of the sphere-say, the z axis-as shown in Fig. 7.7. The conductivity of the material 
surrounding the sphere is taken to be zero. 

The steady-state current situation implies that V .  J = 0 and hence for a homogeneous 
material gives a,V. E = 0. In the absence of external electromotive forces, E, = 0 and J, = 0, 
therefore, the electrostatic potential satisfies Laplace's equation VZ@ = 0. 

Because the potential on the surface of the sphere depends on 0, then the potential inside 
the sphere can be represented by the solution of Laplace's equation in two dimensions, r and 
0. From Eq. (3.28) we get 

The constants An and B, can now be evaluated by applying the boundary conditions. The 
potential at r = 0 should be finite, and therefore B, = 0 for all n. The condition on the surface 
of the sphere gives 

Equating coefficients of P,(cos 8) on both sides gives A ,  = Vo/R and A, = 0 for n # 1. Thus 
the potential, electric field, and the current density are, respectively, 

These results indicate that the current density inside the sphere is uniform and it is along 
the negative z axis, and of magnitude proportional to the amplitude of the voltage Vo and 
inversely proportional to the radius of the sphere. The current density outside the sphere is 
zero since the conductivity of the material surrounding the sphere is zero. 

Figure 7.7 A partially conducting sphere 
whose surface is kept at an angle-dependent 
potential. 

Example 7.8 Cylindrical Boundary-A Circular Cavity in a Plane Conductor 

A conducting plate of conductivity a,, length d, width b, and thickness t has a small hole of 
radius q << d, b at its center. Two opposite sides are kept at Yo and - Vo potentials as shown 
in Fig. 7.8. 

The potential of the plate satisfies Laplace's equation because the plate is homogeneous 
and there are no external sources of electromotive force (emf). In the absence of the hole, the 
current distribution J is expected to be uniform with a direction along the x axis, and the 
corresponding potential Q is expected to depend on x only. Laplace's equation in a single 
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Figure 7.8 Current flow in a thin metallic 
plate with a small circular cavity. 

artesian variable gives d2@/dx2 = 0, which yields 0 = Ax + B. The constants A and B are 
evaluated from the conditions on the potential at x = f d/2.  This yields A = (2V0/d) and 
B = 0; thus 

The current J = -ucV@ is 

The total current I in the plate is determined by integrating the current density J over the 
cross section of the plate, as follows: 

and thus the resistance R of the plate is 

where A = tb. 
In the presence of the hole, the potential becomes also dependent on the angle 4 measured 

from the x axis, and therefore it becomes dependent on two cylindrical coordinates p and 4, 
where p is the distance from the center of the hole. The most general solution of Laplace's 
equation in two dimensions in cylindrical geometry is given in Eq. (3.65). We note, however, 
that only a subset of the most general solution will actually contribute. Close to the ends of 
the plate, the solution can be essentially taken to be that of the plate without the hole. This is 
true because the hole radius is much smaller than the plates length. Thus, as p + d/2,  

This property implies that the solution should not include the sine terms and should include 
only cos 4 terms. In addition, terms involving In p factors will not contribute; hence 

cos 4 
O(P, 4)  = A. + A l p  cos 4 + A; - 

P 

Using the boundary condition of Eq. (7.48) gives A, = 0, and A ,  = 2V,/d. The constant A; 
can now be determined from the boundary conditions at p = q. Since the inside of the hole is 
not conducting, then J, for p < q is zero. Therefore, Eq. (7.23) gives J, = 0 for p = q ;  that is, 
-ac(a@/8p) = 0, which yields A', = -A ,q2 .  Thus the potential in the plate is 

2v0q2 cos 4 
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The first term on the right-hand side of this equation is the potential we obtained in the 
absence of the hole. The second term is an angular dependence produced by the hole. Note 
that the edges of the plates are not exactly equipotential surfaces because q/d  is finite; it is a 
consequence of the approximate nature of the condition given by Eq. (7.48). 

Example 7.9 Analogy with Electrostatics-A Conducting Sphere Placed 
in a Uniform Current 

Consider a sphere of radius R and conductivity a, ,  placed in an initially uniform current with 
density J = Joe. The medium surrounding the sphere is of conductivity o, , ,  as shown in 
Fig. 7.9a. 

This problem is analogous to the dielectric problem treated in Example 4.8, where a 
dielectric sphere is placed in an external electric field, as shown in Fig. 7.9b. The potentials 
inside and outside the sphere Q l  and Q2 in the dielectric case are as follows: 

e l  - c2 cos e @,(r, 8) = Vo - Eor cos 6 + - E o R 3 - r  > R 
c1 + 2c2 r2 

The potentials and hence the current distributions of the current problem can now be deter- 
mined from these expressions using the transformations given in Eq. (7.42). Replacing ci by aci 
and D by J (that is, c2E0 by Jo), we get 

@,(r,  9) = Vo - 350 r cos 9 
Qc1 + 2 6 , ~  

Jo Q2(r, 9) = Vo - - r cos 9 + (~clIac2)  - 1 JoR3 cos e 
uc2 a, ,  + 2ac2 r2 

The determination of the fields and the current distribution will be left as an exercise. 

(a) (b)  
Figure 7.9 Analogy between current and electrostatic prob- 
lems. (a )  A conducting sphere in a uniform current. (b )  A 
dielectric sphere in a uniform electric field. 

Example 7.10 Boundary Current Problem with External Nonelectrical Sources 

This example involves external emf and thus brings out the application of the boundary 
conditions of Eq. (7.41). Consider three wires of conductivities a,,, a,,, and a,,, of permittiv- 
ities e l ,  E,,  and c3,  and of lengths I , ,  I,, and I,, respectively, connected together in series in the 
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A 
Figure 7.10 Three conducting wires con- 
nected together, through one of which is uni- 
formly distributed an external source of emf. 

shape of a ring as shown in Fig. 7.10. The wires have equal circular cross sections of radius R 
such that R l i .  The wire of length I ,  has an external (electromotive) source, I , ,  uniformly 
distributed through it which can be represented in terms of a uniform external electric field E, 

I ,  = Eell  (7.53) 

Because E, is uniform, then the right-hand side of Eq. (7.38) is zero, and therefore the 
potential everywhere in the ring satisfies Laplace's equation. Moreover, because the cross 
sections of the wires are small, then the electric field is expected to be along the wires. 
Therefore, the potential will depend only on the distance along the wire, and consequently 
the electric fields (or current densities) take on constant values in the wires. 

Let us take Ji  to represent the current density in the ith wire. We next use the boundary 
conditions given by Eq. (7.41). 

1. At point C, the normal components of the currents are continuous since there are no 
external electromotive forces. Therefore 

J 2  = J 3  = J 

2. At point B, the current densities are related as follows: 

Since J ,  = a c l E e ,  using I ,  = Eel1 we find that J ,  = ( a , , / l , ) I , ,  which, upon substitution in Eq. 
(7.54), gives 

3. 'The last boundary condition is the continuity of the potential. For example, the poten- 
tial difference around the closed loop should be zero. Therefore using Eq. (2.42) gives El l l  
+ E,12 + E313 = 0. Using Ei = Ji/aci  in this relation gives 

The equations relating J and J ,  can now be solved simultaneously, as follows: 

J ,  = -uacl(ac213 + U , ~ ~ ~ ) E ,  and J = ullac2uc31e 

where 

The calculation of the electric fields in the wires and the charge densities located at the 
separation boundaries of the wires will be left as an exercise. We also note that the above 
results can be arrived at using Ohm's law. Do it. 
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7.5 The Coefficients of Resistance 
As discussed in Section 7.4, Steady Currents, the methods of electrostatics can be 
used to-solve current problems. The correspondence between the two cases can be 
extended further by finding a corresponding formulation to the method of coeffi- 
cients of potential encountered in the electrostatic case. This can be realized since in 
the case of a perfect conductor (a, -, oo) embedded in a conducting medium of finite 
conductivity, the potential on the surface of the conductor is constant. 

In the electrostatic case, the potentials of the conductors were related to the 
charges on them. The corresponding quantities in the case of a current problem are 
the potentials of the electrodes and the currents leaving them. Thus one can write 

where Qi is the voltage of the ith electrode, I, is the current leaving the jth electrode, 
and Rij is the coefficient of resistance. The coefficients Rij are independent of the 
potentials and the currents; they are completely determined by the geometry of the 
electrodes and the conductivity of the material surrounding them. These coefficients 
are analogous to the coefficients of potential. Below we give an example of this 
method. 

Example 7.11 Calculation of Resistance Using the Coefficients of Resistance 

Consider a grounded circuit consisting of two perfectly conducting spheres, as shown in Fig. 
7.11. The radii of the spheres are a ,  and a ,  and the distance between them is I ,  where 1 $ a , ,  
a , .  One-half of each sphere is immersed in a ground of conductivity a ,  and forms a good 
contact. Assume that I ,  and I ,  are currents leaving spheres 1 and 2, respectively, and the 
corresponding voltages on the spheres are 0,  and 0,. These voltages are related to the 
currents through the coefficients of resistance as given by Eq. (7.57); that is, 

where R , , ,  R,, ,  and R , ,  = R,,  are constants to be evaluated from the geometry. If I ,  = 0, 
then 0, = R, , I , .  From Example 7.5 we find that 0, = 1,/2xa,a1, and thus R ,  , = 1/2naca,. 
On the other hand, if I ,  = 0 and I ,  # 0, then, again from Example 7.5, 0, = I,/2nacaz, and 
thus R,, = 1/2naca,. To calculate R , , ,  one refers again to Example 7.5. If I ,  = 0, the poten- 
tial at distance 1 $ a , ,  a ,  from the sphere is @,(I) = 1,/2na,l, which gives R , ,  = 1/2na,l. 
Substituting the values of the coefficients determined above in Eqs. (7.58) and (7.59), we get 

Figure 7.11 Calculation of the resistance between two small, 
highly conducting spheres partially immersed in ground. 
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In the case where I, = I = -I2 (that is, the current leaving sphere 1 enters sphere 2), then 
Eqs. (7.60) and (7.61) give 

The resistance R of the system can now be determined as R = (0, - @,)/I, which gives 

7.6 The Method of Images for Currents 
The method of images was shown to be very powerful for the solution of electrosta- 
tic problems that otherwise would be very difficult to  solve via the use of expansions 
in terms of zonal, cylindrical, or  cartesian harmonics. Such problems involve, for 
example, a conducting cylinder near a large conducting plane or near another con- 
ducting cylinder. 

The same difficulty also arises in the case of steady currents. For example, in the 
case of a pair of cylindrical electrodes or a pair composed of one cylindrical 
electrode and one plane electrode, the methods developed so far are not very useful. 
On the other hand, the method of images is very convenient and powerful in obtain- 
ing solutions for these problems. The analogy with the electrostatic image case is 
obvious in view of the analogy developed in Section 7.4. Therefore, more details of 
the method can be best introduced through examples. 

Example 7.12 Calculation of Resistance Using the Method of Images- 
A Cylindrical Electrode Parallel to a Plane Electrode 

Consider a very long, highly conducting cylindrical electrode of radius R placed parallel to, 
and with its center at a distance xo from, a highly conducting, infinite-plane plate. The half 
space containing the cylinder is filled with a medium of conductivity a,. The cylinder is 
maintained at a potential @, relative to the plate. 

Because there are no external electromotive sources and because the medium is of uniform 
conductivity, Eq. (7.38) reduces to Laplace's equation. The problem can then be solved as an 
electrostatic one (see Example 6.7) by assuming the medium to be a dielectric with permittiv- 
ity E ~ ,  for example. Assuming the cylinder has the charge I per unit length, one finds that its 
potential relative to the plane is given by Eq. (6.39) and the capacitance per unit length of the 
system is given by Eq. (6.40); that is, 

Using Eq. (7.36), which relates the capacitance of the electrostatic case to the resistance of the 
corresponding current case (RC = &,/aJ, we get 

The current between the electrodes may now be easily determined from the relation I = 0,lR. 
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Example 7.13 Calculation of Resistance Using the Method of Images- 
Two Cylindrical Electrodes 

This example deals with the current distribution between two cylindrical electrodes. Consider 
a very large plate of thickness t and conductivity o,. Two highly conducting disks of thick- 
ness t and radius R are implanted in the plate with distance A between their centers, as shown 
in Fig. 7.12. A potential difference A@ is imposed between the two electrodes. 

The method of images of electrostatics along with Eq. (7.36) can be used to solve for the 
resistance and the current between the cylinders. Let us first consider the case where the 
cylinders are surrounded by a dielectric material of permittivity E , .  Let us also assume that 
the cylinders have the charges 1 and -1 per unit length. The electrostatic problem can be 
solved with the help of the discussion in Section 3.5.3. Since R ,  = R ,  = R, then 
xo2 = x,,  = x, ,  and A = 2x0.  The values of ml and m, can be shown to be 

The potential difference between the electrodes A@ = @, - @, is 

Substituting for m, and m2 gives 

which can be written as 

The resistance, therefore, can be determined from Eqs. (6.34) and (7.36); that is, 

which is just twice that of a cylinder and a plane. 

partially conducting plate of o, r 
- X  

Highly Highly 
conducting conducting 

I I 

Figure 7.12 Calculation of the resistance between two cylindrical electrodes implanted in a 
large partially conducting plate using the method of images. 
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7.7 Microscopic Origin of Conduction 
In this section we take on the problem of explaining the concept of conductivity 
from a microscopic point of view. Specifically, we would like to establish the linear 
behavior expressed by Ohm's law given in Eq. (7.13). 

Consider a dilute ensemble of identical particles each having charge q and mass 
m. These particles are taken to interact with another system of particles with the 
interaction causing them to scatter with mean time z between collisions. The time z 
is often called the collision time or the relaxation time of the particles. 

When an electric field (which, say, is along the z axis) is applied to the system, 
then the charges experience forces according to Coulomb's law. Therefore, the equa- 
tion of motion of a charge between collisions is 

where t is measured from the instance right after the last collision. The solution of 
this equation of motion when the field is time independent is 

which indicates that along the field the particle acquires a velocity that is linear in 
time. The velocity o,(O) is an initial velocity. Because of collisions, the particle will 
not continue to accelerate since they tend to interrupt the period of acceleration. As 
a result this period is cut short to (t) = z. In fact, the probability theory tells us 
that the probability that a particle, after surviving without collisions for time t, will 
suffer a collision in the time interval between t and t + dt is given by* 

Therefore the average speed is given by 

Substituting Eq. (7.66) in Eq. (7.76), and integrating, we get 

The average initial velocity ( ~ ~ ( 0 ) )  can be taken to be zero especially if the charges 
collide with particles of considerably larger masses, and especially when v,(O) has 
random directions. Thus 

qE (v,) = - z 
m 

The effect of collisions can alternatively be incorporated in the motion of the 
particles by including a velocity-dependent force in the equation of motion of the 
particles (damping force). That is, 

See F. Reif, Fwulomentals of Statistical and T h e d  Physics (New York: McGraw-Hill, 1965). 
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where (m/r)v, opposes the action of the electric field. It becomes more important at 
higher velocities, with the result of limiting the velocity that the particle can acquire. 
The steady-state solution-that is, when the velocity of the particle ceases to vary as 
a function of time-is easily determined from Eq. (7.70) by taking du,/dt = 0; then 
v, = qEt/m, which is the result arrived at in Eq. (7.69). 

If the density of the charges is n, then the current density can be calculated from 
Eqs. (7.6) and (7.69) as 

which indicates that the relation between J and E is linear, as given by Ohm's law. 
The proportionality constant is just the conductivity, as given by Eq. (7.13), 

This result can be easily generalized to the case where many types of charges are 
present. The result is 

Where the summation is taken over the number of the different types of the 
charges, p. 

7.8 Joule Heating and Batteries 
The fact that charge carriers are not accelerated in an ohmic medium (i.e., that the 
drift velocity is constant-see Eq. 7.69) means that energy must be dissipated in the 
medium. The atomic constituents of the medium scatters the charge carriers and, in 
so doing, are given kinetic energy, which appears as a heating of the medium. The 
average kinetic energies of the charge carriers is to a first approximation constant in 
the medium, so that the energy injected into the medium all appears as heat. Con- 
sider a volume element of a conducting medium do, which is not necessarily ohmic, 
where the applied electric field is E. The work done by E in moving a charge dq 
through a displacement dl is just dq Eadl. Since dq = p do (by definition), we can 
write this work as 

If the charge is displaced by dl in a time dt, dl = (v)dt, where (v) is the average 
(drift) velocity of the charge; then 

Using the relation J = p<v), we have 

The power, or work done by E per unit time in sustaining the current, is then 
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and is proportional to the volume element du. This work contributes to the heating 
in dv. In a finite volume V the power generated, P, is consequently 

The power volume density, dP/dv, is given by 

and hence the scalar product, J . E ,  might be called the "power density." If the 
medium is ohmic, J = a,E, and we can also write 

where p, = 110,. Now consider a conducting medium, with opposite faces A and B 
equipotential regions. If a charge dq = (dq/dt)dt is transported from A to B in a time 
dt,  then the work performed by the electric field E is given by 

where I = dqldt. The power generated in the medium with passage of. the current I 
is therefore 

In the static situation, where E is a conservative field, V = @(A) - @(B). Since 
V = R I  in an ohmic medium, we have also 

as the power dissipation for this region of the medium. 
It is now apparent that since energy is constantly dissipated, in an electric circuit 

containing resistive elements, this energy must be replenished in equal amounts by 
some energy source if constant currents are to be maintained. Considering a simple 
circuit consisting of a loop, one realizes that an electrostatic field alone does not 
provide a source of energy for any unit charge that traverses the loop, since 
$ E .  dr = 0 for conservative fields. 

A mechanism that provides for the possibility of maintaining currents in a dis- 
sipative (resistive) medium is called an emf, or electromotive force, because it pro- 
vides "motive" force to move the charge. It is the energy source that maintains the 
currents. 

A common example of a source of steady-state emf ("direct current dc") is the 
ordinary voltaic battery found in automobiles, flashlight batteries, or standard cells 
used with potentiometers. The mechanism whereby energy is made available to 
produce electric currents in such batteries has a chemical origin. Chemical reactions 
(atomic or molecular transformations) occur in which chemical energy is released 
and is available to do the work required to produce a charge separation. The charge 
separation in turn produces an electric potential difference between points in space 
between which charge can be made to move (as in wires). 

A different kind of battery is the solar battery, shown in Fig. 7.13. Here rays of 
sunlight fall on a sensitive metal surface, which consequently emits electrons (via the 
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Sunlight 

Electrons 

Figure 7.13 Solar battery. 

photoelectric effect). These electrons are collected at another nearby metal surface. 
Thus, a charge separation is affected that can thereby produce an electric current. 
The light meters on cameras operate on this principle. 

Yet another kind of battery with promising applications is the nuclear battery (see 
Example 7.14). Here a radioactive source is placed at one terminal, and the charged 
radiation emitted is collected at another terminal. The action is similar to the solar 
battery except that the source of energy here is nuclear rather than electromagnetic 
(sunlight). 

The common characteristic of all sources of emf is their ability to effect a charge 
separation. This separation must be accomplished against electrostatic forces 
created by the charge separation. Ultimately, if charge continues to build up, the 
electrostatic forces will become large enough to prevent further charge separation. 
When this occurs, current ceases. The electromotive or impressed force that causes a 
charge q to move against the electrostatic fields will be denoted as qEN, where q is 
the value of the charge. The field EN thus constitutes a kind of force field, which, 
however, typically exists only in a very restricted region of space, such as inside a 
battery. If E9 represents the electric field produced by the charge separation pro- 
cesses, and is static in nature, then the work done in moving a unit charge around a 
loop through the source of emf is 

since $ E9.dl = 0 if E is static and thus conservative; then 

Consequently, if work is done, EN must be nonconservative in the region containing 
the loop. Since, usually, EN # 0 only "inside" the source of emf, meaning that the 
source is localized, one writes 

where A and B are points at the terminals of the source (only one is assumed here) 
and 8 is called the emf of the loop C. The exact nature of EN may be difficult to 
envision, but it is a well-defined quantity for any loop equal to the net work that 
must be done to carry a unit charge around that loop. Multiple sources of energy 
may exist in the loop. If the terminals A and B are insulated from each other, a 
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stable situation will exist in the source such that no current flow will occur from A 
to B. This means that 

In other words, the work done by both EN and Eq in transporting charge from A to 
B is zero. The conservative forces in effect oppose the nonconservative forces, so 
that current flow ceases. No work is done in the source, thus we write 

and hence we may write Eq. (7.78) as 

8 = @(B) - @(A) (no current) (7.79) 

Consider now the case where connection is made from B to A outside the source 
so that current can flow in a continuous loop. It is clear that if there is resistance to 
the current flow inside the source, then current can flow only if 

That is, there must be over the length of path C a motive force, E = EN + Eq, 
moving the charge from A to B so as to overcome the resistance. If the medium in 
which the charge moves in the source of emf is ohmic (J = a,E), 

where r is called the internal resistance. Thus, when current flows through the 
source we have 

The representation of such an ohmic source is thus a "pure" emf, 8, in series with 
the "internal resistance" r (see Fig. 7.14). In good sources of emf, r will be small 
compared to the resistance of the circuit to which it is attached. As a consequence, 
the work performed by the source of emf (EN) is largely delivered as energy to the 
rest of the circuit and is not dissipated as heat inside the source of emf itself. 

Source 
of emf 

A 

Figure 7.14 The standard representations of 
a source of emf. 
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The power delivered by the source of emf when an external circuit extracts a 
current I from the emf is just BI. If the external circuit contains a total resistance R, 
the total power dissipation in R and r is just ( R  + r)12; that is, dl = R12 + r12, or 

With the above representation of the ohmic source, we see that this equation 
becomes d = RI + rI = @(B) - @(A) + rI as was encountered in Eq. (7.80). 

We note that the internal resistance is in principle easy to determine simply by 
measuring the potential difference @(B) - @(A) without and with current flow from 
the source, as described by Eqs. (7.79) and (7.80), respectively. 

*Example 7.14 Nuclear Battery--Current Source 

Consider the nuclear battery sketched in Fig. 7.15. We assume that the radioactive source 
emits alpha particles (helium nuclei that have a charge of +2e) having kinetic energies of 
5.0 MeV. These a particles are collimated into a beam and pass to a metal collector electrode 
at B. If switch S were open and no charge could leak off the collector, the potential of B 
relative to the box (ground) would rise to a value of 2.5 x lo6 V. At this point, no further 
charge would be collected, because the initial kinetic energy of the a's would just equal the 
work done against the electrostatic field in moving to B from the box. At a higher positive 
potential, the a's would be deflected back to the box. 

The nonconservative field in this battery, EN, must be ascribed to a nuclear force and it is 
zero everywhere except inside the nucleus. It is the force that kicks the a's out of the nuclei of 
the radioactive material. (As it does so, two electrons are released in the material.) The work 
done by the nuclear forces is clearly equal to the kinetic energy imparted on the a particles. 
Thus 

Consider the case when S is open and equilibrium is achieved. In the equilibrium situation, 
the a's reach the collector at B with zero kinetic energy. Thus 

From 

it follows that 

Collector S 

Metal box 

a particles 
\Radioactive 

pellet 

Figure 7.15 Nuclear battery. 
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Thus, d = 2.5 x lo6 V. This is the open-circuit potential difference at the terminals of the 
source. 

Now, suppose S is closed. A current I ,  will flow through R such that @(B) - @(A) = RI ,  in 
an equilibrium situation. But now I,  must just be equal to 2e times the number of a's each 
second moving from A to B, and @(B) - @(A) is no longer equal to 8. For example, if lo6 a 
particles per second pass from A to B, then I ,  = 1.6 x 10- l 9  x 2 x lo6 = 3.2 x 10- l 3  A. If 
R is lo7 R, then RI,  = @(B)  - @(A) = 3 x lo-' V. We might describe the situation by saying 
that our source of emf has an internal resistance r, such that 6' - r l ,  = RI, .  Then, for 
example, r s lOI9 R.* 

This type of emf is known as a current source, because the current I = I ,  is essentially 
independent of R, and r is essentially infinite compared to any practical R's one may use. 

7.9 Kirchhoff's Laws and Resistive Networks 
We consider in this section problems involving electromotive sources connected to 
various combinations of external loads in the form of loops. Also, we include cases 
where the loops include many of these sources, as shown in Fig. 7.16. 

Network problems are analyzed by means of two rules, called Kirchhoffs rules: 

1. The first rule states that the algebraic sum of the currents flowing towards a 
junction is zero. This is a statement expressing the conservation of charge; that is if 
there is no piling of charge at a given junction, then the rate at which charge enters 
the junction should be equal to the rate at which it leaves the junction. Therefore 

2. The second rule states that the sum of the electromotive forces and the voltage 
drops across all resistances (including the internal resistances of the sources) in a 
closed loop is zero. That is, 

The procedure for applying Kirchhofs rules to a current circuit can now be 
outlined: First, we assume a direction and a magnitude to the currents going 
through all elements of the circuit. Second, we choose a direction to go around the 
different loops. Third, a convention for the sign of the potential drops across re- 
sistances and the sign of the electromotive force as we go around the loops must be 
chosen. The emf is taken as positive if we go through the source from negative to 
positive. The voltage drop across a resistance is taken as positive if we go across it 
in the same direction as the assigned current, and negative if we go in the opposite 
direction to the current. 

With this procedure one may find that the number of equations derived is larger 
than the number of unknown currents. Such a case arises because not all the loops 
are independent. In fact, one has to make sure that none of the independent loops is 
missed. 

The resulting equations are algebraic and therefore can be easily solved for the 
unknowns. A negative current means that the correct direction is the opposite of 
what we have assumed. 

* In this example, r is not a well-defined resistance, in fact, since it depends upon the current drawn. We 
do not have an ohmic medium here. 
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Figure 7.16 Application of Kirchhoffs laws to a multiloop 
dc circuit. 

In the course of analyzing electric networks, one encounters series and parallel 
connections of resistors. When a number of resistors of resistances R, ,  R,, . . . , R, are 
connected in series (that is, the current through each of them is the same), then it 
can be easily shown that they are equivalent to a single resistor of resistance R, as 
follows: 

On the other hand, when these resistors are connected in parallel (that is, the 
voltage across each one of them is the same), then they can be easily shown to be 
equivalent to a single resistor of resistance R ;  that is, 

Let us now analyze the circuit of Fig. 7.16. The assumed currents and their 
directions and the sense of going around the loops are labeled in the figure. 
Kirchhoffs first rule gives the following relations between the currents at the vari- 
ous junctions. 

Another set of equations can now be determined using Kirchhoffs second rule, as 
follows: 

- 8 2 - 1 3 R 3 + 1 4 R 4 + 1 5 R 5 = 0  i n l o o p A  

- 8 , - I , R , - 1 4 R 4 - 1 6 R 6 = 0  i n l o o p B  

8, + 15R,  + 12R2 - I I R ,  = 0  in loop C 

The above equations are algebraic and hence can be easily solved for the unknown 
currents. We will leave such determination as an exercise. 
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7.10 Summary 
In a conducting medium the current density J and the current 1 through any surfaces are 
defined as follows: 

where pi is the charge density of species i, and (v,) is the average dreft velocity of this species. 
The total charge Q crossing the surface S is related to I as follows: 

A basic equation of electromagnetism is the continuity equation, which expresses the 
concept of conservation of charge. It relates the charge density at a point in space to the 
current density at that point, or 

For steady-state applications, where p ceases to vary with time, the continuity equation 
becomes 

V .  J  = 0 (steady state) (7.12) 

The density of conduction current in a medium under the influence of an electric field E is 
given by 

where uc is the conductivity of the medium, and p, = l / a r  is the resistivity of the medium. For 
linear (ohmic) media, a, is a constant (independent of E). This relation is often called the 
differential form of Ohm's law. The integral form of this law is the familiar relation 

The resistance of a wire of length 1, cross section A, and conductivity a ,  is 

The distribution of steady currents in a conducting medium can be described in an analo- 
gous way to problems in electrostatics in dielectric media. The equation V .  J  = 0 implies, for 
linear material, that a , V . E  = 0. Taking E = -V@, then 

V .  J  = 0 + V Z @  = 0 (linear material, no external emf) (7.39) 

When the space considered has more than one material, then Laplaa's equation can be 
solved in each material separately. and the solutions (potentials, fields, and currents) are then 
matched at the interfaces of the materials. In the absence of external current sources at the 
interfaces produced by electromotive sources, then using V .  J  = 0 and V x E = V x J/ac  = 0 
we find that the boundary conditions are 

J1, Jzt Jl. = JZr and - = - 
arl  acz 

where n and t stand for components that are, respectively, normal and tangent to the inter- 
face. These two conditions are equivalent to the following two conditions on @. 

a'Q1 
UCl - = m z  

an dn aod 
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Thus it is apparent that there is a close correspondence between current problems and 
electrostatic problems. The solution of the current problem may therefore be obtained by 
solving the corresponding electrostatic problem with the following replacements made: 

E -r a, and D + J (7.42) 

Other electrostatic techniques such as the method of images and the method of coefficients of 
resistance (analogous to coefficients of potential and capacitance), are also useful here. Also 
this correspondence implies that the capacitance C and resistance R between two conductors 
embedded in an infinite medium of E and a, satisfy the following simple relation 

E 
RC = - (7.36) 

0, 
The differential form of Ohm's law and hence its integral form can be derived by consider- 

ing the microscopic response of a dilute conducting medium to an external electric field. The 
motion of the charges are governed by the acceleration qE/m and by a linear deceleration due 
to collisions with other particles: v/mr where q, m, and v are the charge, mass, and velocity of 
the charges and r is a time constant for ohmic media that gives the mean time between two 
collisions. It is a measure of how frequent these retarding collisions. This treatment gives 

where n is the number density of the charges. This indicates that charges in an ohmic medium 
are not accelerated by an external electric field. 

Because of the absence of acceleration of charges in an ohmic medium, then energy must 
be dissipated in the medium. The change of power per unit volume is as follows: 

Electric circuits are analyzed by Kirchhoffs two laws: The summation of all currents at 
any junction is zero, and the summation of all voltage drops in any loop is zero: 

ZI=O and ZV=O (7.82),(7.83) 

These two laws embody the two basic laws of steady currents: V. J = 0 and V x E = 0. 

Problems 

7.1 A current of 10 A flows through a wire with a cross section of 2 mm2. If the density of 
charge carriers in the wire is 102'/m3, determine the average drift velocity of the 
electrons. 

7.2 The current distribution in a given three-dimensional conductor of conductivity a, is 
such that the electric field strength and therefore the current density are constant on an 
equipotential circuit. In this case one can show that the resistance of the conductor is 
given by R = dl/a,A, where dl is normal to the equipotential surface of area S. Using 
this result find the resistance for a spherical capacitor of inner and outer radii a and b 
filled with a homogeneous medium of conductivity a,. 

7 3  Use the result of Problem 7.2 to determine the resistance of a spherical capacitor of 
inner and outer radii a and b, filled to a radius c with a material of conductivity a,,, 
and from c to b with a material of conductivity a,,. 

7.4 Use the result of Problem 7.2 to determine the resistance of a cylindrical capacitor, of 
inner and outer radii a and b and length I, that is filled with a conducting material of 
conductivity a,. 

7.5 Consider a parallel-plate capacitor that is filled with a partially conducting material of 
dielectric constant K and conductivity a,. The capacitor is charged with an initial 
charge Q,. (a) Determine the charge on the plates as a function of time. (b) Calculate 
the total Joule heat produced and show that is equal to the initially stored electrostatic 
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energy. (c) If K = 4.3 and a, = 10-l3 (f2.m)-', calculate the time constant for the 
discharging of the capacitor. 

7.6 The current flow lines make angles 0, and 0, with the normal to the separation 
boundary between two conducting media of conductivities a,, and a,,. Derive the law 
of refraction of the current flow lines. 

7.7 A block of conducting material is in the form of a cube of side a as shown in Fig. 7.17. 
Its conductivity is not uniform and at any point in the block is a(a + x), where a is a 
constant. Assume that current flows only along the x axis from face S to the opposite 
face S'. (a) Taking the electrostatic potential @ to depend only on x, use Eq. (7.38) to 
show that 

(b) Solve the equation satisfied by @ and show that the potential difference between S 
and S' is A@ = A log 2 where A is a constant. (c) Using the solution for @, determine 
the total current between S and Sf, and hence show that the resistance between S and 
S' is (In 2)/aa2. 

z 

Figure 7.17 

7.8 Two small, spherical, perfectly conducting electrodes of radii a, and a, are embedded 
in an infinite medium of conductivity a,. Their centers are separated by a distance 1 
such that I % a,, a,. Use the coefficients of resistance to show that the resistance 
between them is approximately 

7.9 If the medium in Problem 7.8 is bounded by an infinite-plane interface as shown in Fig. 
7.18, use the method of images by introducing image currents to show that 

Highly 
conducting 

Figure 7.18 



7.10 A capacitor of arbitrary form is filled with a homogeneous dielectric of permittivity E. If 
it is known that when the capacitor is filled with a homogeneous conductor of conduc- 
tivity a, its dc resistance is R, then determine its capacitance. 

7.11 The space between two parallel conducting plates of area A = 0.05 mZ, and separation 
0.2 cm is filled with a lossy dielectric for which K = 8 and a, = 0.8 x lO"(n.m)-'. 
Calculate the total rms (root-mean-square) current when a voltage V = 10 sin wt, 
where w = lo7 radian/s is applied across the plates. 

7.12 The conductivity a, of copper at room temperature is 0.59 x 10' (C2.m)-' and the 
density of mobile electrons is 102'/cm3. Find the relaxation time r for electrons in 
copper. 

7.13 A system of electrodes is characterized by the coefficients of resistance R,. Determine 
the amount of heat Q generated per second in the space between the electrodes in 
terms of the currents I, leaving the electrodes. 

7.14 A circuit for measuring resistance in a Wheatsone bridge is shown in Fig. 7.16, with 
6, = 0. Consider the case where R, = R, = 0. Show that for the current I, to vanish 
(which can be monitored via a galvanometer), the condition R,/Rz = R,/R3 must be 
satisfied. This condition allows one of the resistances to be measured if the other three 
are known. 

7.15 Determine the current I, when the Wheatsone bridge of Problem 7.14 is off balance. 
Show that S = cR3(al,/dR,), where c is the deflection of the galvanometer per unit 
current, and S is the sensitivity of the bridge (neglect the resistance of the 
galvanometer): 

7.16 The superposition theorem does not apply to power. Superposition is a property that 
depends on the linearity of the quantity in question, and power is a quadratic rather 
than a linear quantity. (a) Calculate the power delivered by source 6, in the circuit 
of Fig. 7.19 with I, dead. (b) Calculate the power delivered by 6, with 6, dead. 
(c) Calculate the power delivered to the circuit in the presence of both and show that 
the sum of the results in (a) and (b) does not give the power absorbed in the circuit. 

Figure 7.19 

7.17 A system of n identical cells each of open circuit voltage I,,  and with internal re- 
sistance R,. The system is used to deliver current to a load resistor R. (a) Show that the 
current in the load is I = n&,/(R + nR,) when the cells are connected in series with 
each other and with R. (b) Show that I = I,/(R + R,/n) when the cells are connected in 
parallel and the combination is connected with R. 

7.18 A square net is made of a wire of uniform cross section. It consists of nZ identical 
square cells, and the resistance of one side of each of these cells is r. If a current enters 
at one of the corners and leaves at the opposite corner, find the resistance of the entire 
net for n = 2, 3, and 4. (Hint: The symmetry of the circuit can be used to reduce the 
number of circulating currents; for example, in the case of n = 3, the number of cir- 
culating currents may be reduced to three.) 
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8.1 The Lorentz Force 
An electric field E is essentially defined by the relation F, = qE, where F, is the 
force exerted by the electric field. It can be determined in any reference system by 
determining the force on a point charge q stationary in that reference system.* It is 
natural that in electrostatics we considered the charges to be at rest. If we remove 
this restriction, such that q is allowed to move with nonzero velocity v (in the given 
reference system), we adhere to the equation F, = qE, but we find by experiment 
that another force exists, given by 

This is a magnetic force, commonly referred to as the Lorentz force. The quantity B 
in Eq. (8.1) is sometimes called the magnetic induction: we shall call it the magnetic 
field or simply the B field. Its existence is inferred from observations that establish 
(in the absence of any electric field) the existence of a force (1) proportional to the 
magnitudes of q and v, (2) perpendicular to v and to another direction, +n ,  and (3) 
such that the magnitude F, varies as the sine of the angle between v and n. 

As we noted above, the Lorentz force is perpendicular to the plane defined by v 
and B. As a consequence, the work done by F, on q (in a time dt) as q moves 
through a displacement dr = v dt is zero: dW = F;dr = F;v dt = 0. That is, mag- 
netic forces alone cannot do work on charged particles. 

Given that vector fields B and E coexist, the electromagnetic force on a point 
charge q is given by 

*We ignore gravitational forces (which are much weaker than electromagnetic forces) and the other 
fundamental forces that can appear in the vicinity of atomic nuclei. (The latter are "short-range" forces, 
which can be ignored if q is distant from such nuclei. This is the usual case.) 
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It is this force that must be used in determining the motion of charged particles. The 
study of charged-particle behavior in electromagnetic fields forms the subject of 
electrodynamics. Depending on whether the equations of motion are those of class- 
ical of quantum physics, the modifiers classical electrodynamics or quantum electro- 
dynamics (abbreviated QED) are appended. 

As here defined in Eqs. (8.1) and (8.2), B has units of electric field divided by 
velocity. The following equivalent dimensional relations hold, where N, C, V, A, m, 
s, kg, Wb, and T stand for newton, coulomb, volt, ampere, meter, second, kilogram, 
weber, and tesla respectively. 

The weber and tesla are both derived units. 

8.2 Forces on Current Distribution-Motion in Crossed Fields 
We had F = qv x B (we drop the subscript m), where q was a point charge, or a 
charge whose physical dimensions are small enough so that B is constant over them. 
Consider now a volume of space, V, in which the mobile scalar charge density p(r) is 
everywhere defined. Assume also that in V there exists a vector field, v(r), which 
gives the velocity with which p(r) is moving.* Then the Lorentz force given by Eq. 
(8.1) acting upon the mobile charge contained in a volume element do at position r 
is simply 

By definition, p(r)v(r) = J(r) [see Eq. (7.6)], so we may write 

The Lorentz force on the volume V t  is then given by 

Analogously, if there exist scalar charge density fields on surfaces or curves in 
space given by a and 1, respectively, then there can exist Lorentz forces on these 
surfaces and curves. Again, by definition, 

av = K and Lv = I (8.5) 

where K is a surface current density, and I is a linear orjilamentary current density. 
Clearly, such concepts have significance only from a macroscopic point of view. The 
current density J is more fundamental, since it is expected to have significance even 
on a microscropic level. In any case, we obtain for the Lorentz force expression 

* By this we mean that whatever charge is in the volume element do at r has an average velocity v(r). 

t That is, the force on the charge of V. 
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Figure 8.1 Tubular region in space whose 
side surfaces are formed by streamlines of J. 

for surface currents and 

for filamentary currents. If dl denotes a filamentary element of length in the direc- 
tion of I, we can write the force also as 

Finally, a current distribution specified in terms of all three types of the current 
densities discussed above will be a sum of Eqs. (8.4), (8.6), and (8.7). 

We now show an important relation in the case of tubular currents or filamentary 
currents. Let us consider a current density J, restricted to a tubular region in space 
whose side surfaces are formed by streamlines of J (refer to Fig. 8.1), such that the 
total current flowing past a cross-sectional area of the tube S is given 
byJs J .da = f, J da = I .  The relation we want to prove for this type of current is: 

where the brackets may respresent any field defined in V, either vector or scalar, 
and * represents a binary operation such as a cross operation ( x ) or dot operation 
(.). For example, one may be interested in showing J J dv x B = 5 1 dl x B. We can 
write the left-hand side of Eq. (8.9) as f, J, {J da dl * [ I} where da is an area 
element of S, and dl is an element of length in the direction of J and hence per- 
pendicular to da. If [ ]dl varies insignificantly over the area S (or if we represent by 
[ ]dl the average of [ ]dl over the area S), then we can factor the above integral 
to obtain 

In the last step, we have assumed that I dl = I dl; that is, the "direction" of the 
current is assumed to be in the "direction" of the element of length dl. The con- 
ditions listed above under which these operations are valid we shall call the filamen- 
tary conditions, or the filamentary approximation. 

An immediate illustration of the utility of this transformation is in the calculation 
of the force acting on a current-carrying wire placed in an external magnetic field B. 
If B denotes the average value of the field over a cross-sectional area of the wire and 



8.2 FORCES ON CURRENT DISTRIBUTION 247 

J is the current density in the wire, we note that the bracket and the star in Eq. (8.9) 
are given by [ ] E B, * E X ,  and therefore Eq. (8.4) transforms as follows: 

for the force on the wire as in Eq. (8.8). Under steady-state conditions, the current I  
is constant along the wire and can be factored from beneath the integral sign: 

F = I  dl x B (constant current) I 
If, furthermore, B were constant along the path of integration F = I { !  dl) x B. If 
j dl approximates a closed loop, then f dl = 8 dl = 0. The net force on a closed 
filamentary current loop in a constant magnetic field is zero. 

It is perhaps not obvious that one can equate the force on the moving charge in a 
wire to the force on the wire itself. That such an equation can be made results 
because in an equilibrium situation the force acting on the moving charge is trans- 
mitted to the atoms of the wire, the charge not being able to leave the wire. 

Example 8.1 Charged Particle in a Constant Magnetic Field 

Let us consider the motion of a particle of mass m and charge q in a magnetic field B. 
Moreover, let us take the case where the electric field in the region is zero. Since F= 
q(v x B), Newton's second law tells us that 

If we take the scalar product of both sides of this equation with v, we obtain 
mv . dv/dt = qv . (v x B). Since v . (v x B) = (v x v) . B = 0, then 

The kinetic energy of the particle is then constant in time, consistent with the fact that F is 
always perpendicular to the motion. 

If B is a constant field, it is not difficult to show (show it) that the trajectory of the particle 
is a combination of uniform circular motion, and motion in a straight line. This motion when 
B = B2 may be described by the equations (see Fig. 8.2) 

. VI x - xo = -sin w(t - to) y - yo = - cos w(t - to) z - zo = vll(to - to) (8.11) 
W W 

where v, and vl ,  are the projections of the velocity normal to and along the field respectively, 
and w = qB/m is called the cyclotron frequency. Thus, the projection of the trajectory on a 
plane normal to B (the x-y plane) is a circle centered on the point (x,, yo), with radius 
R = V,/W = mv,/qB. 

Often, one has the situation where vl l  = 0, and the particle moves in uniform circular 
motion of angular frequency W. In this case the momentum of the particle is given by 

This is a relationship often used when one employs magnetic fields (as, e.g., in magnetic 
spectrometers) to determine a particle's momentum. The product BR is often called the 
"magnetic rigidity." 

It is interesting to note an important practical property of the B field displayed here: that 
the B field can be used to contain a distribution of charged particles without changing their 
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Figure 8.2 Trajectory of a charge in a con- 
stant B field showing a combination of uni- 
form circular motion and motion in a straight 
line. (Helix motion) 

distribution of energies. Thus, for any particle that leaves a point on a line parallel to a 
constant B  field, B will return it to that line at a later time given by the period of its projected 
circular orbit; that is, T = 2nRlv = 2nmlqB. This time is independent of the particle velocity 
(nonrelativistically). All particles that have the same component of velocity, v , ,  , parallel to B 
will thus return to the line at the same point. Such a property is used in devices called 
magnetic lenses for focusing beams of charged particles. 

Example 8.2 A Charge Particle in Crossed Fields 

Assume that there exists in a reference system designated 0 the mutually perpendicular 
("crossed") constant fields 

B = B 2  E=E$' (8.13) 

and assume that there is a charge q moving with a velocity v = vfi in this region. Using Eq. 
(8.2), one can show that q will feel no force if v = E/B; that is, 

Now suppose a charge q is stationary at time t = 0 in such crossed fields. What is its 
subsequent motion? This can be determined using the above result. We study the motion 
from the point of view of a reference frame, Of, moving with velocity v = (E/B)fi. Thus 
consider a charge q' and an observer moving with velocity v = (E/B)S. 

The magnetic force as observed in the reference frame of the moving particle, O', is zero, 
because the velocity of the particle is by definition zero there. Since the total force at the 
particle is zero, then the observer must conclude that the electric force qE and hence the 
electric field must also be zero. Only a magnetic field may exist, and it is uniform. As a 
consequence, if the charge q' is moving in frame O', its motion in it will be governed by only a 
magnetic field, and therefore its orbit will be circular. Now to the observer with a velocity v, 
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the charge q at rest in 0 appears to move with a velocity -v, and so moves in circles! The 
motion is described by equations of the form: 

x' = R cos wt y' = R sin wt + yt2 = R2 (8.14) 

As a result, motion in 0 is a superposition of circular motion plus linear motion-i.e., 
cycloidal motion (see Fig. 8.3). In the 0 system (x ,  y, z), the equations of motion are obtained 
from the transformation formulas* x' = x - vt, y' = y. Thus, the equations of motion are 

x - vt = R cos wt y = R sin wt (8.1 5) 

These are parametric equations of a cycloid. 

Figure 8.3 Trajectory of a charge in crossed 
uniform electric and magnetic fields. (a) Cy- 
cloidal motion observed in the laboratory 
frame. (b) Circular motion observed in a ref- 
erence frame moving with velocity v = E / B  in 
the direction of E x B. 

* We assume o 4 c here, so we can use the Galilean transformation formulas (see Chapter 17.) 
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8.3 The Sources of B 
Thus far, we have postulated the existence of a B field without describing either its 
sources or its properties. It is now appropriate to give such a description. In so 
doing we shall assume that the sources of the magnetostatic field are steady electric 
currents. The justification of this assumption has evolved from many experimental 
studies made on the properties of magnetic forces, and we shall not detail these 
studies here. Suffice it to say that magnetic forces appear to coexist with electric 
currents, and that even the magnetic forces associated with permanent magnets, 
where the existence of currents is not obvious, can be explained by a representation 
of the magnet as a current distribution (see Chapter 9). 

Assume that the magnetostatic B is a well-defined vector field in space; it ought 
to be characterized by its curl and divergence. In general we could write 

where k$ and k, are constants of proportionality having to do with choices of 
units, and p, and g are source densities independent of time that themselves repre- 
sent scalar and vector fields. In analogy to electrostatics, where V .  E = 47tk,p 
= p/cO, pM is called the magnetic charge density. If the (vector) field g were zero 
everywhere and p, were nonzero, then the B field would be in exact analogy with 
the E field and would possess the same properties: 

In fact, the early development of magnetism used such formulas for the calculation 
of B in regard to free space, and it still proves a useful calculational device (see 
Section 9.2). However, we now believe* that there are no such physical entities as 
magnetic charge, so that, in truth, p, = 0 everywhere, and in general g is equal to J, 
the electric current density. Thus, we believe the true equations of the static mag- 
netic field to be 

where p0 = 4nkM = 47t x lo-' N/AZ is a constant so chosen as to make the unit of 
current a convenient one (the ampere).? Equation (8.20) asserts the curl of B is linearly 
related to the electric current density. 

In a sense Eq. (8.20) thus relates magnetism to electricity, since J represents a flow 
of electric charge, obeying the equation of continuity V . J = - aplat. Indeed, Eq. 
(8.20) is telling us that we have a static condition for the electric as well as the 
magnetic fields, for if we take the divergence of both sides of Eq. (8.20) and use the 
vector identity [Eq. (1.66)] we obtain 

*There is no experimental evidence for magnetic monopoles (charges) but some theories allow for their 
existence. Experiments are still being done to search for them. 
?This is shown in Example 8.4. 
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implying 

a P V . J = O  and - = O  
at 

The charge density p is independent of time everywhere-the condition of 
electrostatics. 

We shall assume in the following that if the current distribution is known every- 
where, then a unique solution to the magnetostatic equation exists, and that if J is 
everywhere zero, so is B. This amounts to saying that any constant B  field inde- 
pendent of J has no physical meaning, although it satisfies Eqs. (8.19) and (8.20). If 
the sources of B  (that is, J) are localized, it implies that the B  field at infinity must 
tend to zero. 

We stress that although Eqs. (8.19) and (8.20) are the equations of the magnetic 
field of steady currents, and in general will be modified if the currents change in 
time, the equation V. B  = 0 will not have to be modified. There exists no evidence 
under any conditions, for magnetic charges.* 

8.4 Integral Equations of Magnetostatics and Ampere's Law 
That the divergence of B  is everywhere zero means that there are no sources of 
magnetic flux. That is, 

f 

This can be shown by integrating V . B  = 0 over a volume V and using the diver- 
gence theorem, $, B.da = j, V . B  du = 0. This result shows the flux of B  through 
any closed surface S is zero, so that the streamlines of B  ("magnetic lines of force") 
are everywhere continuous. There is no magnetic charge on which these streamlines 
can originate or terminate. Equation (8.21) might be called Gauss' law of 
magnetism. 

From the equation V  x B = po J, we derive the second fundamental integral rela- 
tionship, known as Ampere's (circuital) law: Through any possible orientable surface 
S, one can perform the scalar surface integral of this equation: 

But, by Stokes' theorem, 

so that 

* In truth, if magnetic charges (called "poles") always occurred as inseparable positive and negative pairs 
(dipoles) infinitesimally displaced from each other, each dipole producing a dipole B field as in electrosta- 
tics, the relation V . B  = 0 might still be valid (just as in dielectrics, where V.E = 0 if p, = 0 and 
K = constant everywhere). However, the behavior in and around matter indicates that no such poles 
exist, since the consequences of a magnetic polarization charge are not observed there. (Indeed, they are 
contradicted.) Therefore, we assume that magnetic poles are fictitious. Nonetheless, this fiction is some- 
times useful in calculating magnetic fields. 



252 MAGNETISM OF STEADY CURRENTS 

which is Ampere's law. The sense of rotation of C is related to the direction chosen 
for da, a vector normal to S at a point of S, as the sense of rotation of a right- 
handed screw is related to its motion along its axis. The current I is the net current 
flowing through S. Note, however, that for a given closed curve C there exist 
infinitely many choices of S for which to evaluate I, the only criterion on S being 
that its periphery be C. In applying Eq. (8.22) one chooses S so as to make calcu- 
lations easiest. 

Example 8.3 ' Integral Equations of Magnetostatics-Long, Straight Wire 

We consider a wire that is "infinitely" long-that is, long enough that end effects are negli- 
gible. We assume that a current I flows in the wire with a constant current density, so 
J = I/nR2. We note that B can be a function of p alone, not of 4 or  z, due to symmetry 
considerations. Now we use these symmetry considerations apd the integral equations of 
magnetostatics [Eqs. (8.21) and (8.22)] to  show that B = B,+; that is, B lies in the "6" 
direction. We apply Eq. (8.21) to the pillbox shown in Fig. 8.4a: 

f B.da =O-+Bp27tp1 = O  

which yields B, = 0. We next apply Eq. (8.22) to  the loop abcd of Fig. 8.4b, and use the fact 
that the current going through the loop I = 0 ;  that is, 

which yields B, = constant. We see that B,, if it exists, must be a constant. It  seems reason- 
able that the constant is zero.* 

( c )  

Figure 8.4 Applications of the integral equations of magnetostatics to a long, straight cur- 
rent. (a) Gauss' law of magnetostatics. (b) Ampere's law. (c) The B field as a function of 
distance. 

* We are using the argument that the currents "create" the field. It is clear that any constant field can be 
added to the field we are calculating without violating any assumptions. The constant B, must somehow 
be determined from the current, but cannot be so determined in this example. Thus B, must be zero. 
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Now, applying Ampere's law to the curve C, which is a circle whose center is at the axis of 
the wire and whose plane is normal to the wire: 

For p 2 R, I ,  = I ,  and Eq. (8.23) gives 

If the curve C was a similar circular path of radius p < R, then I ,  = np2J and Eq. (8.23) gives 

A plot of B, = B versus p, the distance from the wire axis is shown in Fig. 8 . 4 ~ .  
Note that the same arguments may be applied to any current distribution that is a function 

of the cylindrical coordinate p only and lies in the z direction J = Jz(p)2. Again one obtains, 
from Ampere's law, 

so that 

B, = - J,(pf)p' dp' 
P Sp 0 

To get an idea of the magnitude of B for "laboratory" currents, insert the values I  = 1 A, 
p = 1 mm = m in Eq. (8.24); B then equals 2 x tesla. The laboratory unit of field 
strength is thus more conveniently given as tesla = 1 gauss. The gauss, in fact, turns out 
to be the cgs (gaussian) unit of field strength. See Appendix I. 

The above example illustrates the fact that for filamentary currents the streamlines of B 
tend to circle around the filaments in the right-hand sense. With the thumb pointing along 
the current flow, B curls in the directions of the fingers of the right hand. 

Example 8.4 The Force Between Current-Carrying Wires 

If there are two long, filamentary, parallel wires I ,  and I : ,  the force between them is given by 
Eq. (8.7), where B is the field produced by I ,  at the position of an element dl' of the wire 
carrying current I : .  With the coordinate directions indicated in Fig. 8.5, and using the field 
produced by a wire, Eq. 8.24, we find 

1% 

1; 

Figure 8.5 Force between two parallel fila- 
mentary currents. 
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The force on element dl' is thus directed toward or away from the wire carrying current I ,  
depending on whether 1,l; 2 0, respectively. Thus, wires carrying antiparallel currents repel 
each other. The force per meter of the wires can be easily determined from Eq. (8.27); that is, 

In an instrument like the "current balance" shown in Fig. 8.6, 1 = 1'. The unit of current can 
be chosen arbitrarily by picking an appropriate value for po to use in Eq. (8.20). (The other 
quantities are purely mechanical in nature.) In the SI system, po is chosen to be 4n x lo-' in 
magnitude. The resulting unit of current, the ampere, then can be used to define the coulomb, 
and hence the constant c0 of electrostatics. It just "happens" that poco = l/cZ, where c is the 
speed of light. 

To get some idea of the strength of the magnetic force, note that if 1 = I' = 1 ampere and 
d = l cm, then dF/dl' = 2 x lo-'  N/m. A copper wire whose cross section is 1 mm2 has a 
weight per millimeter of about 8 x lo-'  N. 

Weights 

Figure 8.6 Current balance. 

Example 8.5 A sheet of Current-Integral Equations of Magnetostatics 

Consider a large plane, shown in Fig. 8.7a, on which a uniform surface current density flows: 
K = K@A/m). We now recognize the following statements: 

1. If P is perpendicular to the plane, then the B field cannot depend on the (z, y) coordi- 
nates orthogonal to x: B = B(x). This is because any displacement of a field point parallel to 
the plane leaves the current distribution unchanged in relation to the field point. 

2. The symmetry of the problem implies some relations between the field components: 

In words, upon moving from points (x, y, z) to (-x, y, z), the x and y components are 
reversed in direction and the z component remains unchanged. 

We can now apply the integral relations given in Eqs. (8.21) and (8.22) to find all the 
components of B. First, we apply Eq. (8.21) to the gaussian pillbox of Fig. 8.7b. Note that the 
contribution to the flux from the sides of the pillbox normal to the plane is zero because B is 
a function of x only. Then 

B.da=[B(x)-P+B(-x).(-&)]A 
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Figure 8.7 Application of the equations of magnetostatics to a current sheet to determine B. 
(a) Current sheet along the z direction. (b) Gauss's law of magnetostatics to determine the x 
component. (c) Ampere's law to determine the z component. (d) Ampere's law to determine 
the y component. 

Therefore, the x component B, is constant: B,(-x) = B,(x). However, in light of the 
symmetry condition, Eq. (8.29), B,(x) = -B,(-x).  These two relations can simultaneously be 
valid only if B, = 0. Next, consider the rectangular loop in the x - z plane, shown in Fig. 
8.7~. Application of Ampere's law and the realization that the current going through the loop 
is zero yields 4 B.dr  = 0. Since the line integrals of the other sides cancel identically, then 

f B.dr = [ (B(x) .2)  + (B ( -x ) . ( -& ) ) ] I  = 0 

which gives B,(x) = B,(-x),  and the z component of B is constant. This constant turns out to 
be zero for reasons analogous to those applied in Example 8.3: B, = 0. 

Finally, for a rectangular loop in the x - y plane, shown in Fig. 8.7d, application of 
Ampere's law yields 
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Using the symmetry relation of Eq. (8.29) gives 2B,(x) = poK,  or 

Since B, = B, = 0, we can summarize the result in vector form as follows: 

The field has constant magnitude on each side of the current sheet and a direction along 
K x A, where A is the perpendicular unit vector from the plane to the point where B is 
calculated. 

- - - - - -- - - - 

Example 8.6 Superposition of Filamentary Currents-Current Sheet 

Another way to find the magnetic field due to the infinite plane current sheet of Fig. 8 . 7 ~  is to 
regard the plane as a superposition of straight filamentary currents, each of magnitude 
dI = K dy. In Fig. 8.8 we have paired off filamentary currents, symmetrically dispersed about 
the field point. From Fig. 8.8 it can be seen that the resultant field of such pair is given by 

where 6, and 6, are unit vectors in the 4 direction with respect to-origi?s at each of the 
currents of the pair under consideration. The sum of the unit vectors +, + 42 can be written 
as 29 cos 4. Therefore 

po K 2 cos 4 dB=-- 
2~ r 9 dy 

Summing over all such pairs and noticing that dy = (d4Jcos 4, we obtain 

as was found in the previous example. 

A 

Y 
Figure 8.8 Determination of the field of a current 
sheet of Fig. 8 . 7 ~  by the superposition of filament- 
ary currents. 

Example 8.7 Toroid-Ampere's Law 

Suppose we have closely spaced filamentary windings wound around the doughnut-shaped 
object in Fig. 8.9. Such a configuration is known as a toroid. We take the z axis to be normal 
to the circular cross section of the toroid (along the axis). 

If the current distribution has rotational symmetry about the z axis, the B field cannot 
depend upon the angle 4. Consequently, on the circular paths shown, one inside, Ci, and one 
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Figure 8.9 A toroid showing two amperean loops C, 
and C,.  

outside the toroid, C,, the line integrals have the form 8, B.dr = ZlrpB,, where p is the 
distance from the z axis. If there are N total turns on the toroid, and the current through the 
wire is I, then Ampere's law for curve C ,  gives 

For curve C,, B, = 0, because the net current through any surface whose periphery is C, is 
zero. 

If the "thickness" of the toroid, Ap, is much smaller than its mean radius R, we may write 
Eq. (8.33) for the field B, everywhere inside the toroid as 

where n, is the number of turns per unit length (meter) of the toroid. In this approximation, 
B, is constant inside the toroid. Finally, it can be argued from symmetry considerations 
involving the turns that B, = 0 and B, = 0, so B = B,. (This is true if the turns essentially 
form a sheet of current everywhere perpendicular to 6.) 

Example 8.8 The Long Solenoid 

As the radius R of a toroid goes to infinity but the dimensions of its cross section remain 
constant, the toroid approximates an endless solenoid. Therefore, from Eq. (8.34), the field 
inside such a solenoid is given by 

B = p,,n,l (8.35) 

and the field outside the solenoid is zero. These are good approximations near the center of a 
long solenoid, where end effects may be neglected. Note that n,l is the current flowing per 
unit length on the "surface" of the solenoid, so we could also write 

B = poK (8.36) 

The field is constant and independent of the cross-sectional dimensions of the solenoid. Thus 
the solenoid can be deformed so that it approximates two current sheets, and it is then to be 
expected that its field is poK, which is the field of two current sheets. 
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A Remark 
In none of the foregoing examples have we used Ampere's law alone to find the B 
field. Two conditions are necessary, corresponding to specifications of the curl and 
divergence of B. Ampere's law is equivalent to specification of the curl only, so we 
have also had to invoke the flux continuity condition, 8 B.da = 0. 

8.5 The Vector Potential 
We now desire explicit methods for calculating B given the currents. To this end we 
turn to Eqs. (8.19) and (8.20Fthat is, V. B = 0 and V x B = p0 J-and use a result 
of vector calculus that says that if V . B  = 0 everywhere, there exists some vector 
field A such that 

We shall demonstrate this result by actually constructing the new vector field A, 
which is then called the vector potential of B. 

The converse of this result-namely, that if B = V x A, then V . B  = &is a con- 
sequence of the vector identity V.V x f = 0, where f is any (well-behaved) vector 
point function. We note that the vector A is not uniquely defined via Eq. (8.37). For 
example, a field A' = A + V$ also satisfies B = V x A', where $ is any scalar field, 
since 

In fact, A will be uniquely specified only if its divergence as well as its curl is given. 
Thus, to uniquely define A let us choose* 

V . A = O  (8.38) 

Then, from V x B = poJ, we obtain 

V x (V x A ) = p o J  

Using the vector expansion V x (V x A) = V(V . A) - (V . V)A, which is valid in car- 
tesian coordinates,t we obtain 

which means that the cartesian components of A satisfy the following equations: 

These are scalar equations; each of these component equations has precisely the 
form of Poisson's equation V20 = - P / E ~ .  The solution for A E (A,, A,, A,) is then 

* This choice is referred to as the Coulomb gauge. 

t More generally, V x (V x A) = V(V.A) - V.(VA), where VA is a second-rank tensor or dyadic (see 
Example 1.3). In cartesian coordinates, V.(VA) = (V.V)A = V2A, where V2 is the Laplacian operator. 
(See Eq. 1.67.) 



8.5 THE VECTOR POTENTIAL 259 

where ( = Ir - r'l and [Ai(co) = 01; and i stands for x, y, and z. More succinctly, we 
can write [A(co) - 01: 

Observe that the contribution of A to a point P(r) from the current density J(r') 
(in a volume element dv' located at r') is parallel to J(rf). 

In the case of a filamentary current I ,  

Po dl' dA(r) = - I  - 

47~ t 
where dl' is a differential length along the wire. Summing up over all volume 
elements of the filament, we obtain 

which defines the filamentary approximation. We have now shown that a vector 
potential exists. One may now verify directly that the expression given in Eqs. (8.42) 
and (8.44) satisfy V . A  = 0. 

We now reintroduce the concept of magneticJlux and derive a very useful relation 
between it and the vector potential. The magnetic flux F passing through a surface S 
is defined as 

r 

This equation reduces to Eq. (8.21) when S is taken to be a closed surface; that is, F 
vanishes. The flux can be rewritten in terms of the vector potential A by substituting 
B = V x A and using Stokes' theorem: 

where C is a closed loop bounding the surface S. 
This definition of flux in terms of A can be used to find the behavior of the 

tangential components of A when crossing an interface of two regions of space. 
Consider Fig. 8.10, which shows two regions 1 and 2 with a common interface, 
which has a surface current K with the vector potentials in the regions are A, and 
A,. We apply Eq. (8.46) to the rectangular path ABCD, whose sides AB = DC = 1 
are taken small. In addition, BC = AD are taken to be very small such that the area 
of the rectangle is vanishingly small thus making F vanish (for finite B), and their 
contribution to the line integral is also vanishingly small. Thus 

All = A21 (8.47) 
which establishes the continuity of the tangential component of the vector potential 
irrespective of the presence of K. 

The boundary condition on the normal component of the vector potential in 
passing through regions of currents can be determined from V x B = p, J. However, 
it is more convenient to use the equivalent boundary condition on B instead. Such a 
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(a)  ( b )  

Figure 8.10 (a) Application of the integral form of B = V x A to 
a rectangle at the interface of two regions to determine boundary 
conditions on the vector potential. (b) Application of the integral 
form of V.B = 0 to a pillbox at the same interface to find bound 
conditions on B field. 

boundary condition can be determined by applying Ampere's law to the same 
rectangle shown in Fig. 8.10. Using similar arguments on the size of the rectangle, 
one can easily show that 

where Bit is the tangential component of the field at the interface, K is the surface 
current density, and A a unit vector normal to the interface and pointing away from 
material 1. For a current sheet such that K is along the z axis, and A is along the x 
axis, Eq. (8.48) reduces to 

B2, - B1, = poK 

which is the result arrived at in Example 8.5. 
Now we show that the continuity of the tangential components of the vector 

potential is equivalent to the continuity of the normal component of B. When the 
flux is evaluated over a closed surface, Eq. (8.45) gives the same result obtained in 
Eq. (8.21); that is, $ Bsda = 0. (This result is a direct consequence of V.B = 0.) 
Evaluating the surface integral over a pillbox partially immersed in both regions 
and of vanishingly small height as shown in Fig. 8.10, one can show that 

B1n = B 2 n  (8.49) 
Since the continuity of the tangential component of A was established using the 
definition of the flux, then such a condition is equivalent to the continuity of the 
normal component of B. 

The vector potential A will be of primary use in calculating other quantities. As a 
simple analytical means of calculating B, its use is limited. The following example, 
however, describes one case where it is used to calculate a magnetic field. 

Example 8.9 Vector Potential and B Field for a Filamentary Current 

We choose cylindrical coordinates with the z axis along the wire to determine the vector 
potential just above the center of a long straight filamentary wire of length 2L (shown in Fig. 
8.11). We employ the filamentary approximation for the wire and note that, from Eq. (8.44), A 
must be in the z direction. Thus 
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Figure 8.11 A finite, straight filamentary 
current. Determination of the vector potential 
and from which B may be calculated. 

which can be evaluated to give the result: 

In the limit p 4 L, this result reduces to 

As L/p + a,, the value of A + a,. However, if we calculate B = V x A = -4 dA,/dp we 
obtain the result 

and if L/p  9 1, this equation gives the finite result obtained previously for the field outside of 
an infinitely long straight wire: B = ~ p o l / 2 n p .  

It will be observed that as L / p  + a,, A, takes the form 

A, = - ln p + constant 
2n 

since upon differentiation to calculate B, the constant disappears. That is, as long as A, has 
this form, one obtains the value of B given in Eq. (8.24). The constant is used to determine the 
zero of A. Thus, the reason for the infinity in A as L -+ a, is that we have tried to set 
A ( m )  = 0 .  This is not feasible when the current distribution itself extends to infinity, a 
situation reminiscent of the electrostatic potential of an infinitely long straight wire, uni- 
formly charged with a charge per meter of I. In that case we have, from Example 3.1, 

1 
@(p)  = - -In p + constant 

2x6, 

Formulas (8.42) or (8.44) for A(r) can thus only be safely used to calculate A for current 
distributions that are essentially localized inside a finite volume V (that is, J(r1) must fall off 
faster than l / r  as r + a,). The results of this example can be used to determine the potential 
of two parallel currents (see Problem 8.7). 
- - - -  - 

Example 8.10 Magnetic Vector Potential Due to a Nonfilamentary Current 

We consider an infinitely long cylindrical conductor of radius p, with a constant current I 
flowing in. Taking the z axis along the axis of the conductor, then the cartesian components 
of the magnetic vector potential satisfy Eqs. (8.40): 

V2A,  = V2A,  = 0 and V2A,  = -p,J 

where J = I/npg for p I p, and J = 0 for p > po. 
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Because there are no current sources in the x and y directions, A, and A, may be taken to 
be zero. Moreover, we take the component A, to depend only on the distance from the axis of 
the conductor. Thus A= satisfies the equation 

which can be easily integrated twice to  give: 

A , =  D l  I n p  + D  P > Po 

where C ,  C , ,  D, and D ,  are constants. 
The boundary conditions on the potential and the corresponding fields can now be used to 

evaluate these constants. Since the potential inside the conductor must be finite because the 
current is uniformly distributed (no filamentary currents a t  the axis), then C ,  must be taken 
to be zero. Moreover, the potentials should give the same value at p = po as required by 
A , ,  = A, , ,  thus giving the following relationship among D l ,  D, and C :  

The constant Dl  can now be evaluated. Taking V x A  in the region p > po gives 

and applying Ampere's law to a circle of radius p > po, with its center a t  the axis of the 
current, and its plane normal to the axis of the current gives 

This equation yields Dl = -(p01/2n). Substituting for Dl in Eq. (8.57) gives 

Thus the potentials and the fields are 

The above magnetic potential is determined to within an arbitrary constant C ;  however, the 
field is uniquely determined, indicating that there is no arbitrariness in evaluating measurable 
quantities like the forces on charge distribution. 

- - -- - - - - - - - - 

Example 8.11 Determination of the Magnetic Vector Potential Using V x A = B 

In cases of high symmetry where it is easy to  calculate the magnetic field, as  in cases where 
Ampere's law is applicable, then the magnetic vector potential can be calculated from the 
relation V x A  = B. For example, we calculate the vector potential produced by the current 
sheet examined in Example 8.5. Taking B from Eq. (8.32), we find 
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where the + and - signs apply to x < 0 and x > 0 regions, respectively. Because the current 
is along the z axis, we expect A to be also along the z axis. Therefore, Eq. (8.59) reduces to 

which can be easily integrated, as follows: 

1 
A, = f - po K(x  - x0) 

2 
(8.61) 

where xo is a constant which defines the position at which the potential vanishes. 

8.6 The Biot-Savart Law 
We shall now find a direct procedure for calculating B from a known current 
distribution. This is simply achieved by employing the relation B = V x A, where A 
is the vector potential of the current distribution written as in Eq. (8.42), 

We assume J to be nonzero only in the volume V. The V operator is understood 
only to operate on functions of r(x, y, z). The volume V over which integration 
occurs is independent of the point r where B is to be evaluated, and so the curl 
operation can be taken under the integral sign: 

Using the vector identity given by Eq. (1.58) yields 

Since J is independent of r(x, y, z), then 

Therefore, 

4 B(r) = - J(rf) x - dv' 
4n "J t3 

To each element of dv' there may be ascribed a contribution dB to the B field of 

which shows that dB is normal to the plane of 6 and J. 
If we have filamentary currents, like currents in thin wires, we can use the fila- 

mentary approximation of Eq. (8.9), as long as (4/c3) does not vary appreciably over 
the cross section of the filament: 
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Each element of current, I dl, may be interpreted as contributing to the total field an 
amount 

Equations (8.62) to (8.65) are all variously referred to as "Biot-Savart" formulas. 
They are especially useful in calculating B directly from the currents, as will be 
illustrated in the examples below. They indicate that the B field for a current 
element falls off as 1/r2 as did the E (electrostatic) field for the charge element. This 
is in consonance with the fact that the vector potential A varies as l/{, like the 
electric potential 0. 

Example 8.12 Biot-Savart Law-Field on Axis of Circular Loop 

Current flows, as shown in Fig. 8.12, around a circular loop of radius R. We observe that as 
dl is summed up around the loop, the only component of B that emerges lies along the z axis; 
that is, B = B2. Using the filamentary approximation given in Eq. (8.65), 

where dl = R d 4  4, 5 = zP - R). Note that (dl x 5 ) .  2 = RZ d 4 ;  hence 

Po IRZ d 4  dB,  =-- 
4n 5 3  

Since 5 remains constant as we integrate around the loop, we obtain 

The field at the center of the circle is thus p01/2R. It is not easy to find B off the axis, 
however, the field can be calculated near the axis using V.B = 0. Note that the vector 
potential of the loop on the axis is zero (see Problem 8.17). 

X 

Figure 8.12 A current loop. 
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Example 8.13 Field on the Axis of a Circular Solenoid 

Let us calculate the field on the axis of the solenoid in Fig. 8.13. We assume the solenoid to 
be constituted of adjacent current filamentary loops, closely packed and of negligible pitch. 
The current distribution is thus akin to a cylindrical sheet of current. If there are n, such 
loops per unit length and the current per loop is I ,  the current per unit length, K, of the 
equivalent current sheet is K = n, l .  The direction of K is indicated in the figure. In a length 
dz, the current is K dz. The contribution to B on the axis of the solenoid of a loop carrying 
this current is, from Example 8.12, 

Noting that R/z = tan 9, dz = -R d9/sin2 9, and 5 = R/sin 9, 

p,K R dB sin3 9 d B =  -- 
2 sinZ 9 R 

sin 9 d9 
2 

Therefore, 

@' poK B = dB = T [COS 9, - cos g2] 

For a point P at the center of the solenoid, 

If 9, +&that is, if the solenoid is very long compared to its radius-then B = po K ,  which is 
a result obtained previously using Ampere's law (see Example 8.8). Thus the field at the center 
of a finite solenoid is less than for an infinite solenoid. In order to have cos 9, = 0.99, the 
diameter 2R of the solenoid should be about 117 of its length. 

As an idea of the magnitudes involved, note that if I  = 1 A and n, = 10/cm = 1000/m, then 
K = n i l  = 1000 A/m, B for the infinitely long case becomes 4n x tesla (or, in gaussian 
units, 4n gauss). 

L 
Figure 8.13 A solenoid. 
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If the solenoid is semiinfinite (i.e., if 0 ,  + 0), then B + poK[l - cos Oz]/2. If 0 ,  = n/2 (at 
edge of solenoid), B +poK/2. The field is just one-half the value of that in the infinite 
solenoid. 

Example 8.14 Biot-Savart Law-Field of a Straight Wire Segment 

Many circuits may be considered to be composed of straight wire segments. The B  field of 
these segments may easily be computed as follows. Consider Fig. 8.14. The field from each 

Figure 8.14 The B  field of a straight wire seg- 
ment, calculated by means of the Biot-Savart 
law. 

elementary segment dl will be in the same direction at a given point, P. This direction is 
"around" the z  axis (the direction of 2  x = 4). From Eq. (8.65), 

POI x 5 d B = - -  
4n t3 

where dl = dz'2 and 5 = -zf2  + pfi. Note that dl x 5 = p dz' 6; thus 

pol  pdz' A 

d B = - - +  
4n r3 

Noting that r = plcos 0  and z' = -p  tan 0, 

p o l  pZ d0 cos3 0  A d B =  + =  -- 
4n cos2 0  p3 

cos 0 d0 / 
4np 

Therefore 

POI B  = IoydB = rzcOs 0 d0 4 = - (sin 0, - sin 0,)$ (8.70) 
4np 0 ,  4 v  
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Note that, for a line segment of infinite length, 0, -+ - z/2 and 0, -+ + 4 2 ,  so B -+ po 1/2np, as 
found previously using Ampere's law in Example 8.3. We note that Eq. (8.70) may be used to 
determine the field of multisegment circuit (see Problem 8.13). 

Example 8.15 B Field on the Axis of a Spinning Charged Disk 

A uniformly charged thin disk of charge density a,  radius R, and thickness t < R rotates with 
an angular velocity w about the z axis of'symmetry, as shown in Fig. 8.15. 

Figure 8.15 Spinning charged disk. 

The current density in the disk is given by pv = owp&, where p is the distance from the 
axis of the disk. A ring-shaped portion of the disk of radial thickness dp thus constitutes a 
current ring of current d l  = awp(dp). 

The B field on the z axis due to this current ring was given in Eq. (8.67): 

Substituting for dl, writing 5 in terms of p and z, and integrating from p = 0 to p = R, we get 

where C = [pooa/2]. With the substitution uZ = p2 + z2, we find 

This result can now be used to determine the field due to a spinning charged sphere (see 
Problem 8.16). 

8.7 The Magnetic Scalar Potential 
We have seen that because V x B = ,u,J for steady currents, B is not a conservative 
field. Therefore it makes no sense to introduce a magnetic scalar potential in the 
same sense as we introduced an electrostatic potential. Nonetheless, there usually 
are certain regions of space where V x B = 0. For these regions we are permitted to 
introduce a scalar potential function just so long as the space is "simply connected." 
A simply connected region is one for which any closed curve constructed therein 



268 MAGNETISM OF STEADY CURRENTS 

( b )  

Figure 8.16 Simply connected regions. (a) 
Because any loop c in V can be shrunk to zero 
without crossing the currents, then V is a 
simply connected region. (b) The volume V is 
not a simply connected region. 

can be shrunk down continuously to a point without the curve leaving the region, 
as in Fig. 8.16. The relevance of simple connectedness to magnetism is that the 
sources of magnetic fields are current loops, which by their nature render space not 
simply connected. If the current loops are finite in size, however, it is possible to 
imagine them as spanned or enclosed by surfaces that leave the rest of space simply 
connected. 

Assuming then that there exists a simply connected volume V, where V  x B  = 0, 
we define a magnetic scalar potential function @, in V, such that 

Substituting this in V . B  = 0 gives 

This is just Laplace's equation again. We can find unique solutions for it if, on the 
boundaries of V, certain boundary conditions are satisfied (e.g., the normal compo- 
nents of B  must be continuous across a boundary surface, and the discontinuity of 
the tangential components is proportional to the surface current density, see Eqs. 
8.48-8.49). The techniques to be used for finding B  in simply connected regions in 
which there are no currents, therefore, are just those that are used in electrostatics. 

Let us now attempt to find an explicit expression for @, in terms of the current 
distribution outside V by use of the Biot-Savart law and Eq. (8.72). Consider a 
single current loop shown in Fig. 8 .17~.  The space outside this loop is not simply 
connected, but we can make it so by erecting an imaginary surface to span the loop. 
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(b )  
'-1 

Figure 8.17 (a) The magnetic scalar potential of a current 
loop can be calculated from the solid angle subtended by 
the loop with respect to the point of observation. (b) Using 
the solid angle to illustrate that the magnetic scalar poten- 
tial is not continuous in regions that are not simply 
connected. 

This surface will prevent us from drawing an arbitrary closed curve around and 
through the current loop. The loop is therefore at the periphery of this surface. Any 
such surface will suffice. 

Now, if 0, is to be a potential function in V, then 

where dr is an infinitesimal displacement of the field point P, which brings about a 
change in potential d a m .  But, from Eq. (8.64), the magnetic field for a filamentary 
current loop C is 

Therefore, 



Now note that a 
the change in Q,, 

-dr = dr' in the 

change dm,, affected by a displacement of P by dr, is the same as 
affected by displacing the loop rigidly by dr' = -dr. Thus, writing 
above integral, we have 

dr' x dl 
do, = & f c Y . d r 1  = &fCT. 4 

We observe that dr' x dl is an element of area, d2a'. Consequently the integrand of 
the integral is an element of solid angle dZR; that is, 

Taking the line integral around C then yields the change in solid angle, as observed 
at P, when the whole current loop is rigidly displaced by dr'; that is, 

or* 

Two comments are pertinent here: 

1. VR, the gradient of the solid angle R, is obtained by taking derivatives with 
respect to the coordinates r(x, y, z) of point P, since R will be a function of 
these coordinates. 

2. R is reckoned positive when j, da' E A points toward the point P, or, in other 
words, when the current I  rotates in a counterclockwise direction as observed 
from P. 

We emphasize that in computing 

along a path C, we must not pass through the borders of our simply connected 
region. Thus, for the paths C, and C, in Fig. 8.17b, different results (differing by 
p o l )  obtain for the integral because either C, or C, will penetrate any imaginary 
surface constructed to keep the space simply connected. It is for analogous physical 
reasons that in general we cannot use the equation V2Q,, = 0 to solve magnetic-field 
problems in regions where J # 0. 

Example 8.16 The Magnetic Scalar Potential of a Long Filamentary Current 

In Example 8.9 the magnetic vector potential of a long filamentary current was calculated. In 
this example we show that the magnetic field of such a current can also be calculated from a 
scalar potential. Away from the current, the scalar potential Q, satisfies Laplace's equation. 
Because of the symmetry of the problem, the potential is expected to depend on only one 
coordinate. 

* Note that @,,,(co) = 0. The constant of integration is thus chosen to be zero. 
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The solution of Laplace's equation in cylindrical coordinates was used to solve for the 
electric potential and electric field of a long, charged wire. The potential was taken to depend 
on a single variable, namely, p. Such a dependence results in a radial electric field. In the 
magnetic case the nature of the magnetic field is quite different, and it is expected to be in the 
I$ direction. Therefore it is natural to take the magnetic scalar potential to depend on 4 
rather than p. Thus 

dZ@,  -- 
do' - O 

which has the solution 

The corresponding magnetic field is derived from B = -po  V@,: 

Ampere's law can be used to evaluate the constant C .  We take a circular loop normal to the 
wire with a radius p and the center located at the wire. Then 4 B . d l =  pol  gives C = -1/2n. 
Thus 

I POI - 
@ = - - 4  and B = - - $  
" 2n 2 n ~  

It is to be noted that this scalar potential is not one of the cylindrical harmonics derived in 
Eq. (3.65). Those cylindrical harmonics were constructed by requiring the solution of 
Laplace's equation V 2 @  = 0 to be single-valued; that is, @(4 = 0 ,  p)  = @(4 = 2n, p). This 
requirement is not invoked in the present case, since the magnetic potential is not single- 
valued. Whereas the cylindrical harmonics correspond to the cases of nonzero separation 
constant of the radial and the angular parts of Laplace's equation [Eq. (3.60)], the magnetic 
potential corresponds to the case where the separation constant is zero. Taking K = 0 in Eqs. 
(3.61) and (3.64) gives 

d2 Y - - = O  and d(p$)= 0 
d 4 ,  dp 

which have Y = C , 4 ,  and R = C ,  and R = C ,  In p solutions respectively. Hence the poten- 
tial, @, = RY, can be represented by the sum of two terms; that is, 

Q m = C 4 + D 4 1 n p  (8.80) 

where C , ,  C , ,  C , ,  C ,  and D are constants. The second term in Eq. (8.80) introduces magnetic 
fields that are not physical; they depend on 4 and In p and have radial components. There- 
fore D is set to zero, and consequently the potential becomes a function of a single coordi- 
nate, as was arrived at in Eq. (8.77). 

Example 8.17 Determination of the Magnetic Scalar Potential 
Using B = - pO V@, 

In cases of some degree of symmetry in which the magnetic field can be easily determined, the 
relation B = - p o  V @ ,  can be used to determine the magnetic scalar potential. We consider 
as an example a long filamentary current, and write, from Eq. (8.74), po@, = - B.dr .  
Substituting for B from Eq. (8.24), which was determined from Ampere's law, we get 

which is exactly the result arrived at in Eq. (8.78). 



Example 8.18 Tbe Magnetic Scalar Potential on the Axis of a Circular Loop 

We calculate Q,(P) on the z axis of a filamentary circular current loop. In order to determine 
Q we imagine the loop to be the periphery of a spherical surface centered at P, as shown in 
Fig. 8.18. Then R = (area of spherical cap)/c2, or 

R = I [ S2'(2 sin 8. d# = 2n(1-  cos e) 
t2 0 0 

Therefore 

Let us now calculate B, = -p0(aQ,,,/az). It is to be noted that we cannot calculate the other 
derivatives of Q ,  because our expression for Q ,  is true only on the z axis. However, by 
symmetry, these other derivatives are zero. Thus 

which is the same result obtained before in Example 8.12. At points that are not located on 
the axis of the loop, the potential and the field cannot, as mentioned above, be obtained in a 
closed simple form. However, we can show that expansions for the radial and angular 
components of the magnetic field, B, and B,, can be derived using the expression on the axis 
and with the help of Laplace's equation. We consider the region z < R, and expand the 
potential given in Eq. 8.81 in powers of z /R .  The result is 

Figure 8.18 Magnetic scalar potential of a 
current loop in terms of solid-angle 
considerations. 
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On the other hand, the potential can be represented by the spherical-zone solution of 
Laplace's equation since the potential is expected not to depend on 4. Therefore, for the 
r  < R region, 

At the z axis-i.e., 0 = 0-P, = 1 for all n: Thus Eq. (8.83) is reduced to: 

Comparing Eqs. (8.82) and (8.84), we can find these constants and hence the potential. The 
result is 

I { r  (cos 0) 1 ( r ) '  
@ = - 1 - ----- 
" 2 R 

+ - - P ,  ( C O ~  0) - 
2 R 

The corresponding magnetic field components can now be easily obtained by taking the 
gradient of @,: 

8.8 Magnetic Effects of a Small Current Loop 

8.8.1 The Scal'ar Potential 

Consider a small current loop located at r', of area Aa' and current I. If the current 
loop is small enough and lies in a plane, then we may use Eq. (8.75) to represent the 
potential 0, at r, calling it A@,, as follows: 

where Aa' is perpendicular to the plane of the loop. This expression is reminiscent of 
the electric dipole potential [Eq. (2.44)]: 

where Ap is the dipole moment. Thus, aside from the numerical constants, the 
potentials, and thus the fields, of small currents loops and dipoles are identical. For 
this reason, the quantity 

I Aa' = Am (8.87) 

is called the magnetic dipole moment of the loop. Thus 
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and 

Po 1 
AB = -PO V(A@,) = - - [3(Arn. {){ - Am] 472 t3 

just as the case of the field of an electric dipole (see Example 2.9): 

If we had an area da' and the polarization per unit area were P,, then the dipole 
moment of the area, dp, would equal P, da'. The quantity analogous to P, in the 
magnetic case is the current I. The current I is thus the "magnetization per unit 
area" of the loop da' and the magnetic phenomena of small current loops at points 
distant from the loops (thus the loops are small) are indistinguishable from the 
magnetic phenomena of "magnetic dipoles." 

8.8.2 Magnetic Moments 

Even if a filamentary current loop does not lie in a plane, its magnetic moment may 
be defined as IS, where S E I, da. Consider Fig. 8.19. One may imagine the surface 
S spanning this loop to be composed of small planar surface elements da', around 
each of which there flows a filamentary current I, so that the current internal to the 
actual loop is zero (the currents of adjacent elementary loops canceling). Then, from 
Eq. (8.86), the potential for each elementary loop is d@, = (4n)-'I da' . 5/t3, and 
consequently 

Note that this formula is identical to Eq. (8.75) since Q = Js da'.5/t3. Also note that 
I da' is the magnetic dipole moment associated with the area da'; that is, dm = I da'. 
In our simply connected region, it is thus seen that the field due to a filamentary 
current loop may be ascribed to fictitious magnetic (di)poles lying on any surface of 
the loop whose periphery is the loop itself. The area density of these fictitious 

Figure 8.19 A macroscopic current loop 
constructed from elemental magnetic loops 
(dipoles). 
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dipoles is I .  They are aligned along da'. When 5 >> largest dimension of S ,  then &/r3 
can be taken outside the integral; that is, 

where m = IS is the dipole moment of the loop. 
The magnetic dipole moment of a current loop has been defined above as IS .  If a 

current distribution is considered as consisting of many individual filamentary cur- 
rent loops, each of magnetic moment I j S j ,  the magnetic moment of the sum is just 
the vector sum C , I j S , .  

We now derive general expressions for the magnetic moment of filamentary and 
volume current distributions and discrete charges in motion. Taking an origin at the 
apex of the conical surface, S j ,  we see that we may express the element of area as 

1 
da = - (r' x dl') 

2 

Thus, from Eq. (8.87), 

If we make the transformation from a filamentary current distribution to a volume 
current-density distribution by the identification C j  1 I  dl * [ ] + 1, J dv * [ 1, 
whereby the sum C j  is meant of summation over all the filamentary current tubes of 
the total current distribution, then the following expression for the magnetic dipole 
moment is obtained. 

where r' is the displacement of element du' from an arbitrarily chosen origin. 
It is interesting to remark that the all-encompassing expression for the magnetic 

moment of a distribution of charge elements dq(r) moving at r' with average velocity 
v(rl) is given by 

where the sum is over all the charge elements of the distribution and dq(rf)  and v(rl) 
are assumed to be scalar and vector fields, respectively. For example, if one thinks of 
an atom as a positive stationary nucleus around which electrons are moving, then in 
general the atom will possess a magnetic moment. For example, if the hydrogen 
atom is represented by an electronic charge, -e, moving in circular motion at 
radius a, around a proton of charge +e, then Eq. (8.95) yields for the magnetic 
moment the single term 
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Example 8.19 Magnetic Dipole Moment of a Charged Spinning Disk 
and a Solenoid 

If one surface of the spinning disk has a constant surface charge density a, then when the disk 
spins about its axis with angular frequency o ,  each circular ring of the disk at distance p 
consists of a current d l  = ao dp = amp dp, and a magnetic moment dm = dl(np2) = 
nawp3 dp. The total magnetic moment of the disk is thus 

naoR4 
m = Jdm = o n 0  JORp3 dp = 

In this problem, we have used the vector property of magnetic moments; that is, the magnetic 
dipole moment of an object is the sum of the magnetic moments of its constituents. 

Let us calculate the magnetic dipole moment of a straight circular solenoid of length L and 
radius R that has n turns per meter and a current I per turn. Regarding the turns as plane 
filamentary loops, each loop has a dipole moment equal to IS = IA2 with A = nR2. The 
dipole moment of the solenoid, which consists of n L  loops, is then 

Alternatively, the solenoid may be regarded as a circular sheet of current whose surface 
current density K equals nlQ = KQ, then Eq. (8.93) assumes an integral over the surface of 
the solenoid of the form 

[r' x K(r')]dal 

where we have assumed the current to flow in a vanishing thickness at the surface of the 
solenoid. Taking the origin of our (cylindrical) coordinate system on the z axis so that 
r' = 2'2 + Rfi, we have 

f x K(r') = (z'2 + Rfi) x K$ = -fizlK + 2RK 

In the integration, the fi term vanishes by symmetry, leaving the result 

as before. 
One motive for characterizing the solenoid by its dipole moment is that at distances far 

from the solenoid (compared to its dimensions), its B field is the same as that of a dipole (of 
moment m). 

8.83 The Vector Potential of a Small Current Loop 

In the preceding discussion we have used the concept of a magnetic scalar potential 
to introduce the notion of a magnetic dipole moment. In the present subsection we 
show that with the use of the vector potential the concept of magnetic dipole 
moment plays a similar role. To this end, we consider the vector potential of a 
small, filamentary current loop, "small" meaning that we are interested in calculat- 
ing the vector potential only at distances large compared to the dimensions of the 
loop. 

As indicated by the notation of Fig. 8.20 and Eq. (8.44), 
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X 

Figure 8.20 Vector potential of a small cur- 
rent loop. 

The integral is transformed via the corollary of Stokes' theorem [Eq. (1.74)]: 

$:rn=jFXvm 

so that (see the notation of Fig. 8.19) 

Since [from Eq. (8.87)] Ida' = dm, we have the result 

where the integral indicates a summation over all the dipole elements dm = I da'. A 
"small" current loop now means that the term 5/C3 remains essentially constant for 
all dm, so it can be factored from the integral, yielding 

where m is the magnetic dipole moment of the small loop and 6 is now the displace- 
ment of the field point of P from the loop. That we have the right to call this field a 
dipole field only becomes apparent when we calculate B = V x A. For purposes of 
calculation, it is convenient to use a spherical coordinate system with the origin at 
the dipole, so that (r, 8 ,4)  -+ (5, 8,4); then we get the two forms 

Po m 
B(C,8,4) = V x A((, 8) = - ( 2 cos 8 t  + sin &) 

4~ 5 
(8.98) 

which are precisely the forms of the electric dipole field [Eqs. (2.46) to (2.47)], which 
we also got from the magnetic scalar potential [see Eq. (8.89)]. As was done in 
connection with the scalar potential a, (which we could now define from this latter 
expression), we can find the B field for an arbitrary loop by considering it as a mesh 
of infinitesimally small loops, each having a dipole moment dm = I da', and sum- 
ming over all these constituent dipoles. In fact, Eq. (8.96) represents just such a 
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summation. To obtain the resultant B from any distribution of dipoles (i.e., from 
any distribution of loops) we need only calculate B = V x A from this equation. 

Equation (8.97) is valid for any current distribution whose dimensions become 
small compared to the distance from any point inside the distribution to the field 
point. It is not restricted to current loops. To show this, consider a current distri- 
bution whose current density J is given at any point inside a finite volume V and is 
nonzero only inside V. The vector potential is given by (Eq. 8.42), as follows: 

If 5 = Ir - r'l is larger than the greatest linear dimension of V, we can expand the 
function 115 using the binomial theorem, just as was done in the electrostatic multi- 
pole expansion in Chapter 2: 

Since r'lr < 1, successive terms of this expansion become progressively weaker, so if 
r'lr 4 1, only the first nonvanishing term need be considered. Here a departure from 
the case of the electrostatic multipole expansion becomes evident, because the 
monopole term is always zero if the currents are steady: 

S J(rl)dv' = 0 if V' . J(rl) = 0 (8.99) 

Example 8.20 Proof of J J dv = 0 

We use cartesian coordinates {Si} and the implied summation convention to show the truth 
of the above assertion. Writing J = Si ( l i .  J )  and noting that Si = V'xi ,  we have 

where V is any volume that encloses all the current. Therefore, S can be chosen to lie outside 
all the current; that is, J(rk) = 0. Therefore, j, J(r1)dv' = 0. 

Note that since streamlines of J are continuous (nonending), any steady current distri- 
bution can be thought of as made up of a set of filamentary current tubes. Hence, for any 
volume integral over J, one can make the substitution 

The volume distribution is conceived of as a (possibly infinite) set of filamentary loops. Thus, 
the integral of J over V becomes a sum of closed line integrals each of the form 
$ I dl = I $dl = 0. Clearly, the volume integral must then be zero. 

The second or dipole term in the above expansion thus assumes the primary 
significance. It can be shown to have the same form as Eq. (8.97). In fact, one can 
show (see Problem 8.26) that 

rl)J(rl)dd = m x r (8.101) 
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where m was previously defined in Eq. (8.93) 

It  is now clear that far enough away from any current distribution whose dipole 
moment is m, the vector potential is given by Eq. (8.97). In addition, since any 
current distribution can be decomposed into an infinite sum of vanishingly small 
components each with its own dipole moment dm, then as long as (the observation) 
point P(r) is some finite distance from all current elements, we can use Eqs. 8.94 and 
8.96 for the potential. It will be observed that successive terms of this expansion 
differ by a factor of the order of R'lr, where R' is a linear dimension characteristic of 
the current distribution. Therefore, the dominant term of the distribution, when 
r B R', will be the first non vanishing term. If the dipole term vanishes, then the 
dominant contribution in the expansion of Eq. 8.42 would be the third contribution 
which involves terms of the order R '  2 / r 2 .  These terms will not be discussed in this 
book. 

8.8.4 Localized Current Distribution in an External Magnetic Field 

If a current distribution is placed in an external magnetic field B, it experiences a 
force whose general expression is given by Eq. (8.4). Because many applications 
involve steady current distributions that are localized in small regions of space 
("small" being relative to the scale of length of interest to the observer), we will 
derive an approximate expression of the general force appropriate for this special 
case of localized distributions. Let us take the external magnetic field B to vary 
slowly over the region of the current and assert that V x B = 0, and V . B  = 0 in this 
region. Because of the slow variation of B, we utilize a Taylor's series expansion to 
write the following approximate expression for B: 

where V depends on r' and operate only on B, and the origin of the coordinate 
system used is chosen suitably within or very close to the distribution. The force 
given by Eq. (8.4) then becomes 

The first integral vanishes since the volume integral of J vanishes for steady currents 
[this fact was proved in Example 8.201. Thus the lowest-order contribution to F 
involves the gradient of B. The expression for the force will be manipulated further 
in order to transform it to a form that involves the magnetic moment of the distri- 
bution m = J r' x J(rf)dv', previously defined in Eq. (8.93). To accomplish this we use 
the vector identity given in Eq. (1.59), and utilize the fact that V x B = 0 and the 
fact that the gradient operator operates only on B 

F = J(rl) x [V(rl . B(O))]do' I (8.104) 

Also one can write J(r') x [V(rl. B(O))] = - V x [J(rl. B)], and hence 
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Finally one can show that 

S J(r'. B)dvt = B x r' x J(r')dv' = - B x m 

Thus 
S 

This expression of the force can also be written in two other useful forms, which 
follow from the properties V.B = 0 and V  x B = 0: 

The total torque on the localized current distribution is determined by summing 
over the torques dr on the various elements of the distribution: 

Thus 

Using the triple vector product relation, the torque is written as 

The second integral can be shown to vanish for a localized current distribution, as 
follows: Writing 

and transforming the volume integral to a surface integral, one can easily convince 
oneself of this fact. The first integral is the same one considered in Eq. (8.105); thus 

Now we calculate the mechanical work needed to be done to place a localized 
current distribution of magnetic moment m in a uniform magnetic field B, with m 
making an angle 8 with B. To simplify the calculation we imagine that the distri- 
bution is brought into the field with its moment pointing along the field. After it is 
in place, the distribution is then rotated to its final position. 

Since the total force on the loop is zero in a uniform magnetic field, mechanical 
work is done only in the rotation step. The principle of virtual work says that the 
mechanical torque is the rate of change of work with angle; that is, dW = r dB. 
According to Eq. (8.109), the torque exerted by the magnetic field is restoring r = 
- mB sin 8. Thus 

d w ( ~ ~ ~ ~ )  = - mB sin 8 d8 

W(mcch) = mB cos 8 + constant 

Taking W(m"h) to be zero at 8 = 7c/2 requires the constant to be zero; thus 
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This work is stored in the system as energy in the dipole-field system 

This expression is analogous to the case of an electric dipole p  placed in an 
electric field 

We should note that while - p e  E is the true total electrostatic energy of the dipole, 
-m.B  is only part of the total magnetic energy of the dipole. In the magnetic case 
we will find in later chapters that the current in the distribution is affected by the 
magnetic field, and hence we have to take into account the energy required to 
maintain the current in the distribution (see Faraday's law in Chapters 11 and 12). 
We should, however, note that the result -ma B can still be used to find the forces 
on localized steady currents. 

8.9 Summary 

In the presence of an electric field E and a magnetic field B, the electromagnetic force on a 
charge q moving with velocity v is 

The force qv  x B is commonly referred to as the Lorentz force. The Lorentz force on the 
charge of volume V is given in terms of the current density J in the volume V 

(8.4) 

The condition under which the operation 

is valid is called the filamentary condition or approximation. Thus the Lorentz force on a 
filamentary current is 

The basic equations of magnetostatics where the currents are steady (V. J = 0) are 

V . B = O  and V x B = p o J  (8.19),(8.20) 

where p,/4n = lo-' N/A2. The relation V.B = 0 implies that there are no magnetic mono- 
poles. The curl relation is called the differential form of Ampere's law. The integral form of 
Ampere's law can be derived by integrating the differential one over a surface S of perimeter 
C and then applying Stokes' theorem: 

where I = j, J . d a  is the total current through S. 
The nonexistence of monopoles-V.B = &implies that B can be written as a curl of a 

vector potential A; that is, 

B = V x A  (8.37) 

When this is substituted in V x B = poJ, and using V.A = 0 (Coulomb gauge), we get 
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which has the solution 

Taking V x A explicitly, we arrive at the Biot-Savart law 

J  x (r - r') 
dv 

or for a filamentary current 

po dl x (r - r') d B = - I  
4n J r  - r'I3 ' 

The differential equation for A can be solved in cases of cylindrical symmetry. If more than 
one region in space separated by current distributions are considered, then boundary con- 
ditions on A and B are needed to match the solution at the interfaces. These are derivable 
from the basic differential equations of B: 

where t and n stand for tangential and normal to the interface and K is the surface current 
density. 

In regions where J  = 0, the curl of B  vanishes and hence one can introduce a magnetic 
scalar potential @, in analogy with electrostatics 

Substituting this in V.B = 0 shows that @, satisfies Laplace's equation 

The magnetic scalar potential for a current loop I at a point of observation P is 

where R is the solid angle of the loop with respect to an origin at the point of observation. 
The magnetic scalar potential of a current loop of area a  and current I  at large distances 

compared to the dimension of the loop is 

where 6 = r - r' and m  = l a  is the magnetic moment of the loop. This potential has a similar 
form to that of an electric dipole, and hence it is referred to as the field of a magnetic dipole 
of moment m .  The B  field of the loop is a dipole field: 

The magnetic moment of a current distribution is 

1 
d m = - r  x J d v  

2 
The vector potential of a magnetic dipole is 
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If a magnetic dipole is placed in an external magnetic field, then it will exhibit the follow- 
ing force, torque, and energy. 

F = V x (B x m) = (m.V)B = V(m.B) (8.107) 

r = m x B  (8.109) 

U = -m.B (8.111) 

Problems 

8.1 Write down the equation of motion for a particle of mass m and charge q in a region 
where E and B are nonzero. What is the magnetic field needed to confine an electron 
with velocity v = lo5 m/s to an orbit of 10-'Om radius? 

8.2 A long cylinder of radius p, and axis along the z axis carries a current of density 
J = e-'P2. Determine the magnetic field everywhere. 

8.3 A filamentary current I = Io2 is at a distance h just above and parallel to the symmetry 
axis of a current sheet of width W and density K = K02. Determine the force per unit 
length on the filamentary current. Find the force when W becomes very large. 

8.4 A cylindrical conductor along the z axis of radius p, = 10 cm produces a magnetic field 

(a) Determine the current density and the total current in the conductor.. (For the 
latter, Ampere's law may be used.) (b) Determine B outside the conductor. 

8.5 Show explicitly that V.B = 0 near a long, straight wire that carries a current I. Use 
either cartesian or cylindrical coordinates. What is V x B near this wire? 

8.6 A rigid triangular loop carrying current I, is in the plane of a long wire carrying 
current I,, as shown in Fig. 8.21. Calculate the force F on the diagonal side by I,. 

Figure 8.21 

8.7 Show that the vector potential due to two parallel line currents flowing in opposite 
direction is A = pol& ln(p,/p1)/2n, where p, and p, are the distances from the observ- 
ation point to the wires and 2 is a unit vector parallel to the wires. 

8.8 Show that the following are all possible vector potentials of the uniform field, B = B2: 
A, = - ByS, A, = Bxf, A, = -4r x B. For which of these is V.A = O? Show that A, 
- A, is the gradient of a function, V$. Plot A,, A,, and A, - A, in the x - y plane. 

8.9 Given the two circuits shown in Fig. 8.22: a very long, straight wire and a rectangular 
loop which lie in the same plane. A current I, flows in the long wire. (a) Calculate the 
magnetic field B produced by the long wire at a distance p from it. (b) Calculate the 
magnetic flux through the rectangular loop. (c) Determine the vector potential dif- 
ference between p, and p,. (d) If a current I, flows clockwise in the rectangular circuit, 
find the forces on the segments ab and bc. 
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Figure 8.22 

8.10 Consider a very long solenoid with n turns per unit length and a current I. The z axis is 
taken along its axis, as shown in Fig. 8.23. (a) Determine the magnetic field inside the 
solenoid, and the flux through the rectangular curve C. (b) Assume the vector potential 
A to be along the y axis and independent of y. Determine A inside the solenoid for the 
case where A is zero at the axis of the solenoid, using $, A.dl = F. (c) Repeat part b 
but with the assumption that the vector potential is along the x axis and independent 
of x.  (d) Write a linear combination of the potentials in parts b and c that gives the 
same magnetic field and satisfies V.A = 0. (e) Show that the sketches in Fig. 8.23b, 
8.23c, and 8.231 represent the potential of parts b, c, and d. 

(b)  ( c )  (dl 

Figure 8.23 Vector potential inside a very long solenoid. (a) Top view of the solenoid 
showing an amperean loop C. (b), (c), and (d) Three sketches of the possible potentials. 

8.11 Determine the vector potential of a very long filamentary current using Ampere's law 
and V x A = B. 

8.12 (a) Given a current circuit in the shape of a circle of radius r. If the circuit carries the 
current I, derive the magnetic field B at the center of the circle. (b) A flat coil is wound 
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so that it contains a very large uniform number of turns per unit distance along its 
radius. The inside and outside radii of the coil are a and b, respectively. It carries a 
current I, and has N turns per unit distance. Find the B field at the center of the coil. 

Calculate the B field at the center of a wire square of side a with current I flowing 
through it. 

A very long wire is bent 180" around a wooden cyclinder of radius b. If the wire carries 
current I, what is the B field at the center of the cylinder in the plane of the wire? 

A large number N of closely spaced turns of fine wire are wound in a single layer upon 
the surface of a wooden sphere such that they completely cover it. The planes of the 
turns are perpendicular to an axis of the sphere. If the current in the wire is I, deter- 
mine the magnetic field at the center of the sphere. 

Determine the B field at the center of a sphere of radius R, uniform volume charge 
distribution p, and rotating about one of its diameters with an angular velocity a. 

(a) Determine the magnetic field near the axis of the current-carrying loop of Example 
8.12 using V. B = 0 and the field on its axis. (b) Show that the vector potential on the 
axis of the loop is zero. 

A frequently used source of a reasonably uniform magnetic field is the Helmholtz coil. 
The coil consists of two circular coils of the same radius a with a common axis z, 
separated by a distance equal to the coil radius and carrying the current I. Show that, 
at the midpoint on the common axis, dB/dz and d2B/dz2 equal zero. Find B at the 
midpoint. 

Consider the magnetic scalar potential in empty space @ = B,(z + xz/b)p,, where B, and 
b are constants. (a) Show that this is a reasonable potential from which a static 
magnetic field can exist and find it. (b) If an atom whose nucleus is stationary at the 
origin, has its electron in a circular orbit of radius a in the x - y plane, find the force 
exerted by the field of part (a) on the atom. 

A small current circular loop of radius a and current I lies in the x - y plane with its 
center at the origin. Show that the vector potential at large distances is A, = A,,= 0 
and A, = (np,a21 sin 0)/4nr2. 

An N-turn, thin, circular coil of radius r and current I lies in the z = 0 plane. The 
current is in the I$ direction and there is an external uniform magnetic field B = 

(2 + f)~,/fi. (a) Find the magnetic moment of the coil. (b) Find the force acting on 
the coil. (c) Find the torque acting on the coil. 

In a triangular loop of wire in which there is a current of 6 A, a magnetic field 
B = 1.1 Wb/m2 is uniform over the triangle and parallel to the side AC as shown in 
Fig. 8.24. (a) Find the magnitude and direction of the force acting on each side. (b) 

Figure 8.24 

Calculate the dipole moment of the loop and the magnitude and direction of the 
torque acting on it. 

A circular loop of wire with radius a = 1 centimeter and center at the origin is bent so 
that half lies in the y - z plane and half lies in the x - y plane. A current I = 2 A flows 
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in the wire. (a) What is the magnetic moment of this loop? (b) What is the magnetic 
field B at (x, y, z) = (3,4,0) meters from the origin. 

8.24 An electron is moving in a circular orbit of radius 3.5 x lo-" m in the presence of a 
uniform magnetic field B = 4 x T. If the electron experiences a torque of magni- 
tude 7.85 x N.m, determine the electron's angular velocity and magnetic 
moment. 

8.25 (a) Determine the magnetic moment of a sphere of radius R, uniform volume charge 
distribution p, and rotating about one of its diameter. (b) Repeat for the case of surface 
charge distribution u. 

8.26 Prove Eq. (8.101). 



FORMAL THEORY OF 
MAGNETISM AND MATTER 

In Chapter 8 it was indicated that current loops produce dipole fields at large 
distances compared to their dimensions and may be characterized conveniently in 
terms of magnetic dipole moments. It is now a conceptually simple step to describe 
how the presence of matter affects and produces magnetic fields because we may 
regard the matter simply as a collection of atomic or molecular dipoles, each with 
its own dipole moment. It is, in fact, well established that such atoms or molecules 
possess magnetic dipole moments, and thus we tend to conceive of them as small 
circulation electronic currents, the electrons of the atoms being located in orbits 
around the atomic nuclei. The magnitude of these magnetic moments are usually 
specified in terms of the quantity of eh/2me, called the Bohr magneton, and the 
magnitude of the atomic or molecular dipole moment, if it exists, is of this order of 
magnitude, where h = Planck's constant/2n, me = electron mass, and e = electron 
charge. 

9.1 Magnetization 
Classically, an electron rotating about a nucleus at a distance r and with a speed v 
would be equivalent to a current I = e x frequency of rotation = ev/2xr. Since the 
area of the (planar) orbit is nr2, the magnetic moment is 

ev evr m = - n r 2  =- 
2nr 2 

The orbital angular momentum of this electron is mev x r = L, and thus the mag- 
netic moment is given by eL/2me. From quantum mechanics it is known that 
L = hJI(I+1),  where 1 is a positive integer. Therefore the semiclassical picture 
predicts a magnetic moment per electron of magnitude as follows: 
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An atom may contain many electrons, but in general their magnetic moments tend 
to cancel each other, and only the "unpaired" electrons finally contribute to the 
atomic moment. In any case, atoms are found to have magnetic moments whose 
magnitude, if nonzero, is of the order eh/2me (called Bohr Magneton)-that is, 0.9 x 

J/r  uoules per tesla). It is also interesting that the effective currents are of the 
order of 

that is, of the order of 2 mA. 
In each macroscopically small element of matter there are many atoms, and the 

dipole moment of such an element is simply the vector sum of the moments of the 
atomic constituents. Because of the large numbers of atomic dipoles per macro- 
scopic element of matter, the dipole moments of contiguous macroscopic elements 
will vary smoothly, and we shall assume that these are characterized by a field 
vector, M, called the magnetization, defined so that in any macroscopically small 
volume element, do, there is a dipole moment 

d m = M d v  (9.3) 

This relation indicates that M is the dipole moment per unit volume (density of 
magnetic dipoles, similar to P for the electric case) and hence will be a smooth 
function of position in the matter. 

Previously [in Eq. (8.93)] we saw that 

-=kL r' x J(rl)do' 

for a volume V, where a current density J was defined. In such a case, Eq. (9.3) 
implies that M is the integrand of the integral: 

1 
M = - [r' x J(rl)] 

2 

Thus, if we know the current distribution inside matter (a macroscopic current 
distribution), we can find M from this formula. It is therefore to be expected that if 
indeed a nonzero M exists in matter, there will be macroscopic currents associated 
with it (which we call the magnetization currents). To see what these currents are, we 
consider Fig. 9.la, which shows macroscopic blocks of matter of volume AV stacked 
on each other. The magnetization at the center of each block is in general 
M = M,% + My9 + M,2, and thus each of these is equivalent to a macroscopic 
magnetic dipole M AV = M, AV9 + My AV9 + M, AV2. Each block may then be 
regarded as consisting of current loops flowing in three mutually perpendicular 
planes (see Fig. 9.lb).* These currents will be labeled as I,,, I,,, and I,,. Thus, using 
dm = I da, 

M,AV = I,,AyAz M,AV = I,,AzAx M,AV = I,, AX Ay 

If each block has the same dipole moment (constant M), their equivalent current 
loops (I,,, I,,, I,,) will be the same and no current will exist inside the material 
because of the current cancellation from contiguous blocks. If M is not constant, 
this cancellation will not be complete and a nonzero current will exist. Consider Fig. 
9-lc, which shows the front view of blocks 1 and 2 with currents Iyz(l) and 1,,(2), 

This assumption will be seen to be consistent with our final result. 
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' t Block 1 

/x Block 1 

(a )  

( c )  

Figure 9.1 Derivation of the magnetization currents in terms of the magnetization M. (a) A 
state of macroscopic blocks of matter. (b)  Enlargement of the block labeled 1 showing the 
three-dimensional currents flowing in it. (c) Front view of the two blocks 1 and 2. 

and corresponding magnetization M x ( l )  and Mx(2), respectively. We take Iy,(2) = 
Iyz( l )  + AI,,. Thus 

Mx(l )AV = I Y ( l ) A y  A and Mx(2)AV = [ Iy , ( l )  + AI,,]Ay Az 

Therefore, 

[ M x ( l )  - Mx(2)]AV = - AI,, Ay AZ 

Taking Mx(2)  = M,(1) + (aMx/ay)Ay gives 

But AI,, is the current flowing "between" blocks 1 and 2 and is seen to equal the 
current flowing in the - z  direction; that is, -AI,, = I ,  E J ,  Ax Ay. As a result, 
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Now it will be noted that there may exist another component to J ,  due to the 
variation of M in the x direction. One finds, in precisely the same fashion as above, 
that this component of J ,  is given by +dMy/dx .  Therefore the total component in 
the z direction of the current density is 

Similarly, 

dM d M y  
J = ' - ---- d M ,  d M ,  

and Jy  = - - - 
d y  az az ax 

The three components can be combined into one relation: 

J , = V x M  (9.5) 

which we call the magnetization current density. 
Finally, let us note that even if M = constant, and so J, = 0, currents will exist 

on the surfaces of the blocks, where cancellation is absent. Thus, on the top surface 
of the large block there will be currents due to M ,  and M y .  In fact, considering (the 
top surface of) a single block, 

-1  9 yz  - I,, 9 - K x %  - K , f  and -- 
Ax AY 

Therefore, the total surface current in the x - y plane is Kxy  = K,% + K , f .  Using 
the expressions M, AV = I,, Ay Az, . . ., we get 

K = j i  2 - 9  2 = & M y - f M ,  or K x y = M x 2  
x y  ( k , )  (h) 

The same result is true for any surface,* so in general we may write 

where A is the outward normal to the block. In conclusion, we see that a magnetiz- 
ation M in a material is completely equivalent to  a macroscopic current distribution 
in and on the material. 

We should note that the divergence of J, is identically zero, that is 

Hence this current will not affect the continuity relations as given by Eqs. (7.9) and 
(7.1 1). 

- -  -- 

Example 9.1 Magnetization Currents--Uniformly Magnetized Cylinder 
(a Bar Magnet) 

Assume that we have a solid cylinder magnetized uniformly along its axis with a magnetiz- 
ation M  = M o t .  Then J ,  = 0, and K, = M o t  x j3 = M,Q on the curved sides of the cylinder. 
At the ends, K, = 0. Clearly, this gives a field of a solenoid whose surface current density 
equals M , .  At distances far from the axis, the field is that of a dipole of dipole moment 
m = M V ,  where V  is the volume of the cylinder. Note that if the cylinder were hollowed out, 
the field inside would be reduced by virtue of the fact that K, from the inner surface would be 
in the -I$ direction. 

The only significance to z here is that it is normal to the surface. 
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9.2 The Vector and Scalar Potentials of a Magnetized Material 
In the previous section we have shown that the magnetization of a material is 
completely equivalent to a macroscopic current distribution in and on the material; 
these are given by Eqs. (9.5) and (9.6), respectively. Consequently, one may calculate 
the magnetic effects directly from the currents+.g., using the methods developed in 
Chapter 8. Thus, for the contribution to the vector potential from matter with 
magnetization M, one has, from Eq. (8.42), 

J ,  dv' K, da' 

and for the B field, one has, from (Eq. 8.62), 

where V is the volume of the region where M # 0, S includes all surfaces where K, 
is defined, and 6 = r - r'. 

It will be observed that Eq. (9.7) above must be consistent with Eq. (8.96) of the 
previous chapter, where A, was given (using d m  = M dv') as 

This consistency is proved in the following development: Since 

then the integral of Eq. (9.9) transforms as follows: 

We apply the integral to a volume V' that is enclosed by V so that discontinuities in 
M at the surface could be avoided, and we use the vector identity, Eq. (1.58), to 
write 

Thus 

A, = 411 v,L.v lim jv,M x V1(i )dvl  = fJli jv, [ - V' x (7) + y ] d v l  

By use of Eq. (1.70), the potential becomes 

V ' x M  
A. = * lim [Iv, - 

411 v ,+v  t dvl + Is, ; da'] 

J ,  dv' 
~ m = ~ ( ~ ~ + ~ ~ )  
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We now discuss the magnetic properties of matter from the point of view of the 
magnetic scalar potential. It was shown in Chapter 8 that the magnetic field due to 
some real current distributions can be derived from a scalar potential according to 
the relation B = -poVOm. We now show that the fields produced by magnetized 
materials can also be derived from a scalar potential. Taking the curl of Eq. (9.9) 
with respect to r and noting that this operation does not affect functions which 
depend on r', we get 

This expression can be rearranged by expanding the triple cross product of the 
integrand according to Eq. (1.61); that is, 

where differentiation of M(rl) with respect to r is taken to be zero. Equation (9.1 1) 
can be further recast into a more useful form. We write V.(5/r3) = 4n6(5), as was 
shown in Eq. (1.81). Moreover, using the triple cross product, we write the second 
term of the right-hand side of Eq. (9.11) as 

The last term involves 

Thus 

Therefore Eq. (9.10) becomes 

The gradient in Eq. (9.12) can be taken outside the integral since it is with respect to 
r, and the integration of M(r1)6(5) over the volume gives poM(r). Thus 

where 

is the scalar magnetic potential produced by the magnetized material. Since 
M(r1)dv' = dm(rl) is a differential of a dipole moment, then the scalar potential is just 
the sum of dipole fields [Eq. (8.90)]. The second term of Eq. (9.13) is p0 times the 
local magnetization of the magnetic material. Outside the magnetic material 
M(r) = 0, and thus 

B )  = - p 0 V ( r )  (outside material) (9.15) 
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The similarity between this result and the relation between the electric field and 
the electric potential, Eq. (2.36), is clear. Therefore the manipulations used in writing 
the electrostatic potential in terms of the volume and surface polarization charge 
densities p, and a, can be used in the magnetized material case. The result is 

and, from (Eq. 9.13), 

PO P ~ S  Bm(r) = - ,- dv' + 
47c S r 

where 

p m =  - V . M  and a m = M . i i  (9.18) 

The quantity - V . M  has the character of a magnetic charge density, or magnetic 
pole density. If M is discontinuous at a boundary, such that M = 0 on one side (side 
2) of the boundary and finite on the other, then there will be a surface pole density 
given by om = M .  A called the surface density or magnetic pole strength. 

It is interesting to observe that the total pole strength associated with any piece of 
magnetized material is zero. Thus, if the material has a volume V, then the total 
pole strength qm is calculated by integrating the densities of Eq. (9.18); that is 

q In = - S J M d v +  jsM.Ada 

Since the divergence theorem gives Js M .  A da = jv V. M dv, then qm vanishes. 
The magnetic moment of the material can be calculated from the poles just as in 

electrostatics [see Eq. (4. IS)] : 

This expression for m can now be shown to be equivalent to the simple form: 
m = J M dv', which was introduced in Eq. (9.3). Applying Eq. (1.72), 

B(A . da) = [B(V. A) + (A. V)B]dv b b 
gives m = J (M.  V')rf do'. Noting that (M.  V)r = M, then m = J M dv', the result ex- 
pected from the definition of M. 

Example 9.2 Magnetization Pole and Current Densities- 
Uniformly Magnetized Sphere 

In this example we consider the magnetization of a sphere to be M = M,Z. The fields 
produced will have cylindrical symmetry, so if we use spherical coordinates, B will be a 
function of (r, 9) alone. 

The magnetization current densities will be surface currents (see Fig. 9.2); that is. 

Rather than calculating B directly from this current distribution, we calculate first the vector 
potential. Thus Eqs. (8.42) and (9.20) give 

M ,  sin 8' $ 
5 

da' 
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Km R sin 8 '  

I 

Figure 9.2 Uniformly magnetized sphere. 

Clearly A = QA, by the cylindrical symmetry, and thus 

This integral can be integrated, but not with elementary methods. The result is* 

M0 r sin e A, = 3 

Taking the curl of the vector potential gives 

B = -  2p0 M0 (cos B P - sin B 0) = - 2 ~ 0 ~ 0 ~  r < R  
3 3 

(9.23) 

B=-- po"oR3 ( 2 ~ 0 s  B P  + sin 
3 r3 

We recognize the latter as a dipole field with a dipole moment Mo V = Mo(4aR3/3). The field 
inside the sphere is constant, of magnitude 3poMo. In fact, this could have been proved by 
rather simple arguments.? 

Let us now find the same results using the concept of the magnetic scalar potential. In this 
case, B is produced by a surface pole density am = Mo cos 8. Then, the problem henceforth 
involves the analogous surface electric charge density of a, cos 0. It has been shown for that 
problem (see Examples 2.17 and 3.6) that the external potential (for r > R) is a dipole potent- 
ial [Eq. (3.44)]. Thus, one can write along the same lines 

M0R3 1 am=-- cos 6 r > R 
3 r2 

The internal potential can also be written, in analogy to the electric case [Eq. (3.43)], 

Using B = -p0V@, outside the sphere and B = -p0V@, + poM inside the sphere, we get 
the same field derived above using the magnetization current method. 

'See, for example, J. D. Jackson, Classical Electrodynamics, 2d ed. (New York: Wiley, 1975). p. 197. 
TThat is, a simple integration would show that, along the z axis, B =constant, whence it could be 
argued that inside the sphere in general, B = constant. (How?) 
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Example 9.3 Uniformly Magnetized Cylinder 

In this example we consider again a solid cylinder with a uniform magnetization M = Mo2 
along its axis, and with no free currents. We have seen that a surface current K, = +M, due 
to the magnetization flows around the curved parts of the cylinder and truly gives rise to the 
macroscopic B field everywhere (see Example 9.1). The flow of current has the form of a 
solenoidal current. Therefore, the magnetic field can be calculated using the results of 
Example 8.13. Using the notations of Fig. 8.13 and replacing K by M, in Eq. (8.68), we get 

B = B , = -  Po M0 (COS 0, - COS 6,) 
2 

(9.27) 

This problem can also be solved using the magnetic scalar potential. The magnetic poles 
occur only at the ends of the cylinder (that is, V . M  = 0 everywhere, a, = f M,). The mag- 
netic scalar potential of the ends of the cylinder can be calculated in the same fashion as the 
case of two electrically charged disks with uniform densities. In Example 2.11, the electric 
potential was calculated for a uniformly charged disk, and hence replacing E, by l/pO and a, 
by M, in Eq. (2.49) gives the magnetic scalar potential. The total magnetic potential can then 
be determined by superposition of the potential produced by both ends of the cylinder. The 
magnetic fields inside and outside the cylinder are then determined using Eqs. (9.13) and 
(9.15), respectively. Figure 9.3 shows the similarity of field lines of the uniformly magnetized 
cylinder to those of a solenoid. 

(a )  (b )  

Figure 9.3 Field lines of (a) uniformly magnetized cylinder along its axis and (b) a 
solenoid showing the similarity between them. 

As an experimental note, it is worthwhile to mention that a "strong" magnetic B field 
produced by magnetization alone is of the order of 10,000 gauss or 1 Wb/m2, or 1 T. If we let 
the cylinder being discussed be very long, so that 0, + -n and 0, +n,  we find that 
B  = p,K, inside the cylinder. Thus, the equivalent surface current density has the magnitude 
(107/4n) A/m. It would take a formidable power supply to maintain such a steady current in 
wires alone, and generally would involve considerable heat dissipation, whereas no dissi- 
pation is associated with the magnetization currents when M is constant. The atomic currents 
require no external energy to be maintained. 

9.3 The Equations of Macroscopic Magnetostatics 
We have seen that the basic equations of steady-current magnetism are V . B  = 0 
and V  x B  = p,J. We now write these equations in a different form by regarding 
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the B  and J vectors as representing macroscopic fields (that is, we have taken space 
and time averages of both sides of the equation.) Moreover, the current density J is 
split into two parts-one representing free (generally conduction) currents J, and 
the other representing magnetization currents J,: 

Then we have V x B  = poJ, + poV x M, or V x (B - poM) = poJP We shall now 
define a new vector field, the magnetic intensity H: 

Then, we may write for the equations of macroscopic magnetism: 

In these equations we are implicitly assuming that B, H, M, and J, are everywhere 
continuous vector functions so that the derivatives have meaning. In dealing with 
regions where discontinuities occur, it is frequently useful to employ the analogous 
integral equations 

Q S ~ . d a = o  and fC,. dr = I, 

where I, is the current through the closed curve C, the positive sense of I, being 
determined via the sense of traversal of the line integral by the right-hand rule. 

It is legitimate to ask the questions, "Why introduce H?" and "What physical 
meaning does it have?" The answer to these questions will only become evident in 
the sequel. However, one may observe that the differential equation of H involves 
only the conventional current density-i.e., external currents. Also, if in a region 
J, = 0, then the fact that V x H = 0  will permit us to define a scalar potential 
function for H there. In fact, when Eqs. (9.13) and (9.29) are compared, we find that 

This will ease the calculational burden of computing the fields. Thus, ultimately H is 
introduced because in some situations it is easier to calculate H directly and then B  
rather than to calculate B  directly. 

In the general case where free currents, J,, exist in magnetic materials, the total H 
field can be written as the following sum. 

9.4 The Magnetic Constitutive Relations 
In the preceding section the magnetic intensity H was related to the magnetic field B  
and the magnetization M by the relation B  = poH + poM. This relation can be cast 
in another useful form, by relating M to H and hence B  to H directly. The degree of 
response of a material to an external field H depends on the microscopic structure 
of the material. We will defer the nature of these responses to the following chapter. 
The response falls into a number of classes. The first class involves what is called 
linear materials, where the degree of magnetization is proportional to H; that is, 
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where x is dimensionless, does not depend on H, and is called the magnetic suscepti- 
bility. In the case of isotropic materials, x does not depend on the direction of the 
external field; that is, it is a scalar quantity. If the material is anistropic, then the 
direction of M is not necessarily along the direction of the field, and becomes a 
tensor of rank 2: 

where i = x, y, and z. Such anistropic materials will not be discussed any further in 
this book. Linear isotropic materials are further classified into two categories: 
Materials with x < 0 are called diamagnetic, and materials with x > 0 are called 
paramagnetic. Diamagnetic materials cause-a weakening in B when placed in an 
external field, while paramagnetic materials cause a strengthening of B. The mag- 
netic susceptibilities of some paramagnetic and diamagnetic materials are given in 
Table 9.1. 

We should also note that most references on physical data list the mass (molar) 
susceptibility (xmolar) instead of X .  These are defined as 

X 
Xmass = - 

X A  
d and Xmo~at = - d 

where d is the mass density of the material and A is its molecular weight. 
Linear magnetic materials exhibit an interesting effect when placed in a magnetic 

field. It is found that paramagnetic materials get attracted to magnetic fields, 
whereas diamagnetic materials get repelled. In Chapter 4 we found, contrary to this 
effect, that the corresponding electrical effect always causes dielectrics to be at- 
tracted to electric fields. These two types of magnetic materials can be easily tested 
by using the magnet shown in Fig. 9.4. The magnet produces a much stronger field 
near the pointed pole than near the flat one. A small piece of the material is 

Table 9.1 Magnetic Susceptibility of Some 
Materials at Room Temperature 

Material 

Paramagnetic materials 
Aluminum 
Sodium 
Titanium 
Tungsten 
Gadolinium chloride (GdCI,) 
Oxygen (1 atm) 
Magnesium 

Diamagnetic materials 
Carbon dioxide (1 atm) 
Hydrogen (1 atm) 
Nitrogen (1 atm) 
Bismuth 
Copper 
Diamond 
Gold 
Mercury 
Silver 
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Figure 9.4 Determination of the type of mag- 
netic materials (diamagnetic or paramagnetic) 
by insertion of a sample in a nonuniform mag- 
netic field. 

suspended between the poles, after which the magnet is turned on and the displace- 
nient of the sample from the vertical direction is noted. For example, when a sample 
of bismuth is used, the fact that it gets repelled by the pointed pole, indicates that it 
is a diamagnetic material. On the other hand, when an aluminum sample is used, 
the force is attractive; hence it is a paramagnetic material. 

Substituting Eq. (9.34) into Eq. (9.29), we get 

B = pO(l + x)H = pH (9.36) 

where p is called the magnetic permeability. Again it is a constant, and has the 
dimensions of p,. The magnetic permeability when measured in units of pO yields a 
scalar quantity K,, which is called the relative permeability; that is, 

There are some materials that respond to external magnetic fields in a nonlinear 
fashion; that is, p becomes dependent on H. These materials are called ferromag- 
netic; they exhibit a high degree of magnetization compared to the paramagnetic 
materials. In certain cases K, can reach 1.5 x lo5, which is almost five orders of 
magnitude larger than the largest K, of paramagnetic materials. These materials 
also exhibit an irreversible phenomenon called hysteresis. These properties make 
possible a number of important applications in technology, which include making 
permanent magnets and building transformers and motors. 

The nonlinear magnetic permeability p(H) of different materials can be either 
tabulated or plotted as a function of H. In the literature, however, this information 
is not usually given directly; instead, the dependence of B on H is given. The 
dependence can be determined experimentally in the following way. A specimen of a 
material, say iron, is placed in an external magnetic field B, = pOHO. The magnetic 
field B inside the specimen is then measured. The value of B will exceed B, as 
mentioned above because of the presence of the specimen. Thus B = B, + B,, 
where the difference B, = B - B, is the magnetic field produced by the specimen. 
Plotting B, as a function of H, gives what is called the magnetization curve of the 
material studied. 

Figure 9.5 shows a Rowland ring, which can be used to perform such a measure- 
ment. The iron specimen is made in the form of a ring whose radius r is made much 
larger than its thickness t. A toroidal coil is then wound around it, with N ,  turns 
per unit length. The external field B, is produced by setting up a current I, in the 
coil, which in the absence of the iron core is equal to p, N , I , .  The magnetic field B 
is measured by a secondary coil shown also in the figure. 

Figure 9 . 6 ~  shows the magnetization curve of iron showing the relation between 
H and B measured using the Rowland ring. Starting from the unmagnetized state 
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Pri 
Nl 

Figure 9.5 Rowland ring for the measurement of the magnetization 
curves of ferromagnetic materials. 

Figure 9.6 (a) Typical hysteresis loop of a ferrom- 
agnetic material. (b) A number of minor hysteresis 
loops, along with the major loop of a ferromagnetic 
material. 
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(that is, from point 0), B increases with increasing H along curve 1. The initial 
increase is very steep; however, at higher values of H, the iron saturates, and the 
result is a leveling off of the magnetization (saturation magnetization M,). In this 
high-H regime beyond H,, the increase in B is only due to the increase in H, since 
M is not increasing any further. 

The next operation after reaching the saturation point, a, is reducing the current, 
and hence H, in the toroid back to zero. It is found that the magnetization curve 
does not fall back along curve 1; it falls back along curve 2. Curve 2 shows that 
even when H is zero, B is not zero; that is, the specimen has become permanently 
magnetized. The B field at r is called retentivity or remanence. The current in the coil 
is now reversed, and increased in magnitude. The B-H relationship follows curve 2 
until the medium saturates in the reverse direction. The magnitude of H at point c is 
called the coercive force or coerciuity of the material. As the current is reduced back 
to zero, the relationship traces curve 3. Again, even when H is zero, the specimen 
has a residual negative B field. When the current is now reversed and increased, the 
relationship continues to follow curve 3 until the saturation point is reached and 
the magnetization curve closes. 

This property of magnetization curves wherein they do not retrace themselves is 
typical of ferromagnetic materials. The shape of the loop depends on the nature of 
the specimen and on the maximum value of H reached. When the material is 
subjected to a maximum value of H where saturation is achieved, as in Fig. 9.6a, the 
loop ceases to change as the material is subjected to even higher fields. Figure 9.6b 
shows the dependence of the shape of the loop on the maximum value of H reached 
for values below the saturation field. 

The relative permeability of a ferromagnetic material as a function of H can be 
calculated from the B-H curve using the relation 

Figure 9.7 shows K ,  versus H for silicon steel; it shows extreme nonlinearity of the 
response at H I 100 A/m and a saturation effect at H = 300 A/m. Figure 9.8 gives 
the hysteresis curves of some high permeability and some permanent magnetic 
materials. Table 9.2 gives properties of ferromagnetic materials at room 
temperature. 

H , amperes per meter 

Figure 9.7 Relative permeability of a ferromagnetic 
material. 



A: Cast iron 
B: Cast steel 
C: Silicon steel 
D: Nickel-iron 

alloy 
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(b )  

Cast iron 
Cast steel 
Silicon steel 
Nickel-iron 
alloy 

Figure 9.8 Hysteresis curves of some ferromagnetic materials. (a) and ( h )  
High permeability materials, (c) Permanent magnetic materials. 
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Table 9.2 Data for Ferromagnetic Materials 

High-Permeability Materials 

Maximum Saturation Flux Coercive 
Relative Density B,, Force H, 

Material Percent Composition Permeability (Wb/m2) (A/m) 

Cold rolled steel 98.5 Fe 2,000 2.10 145 
Iron 99.9 Fe 5,000 2.15 80 
Mu metal 18 Fe, 75 Ni, 2 Cr, 5 Cu 100,000 0.65 4 
Purified iron 99.95 Fe 180,000 2.15 4 
78 Permalloy 21.2 Fe, 78.5 Ni, 0.3 Mn 100,000 1.07 4 
Supermalloy 15.7 Fe, 79 Ni, 5 Mo, 0.3 Mn 800,000 0.80 0.16 

Permanent-Magnet Materials 

Remanent Flux Coercive 
Density B, Force H ,  

Material Percent Composition (w/m2) (A/m) 

Alnico I1 (sintered) 64.5 Fe, 10 Al, 17 Ni, 2.5 Co, 6 Cu 0.69 41,600 
Alnico V 53 Fe, 8 Al, 14 Ni, 24 Co, 3 Cu 1.25 44,000 
Carbon steel 98.1 Fe, 1 Mn, 0.9 C 1 .O 4,000 
Platinum-cobalt 77 Pt, 23 Co 0.45 208,000 
Remalloy 71 Fe, 17 Mo, 12 Co 1.05 20,000 
Tungsten steel 94 Fe, 5 W, 0.3 Mn, 0.7 C 1.03 5,600 

9.5 Boundary Value Problems 
9.5.1 The Potential Equations 

In Sections 9.2 and 9.3, the Biot-Savart law, Coulomb's law, and Ampere's law were 
used to determine the magnetic field in a nonferromagnetic medium-that is, a 
linear medium. In this section we present a boundary value method. The macro- 
scopic equations of magnetism are 

V - B = O  and V x H = J f  (9.30) 

The boundary value method can be subdivided into two methods: boundary value 
via the scalar potential and boundary value via the vector potential. We will treat 
both methods. In the scalar potential method one writes V - B  = 0 as follows: 

V.B = V-po(H + M) = 0 or V-H = -V .M 

Thus, in terms of H, the macroscopic equations become 

V . H =  - V . M  and V x H =  Jf (9.38) 

In regions of space where Jf = 0, Eq. (9.38) becomes 

V - H  = - V . M  and V x H = O  (9.39) 

Because the curl of H is zero, then H can be written in terms of the gradient of a 
scalar potential, as was introduced previously in Eq. (9.32). 
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Taking the divergence of this equation and substituting for V . H  from Eq., (9.39), we 
get 

V2@, = V . M  = - p  m (9.40) 

which is analogous to Poisson's equation of electrostatics. However, contrary to the 
electrostatic case, and as we previously noted in Section 8.7, the magnetic scalar 
potential is valid only in simply connected regions. If the region is not simply 
connected the potential would not be single valued (see Example 8.16). 

Poisson's equation of magnetostatics, Eq. (9.40), reduces to Laplace's equation 
when p, = - V .  M vanishes: 

V2@, = 0 (9.41) 

The vanishing of p, can take place in a number of cases: (1) M = 0, that is, when 
one is dealing with currents placed in vacuum, as discussed in Section 8.7; (2) linear 
magnetic materials with uniform magnetization, where M = a constant vector; and 
(3) a material with nonuniform magnetization, but where V - M  is zero (see Example 
9.6). 

In the vector potential method, A is defined by B = V x A, which automatically 
makes V . B = 0. The curl equation V x H = Jf gives V x B = pJf in all regions in 
which the magnetic material is homogeneous. Thus 

Expanding the triple vector product gives 

Again, as we did in Section 8.5, we choose V .  A = 0, which is called the Coulomb's 
gauge. Thus 

The different components A,, A,, and A, satisfy precisely the form of Poisson's 
equation: 

where i = x, y, and z. 
Laplace's equation [Eq. (9.41)] can be solved using the techniques already devel- 

oped for the electrical case (Chapters 3 and 4). Along with Laplace's equation, one 
needs a set of boundary conditions satisfied by the scalar potential and the fields in 
order to determine them uniquely. 

Similarly, in regions where J, = 0 the cartesian components of the vector poten- 
tial satisfy Laplace's equation. The boundary conditions on the vector potential and 
the fields are also to be used to determine the solution uniquely. 

In the cases where the sources in Eq. (9.40) and (9.43) are not zero, the solution of 
each of these equations consists of two components: a particular solution of 
Poisson's equation and a solution of Laplace's equation. The total solution is then 
made to satisfy the boundary conditions. Examples utilizing those methods will be 
given after we discuss the boundary conditions on the fields and the potentials. 

9.5.2 The Boundary Conditions on the Fields and the Potentials 

We now turn to the discussion of the boundary conditions to be satisfied by the 
fields and the potentials in the presence of magnetic materials. These conditions are 
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Figure 9.9 Obtaining the boundary conditions on the fields B and 
H at the interface between two magnetic materials by applying 
Gauss' law to the pillbox and Ampere's law to the rectangle. 

derived from the macroscopic equations V . B  = 0 and V x H = J,; they prescribe 
relations describing the change undergone by them in passing an interface between 
two media of different magnetic properties. 

The relation V . B  = 0 can now be integrated over a volume of a pillbox that is 
partially immersed in material 1, as shown in Fig. 9.9. The pillbox has a thickness t, 
flat areas A, and A,, curved surface A,, volume V, and dl, A,, and A, unit vectors 
normal to A,, A,, and A,, respectively. Using the divergence theorem, the volume 
integral f V  . B  dv = 0 can be transformed into a surface integral f, B  . A da = 0, 
where S is the surface of the pillbox, and A is a unit vector normal to the surface. 
Thus 

In order to find the change in the field in passing through the interface, we take t to 
be very small; therefore A, vanishes, causing the last contribution of the surface 
integral to vanish, -A, to become equal to A, = A, and A, = A, = A. Thus 

That is, the components of the field normal to the interface are continuous across 
the interface. 

A condition on the tangential component of the field intensity H can now be 
derived by integrating V  x H = J, over a surface area, AS, bounded by the rectan- 
gular curve C shown in Fig. 9.9. The rectangle, which has a length 1 and width t is 
partially immersed in medium 1. Thus 

Using Stokes' theorem, the left-hand side of this equation can be transformed to a 
line integral over the curve C. Thus 

To determine the change in H in passing through the interface we take the width of 
the rectangle t to be very small; hence 

(H, -H , ) . l= l im J,.AS=K,l 
t + O  
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where K J  is the surface current density normal to the plane of the rectangle. This 
result can also be written in terms of the total surface current density KJ as 

where A is a unit vector normal to the interface. Thus the tangential components of 
H are discontinuous when a surface current density exists on the interface; the 
discontinuity is the surface current density normal to the field component. The 
components are consequently continuous when K J  is zero; that is, 

HI, = Hzt (9.47) 

The boundary conditions of the scalar and vector potentials may be deducted 
from the boundary conditions of B and H. Since H, = -V@,, then 

The potential difference between two closely located points can be written as 
A@, = -H,.l, where I is the separation between the points, and H, was taken to 
be finite and fairly constant across the points. Because HI, = H,,, across an inter- 
face that has no surface currents, then Eq. (9.48) implies that the scalar potential is 
continuous in passing that interface; that is, 

This continuity of the potential is not independent of the above conditions on the 
fields, and in fact it is equivalent to the condition on the tangential components 
of H. 

The boundary condition on the vector potential can be derived from the 
boundary condition on B. Since B = V x A, then 

The area AS is the rectangular loop shown in Fig. 9.9, and F is the magnetic flux 
passing through it. Using Stokes' theorem, the above equation can be written as 
follows: 

r 

To determine the change in A just across the interface we take the width of the 
rectangle to be very small. In this case the area of the loop vanishes, and hence the 
flux through it vanishes. Therefore 

$/.dl = A,.] - A,.I = o 

Thus the tangential components of the vector potential are continuous: 

As in the case of the scalar potential, this condition on the tangential component 
of the vector potential is not independent of the above conditions. It is precisely 
equivalent to the continuity of the normal component of the B field. 

We would now like to show an important property of &namely, that its flux is 
continuous everywhere. Let us construct imaginary magneticfield lines in a region of 
space (the direction of the lines at any point is the same as the direction of the 
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Figure 9.10 A tube of B field flux. 

magnetic field at the point). Next we consider a volume whose side of area S is 
bounded by the field lines and whose end surfaces are S, and S,, as shown in Fig. 
9.10. Integrating V.B = 0 over this volume and using the divergence theorem to 
transform the volume integral to a surface integral over the surface of the volume, 
we get 

(9.52) 

where the lateral surface did not contribute because B is tangential to it. Thtis, Eq. 
(9.52) establishes flux continuity; that is, 

where F(Si) is the magnetic flux passing through surface Si. 
Finally, we would like to note that the flux of the magnetic intensity H, FH, is not 

continuous. This can be easily realized since V . B = 0 implies V . H = - V . M, where 
M is the magnetization; and therefore the above procedure leading to Eq. (9.53) 
gives 

FH(S2) - F,(S,) = - V . M dv = p, dv S S (9.54) 

Example 9.4 A Filamentary Current at a Plane Interface--Scalar 
and Vector Potential 

An infinite, filamentary, straight wire carrying a current I lies along the z axis on the plane 
interface between two media with magnetic permeabilities p, and p,, respectively. At points 
away from the wire the magnetic scalar potential satisfies Laplace's equation: V2Q, = 0, (we 
dropped the sublabel m). It was shown in Example 8.16 that the magnetic scalar potential of 
a current wire in vacuum is of the form Q, = C4 and that it is not single-valued. Thus the 
potentials 0, and 0, in regions 1 and 2 are written as 

where C, and C, are constants to be evaluated from the boundary conditions. 
One boundary condition is the fact that the total current is I. This can be utilized by using 

Ampere's law on a circle of radius p and center at the wire. The magnetic intensities HI and 
H, are first evaluated from @, and a,, respectively, using the relation H = -V@. 
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Ampere's law then gives 

Another relationship between C, and C, can now be determined from the continuity of the 
normal components of the magnetic field at the interface, B,, = B,,: 

PIC, = ~ 2 C 2  

Equations (9.58) and (9.59) 

Thus 

In the absence of the materials-that is when the wire is in vacuum (p, = p, = p ,b the  fields 
reduce to 

The fields can now be written in terms of H,, as follows: 

H I  =- 2p2 H, and H, = - 2p1 Ho 
P1 + P2 PI + P2 

This result is in fact true for any circuit lying on the plane interface provided H, is the field of 
the circuit in vacuum. 

We would now like to treat the same problem using the vector potential method. Since the 
current is along the z axis, one can take A, = A, = 0, and thus A, is the only nonzero 
component, and at points away from the current it satisfies Laplace's equation: V2A, = 0. 
Moreover, because of the cylindrical symmetry and the fact that the wire is very long, A, will 
not depend on 4 and z ;  therefore, Laplace's equation reduces to 

which can be easily integrated to give 

where C and C' are constants to be evaluated from the boundary conditions. It is apparent 
that A, is single-valued since A,(4) = A,(4 + 24 ,  which is in contrast to the magnetic scalar 
potential discussed above. The potentials A, and A, in regions 1 and 2, respectively, are 
written as follows: 

A, = C,i? In p (9.66) 

where the constant term in Eq. (9.65) was taken to be zero. 
The continuity of the tangential components of the potential at the boundary, Eq. (9.51), 

requires C, = C, = C. The constant C is now evaluated using Ampere's law: f H . d  = I, 
where the integral is taken over a circle normal to the wire, of radius p and with its center at 
the wire. Taking H = (l/p)V x A, we find 
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which gives 

Hence 

It is now straightforward to show that this vector potential gives precisely the fields we got 
using the scalar potential [Eq. (9.62)]. 

Example 9.5 A Magnetic Sphere in a Uniform External Magnetic Field 
We consider a sphere of radius R, made of a linear magnetic material of permeability p1 and 
embedded in a medium of permeability p,.  The sphere is placed in a magnetic field Ho which 
is initially uniform and pointing along the z  direction, as shown in Fig. 9.11. 

HO; t t t t t  
Figure 9.11 A magnetic sphere in an initially 
uniform magnetic field. 

Since there are no external currents and the materials are linear, the magnetic scalar 
potential satisfies Laplace's equation. The total spherical symmetry of the problem is broken 
by the presence of the external field; however, because the field is uniform and pointing along 
the z direction, there is still symmetry about the q5 direction, thus making the potential 
dependent on r  and 0 only. The potentials @ ,  and @, inside and outside the sphere can be 
written as a linear combination of the zonal harmomics [see Eq. (3.28)]. Because at distances 
far away from the sphere the magnetic field is Hoe, the corresponding potential @, = 
-5 H.dr is - Hoz = - Hor cos 0. This implies that only a subset of the zonal harmonics will 
contribute; therefore we only retain terms up to P,(cos 0), and write: 

Note that the potentials are single-valued; that is, mi(*, 0) = a i r ,  0 + 2 4 .  Also, it is to be 
noted that the l lr term was dropped because it implies the existence of magnetic monopoles. 

The constant A,  is now taken zero because the potential inside the sphere should be finite 
at the origin, and the constant C l  is taken equal to -Ho  since @, = - Hor cos 0 as r  
becomes very large. Thus @, and @, become 

0,  = A l r  cos 0 r < R  (9.7 1)  
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We need two more equations relating A,  and C 2  in order to determine the potentials. 
These relations are now deduced from the boundary condition on the surface of the sphere, 
r = R. The continuity of the tangential components of H on the surface is equivalent to the 
continuity of the potentials on the surface. Thus 

The second equation is determined from the continuity of the normal components of B. Since 

we find from Eqs. (9.71) and (9.72) that 

~2 C2 p l A l  = - p 2 H 0  - 2- 
R 

Solving the above equations relating A ,  and C 2  simultaneously gives 

Substituting for A ,  and C ,  in Eqs. (9.71) and (9.72) and using B = - p  V@, we obtain 

~2 = ~ 2 ~ 0 2  + P Z  l p 2  - H - [2t cos 0 + 6 sin 01 
~ 1 1 ~ 2  + 2 (7 

Note the resemblance to the case of a dielectric sphere in an external electric field [Eqs. (4.86) 
and (4.87)]. 

Example 9.6 A Cylinder with a Nonuniform Magnetization 

We consider a boundary value problem where the magnetization is nonuniform. A long 
cylinder of radius R is magnetized with the magnetization given by M = (pp sin 2 4  
+ qp cos 4)fi + ( t p p  cos 2 4  - qp sin 4 ) 4 ,  where p and q are constants. It is easy to show that 
V.M = 0; thus the magnetic scalar potential @ satisfies Laplace's equation. 

Because the cylinder is very long, Q, will not depend on z. The fact that M depends on 4. 
however, makes @ dependent on both p and 4. Equation (3.65) gives the solution for the 
potential as a function of p and 4 ,  in terms of cylindrical harmonics. The solution @ ,  and Q, 
for the inside and the surrounding regions of the cylinder, respectively, however, are described 
by only a few terms of the infinite expansion. To determine these contributing terms we 
consider the boundary conditions: 

1. @, does not include terms with In p and p-" dependence since it should be finite at 
p = 0. 

2. @, does not include terms with pn dependence since it should be finite as p -+ m. 
3. @, does not include the In p term since there are no monopoles. 
4. @, = @, at the cylinder's surface-that is, at p = p,. 
5. The normal components of B are continuous at p = p,. 

Thus we write 

m 

e 2 ( p ,  4 )  = (A; cos n 4  + Ci sin nd)p-" 
n = l  

P ' Po 
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The continuity of the potentials at p = po, @,(po,  4)  = Dz(po, 4 ) ,  gives A ,  = 0 and the 
following relations between the constants 

We now consider condition number 5: Since B = poH + pOM, the continuity of the normal 
components of B implies that 

The normal component of M at the surface of the cylinder is 

M ,  = M . ?  = ppo sin 2 4  + qp,  cos 4 (9.81) 

The normal component of H at the surface of the cylinder is calculated from using the 
relation H, = -d@/ap at p = p,. Substituting for the normal components of H and M in Eq. 
(9.80) and equating coefficients of sin nq5 and coefficients of cos n4 ,  we get 

2 ~ ;  C:, for n + 2 
- 2 C , p 0 + p p 0 = ,  and - en=-  

Po P P  
Solving Eqs. (9.79) and (9.82) simultaneously yields the following nonzero constants. 

Hence the potentials take the following expressions: 

1 cos 4 p ,sin 2 4  
@ 2 ( ~ 9  4 )  = j - + 4 P o -  

P p2 

It is apparent from these potentials that only the harmonics cos 4 and sin 2 4  contribute to 
the potential. This dependence in fact results from the fact that the angular dependence of M ,  
involves only these harmonics. Therefore, we could have started with a much smaller number 
of terms in Eqs. (9.77) and (9.78); that is, we could have retained only the terms that have 
cos 4 and sin 2 4  dependence. 

Also, it is to be noted that this magnetization problem is analogous to a problem in 
electrostatics (see Example 3.10) where a long cylinder has a surface charge distribution of the 
form 

a = a ,  sin 2 4  + a, cos 4 (9.85) 

The analogy becomes clear when we assign: 

PPo = a ,  and qpo = a ,  

Example 9.7 The Fields Due to a Uniformly Magnetized Sphere 

In this example we consider a sphere of radius R that has a uniform magnetizatio~l MOP 
along the z axis. This problem was analyzed in Example 9.2 using both the magnetization 
pole and current densities. Here we use the boundary value method. Since M is constant, 
then V. M = 0 ,  and thus the scalar magnetic potential satisfies Laplace's equation. The fact 
that M is along the z axis makes the potential dependent on 0 as well as on r. Because 
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M . h  = Mo cos 0, we expect the angular dependence of the potential to involve only cos 0; 
thus we write: 

C, cos 0 
(0, = A,rcose+--- 

r2 

c; cos 0 
(0, = A',rcoso+- r > R  

r 

We now apply the boundary conditions in order to evaluate A,, A;,  C,, and C',. We take 
C, = 0 because (0, should be finite at r = 0, and take A', = 0 because @, should vanish at 
large distances from the sphere. At the surface of the sphere the potential is continuous: 
@,(R, 0) = @,(R, 0); thus 

The last boundary condition is the continuity of the normal component of B at the surface of 
the sphere: 

Substituting for (0, and (0, from Eqs. (9.86) and (9.87) and equating the coefficients of cos 0, 
we get: 

Solving Eqs. (9.88) and (9.90) simultaneously yields: 

1 1 A - -M,  and C ' - - M o R 3  
I - 3  ' - 3  

Hence 

1 
@,(r, 0) = - Mor cos 0, 

3 
(9.91) 

1 R3 
@,(r, 0) = - Mo , cos 0 

3 r 

The external potential produced by the sphere is a dipole potential of the form 

where m = (4n/3)MoR3 = M, V is the magnetic dipole moment and V is the volume of the 
sphere. The internal potential (0, = fMoz, on the other hand, is linear with z and thus 
corresponds to a uniform magnetic field. The corresponding magnetic fields are 

(2P cos 0 + 6 sin 01 (9.95) 

Figure 9.12 gives the lines of H and the lines of B. The lines of B are continuous (closed 
curves) where as those of H are discontinuous; they originate from the effective magnetic pole 
surface charges located at the surface of the sphere. 

We would like to say a few more words about the internal fields. It is important to note 
that HI  points along the - 2  direction; that is, it opposes the magnetization M02; hence it 
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Figure 9.12 The lines of H and B produced by a uni- 
formly magnetized sphere. 

results in a demagnetization effect. Moreover, the internal field is proportional to the magni- 
tude of the mangetization and is known as the demagnetizingjield. The demagnetization effect 
may be described by what is called a demagnetization factor, y, defined as follows: 

Therefore, in this case, it is 443.  This value pertains only to a sphere; other geometries have 
other values. For example, a similar procedure will yield y = 2n for an infinite cylinder whose 
axis is perpendicular to the direction of magnetization. Also the value of y for a large, flat 
sheet magnetized normal to its surface is approximately 4n. This large value for y is due to 
the fact that most of the lines of H passing from one pole on one face to the other pole on the 
other must pass through the sheet. 

*Example 9.8 Vector Potential Boundary Problem-Angular Current 
Distribution 

This example involves a current distribution that depends on angles, and consequently the 
vector potential produced by it will depend on more than one coordinate. Let us consider a 
sphere of radius R that has a charge uniformly distributed over its surface. The sphere is 
spinning with a constant angular velocity o about an axis going through its center (see 
Example 9.2). 
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We describe this geometry with spherical polar coordinates with the z axis taken along the 
axis of rotation. The density of the surface current produced as a result of spinning is K = av, 
where a = q/4nR2 is the surfacf charge density, and v = wR sin 06 is the velocity of the 
charge element at angle 0, and 4 is a unit vector in the 4 direction. Thus 

4 0  K = - sin 0 6  
4nR 

The vector potential outside and inside the sphere satisfy Laplace's equation. Due to the 
symmetry of the geometry, A is taken in the 4 direction and independent of 4, but it is of 
course dependent on r and 0. Away from the currents (that is, away from the surface of the 
sphere) Eq. (9.43) gives the following for the 4 component of A 

1 
Lyr2%) rZ dr 

+--- a (sin0$)+&=0 A  
r2 sin 0 d0 

Because the current density is proportional to sin 0, it is reasonable to take the angular 
dependence of A, to be simply sin 0 and hence write A, as a product of a radial function and 
sin 0; that is, 

A, = F(r) sin 0 (9.100) 

Substituting this in Eq. (9.99) gives the iollowing equation for F(r). 

We take a solution for F(r) of the form rn, which upon substitution gives an equation for n: 

n(n + 1) - 2 = 0 (9.102) 

which gives n = 1 or -2. Therefore, there are two solutions for A,: 

sin 0 
A + = ~  and r sin 0 

Because the potential is expected to be finite at the center of the sphere and not to blow up 
outside the sphere, we choose r sin 0 for the internal region, and (sin 0)/r2 for the surrounding 
region. Thus 

A l = C l r s i n O $  r < R  (9.104) 

sin 0 
Az=C2-6 rz r > ~  

At r = R, the potentials from both regions are equal according to (Eq. 9.51). Thus 

C, = C1R3 (9.106) 

Another relation between C ,  and C2 can now be determined from the condition relating the 
tangential components of H [Eq. (9.4611. Using H = (l/po)V x A gives 

Thus 

P x (Hz - H1)I,=, = sin 0 $ 
4nR 



Substituting for HI  and H, gives 

A qw sin 0 
-!-(XI sinB+>sinD +=- 
Po R c ) 4nR 

6 

C ,  qw 2C1 +,=Po-- 
R 

(9.107) 
4nR 

Equations (9.106) and (9.107) are now solved simultaneously for C, and C,; that is, 

PO 4wR2 Cl = k?!! and C, = - 
12nR 12n 

Hence 

A ,  = -- Po4wR2 sin r sin 0 and A, = - 
12nR 1 2nr2 

It is to be noted that the potential produced by the spinning sphere is similar to the potential 
produced by a magnetized sphere (see Example 9.2). In fact, the two results are identical if M ,  
is taken equal to qwl4nR. 

"9.6 Method of Images for Magnetic Interfaces 

The method of images used for solving electrostatic problems can be used for the 
solution of some magnetostatic problems. For a description of the method see 
Chapters 3 and 4. The method is very powerful in solving some magnetic problems 
that contain free currents and prescribed boundary conditions in nonsymmetric 
configurations. Such problems are not easily solvable using the techniques devel- 
oped so far in this chapter. Below are some examples of this method. 

- ---- - 

Example 9.9 A Filamentary Current Parallel to an Interface 

In Example 9.4 we considered a filamentary current placed in the plane interface of two 
magnetic materials. Because of the symmetry, the fields were functions of the distance from 
the filament only and were determined by solving the radial Laplace's equation in the media 
in one dimension and applying the boundary conditions. When the current is not located in 
the plane interface, however, the symmetry is broken and the problem cannot be solved by 
the same method. 

Consider a very long wire that carries a current I, embedded in a semiinfinite magnetic 
material of permeability p,  as shown in Fig. 9.13. The wire is parallel to and at a distance 
x = d from a plane interface separating another semi-infinite magnetic material of permeability 
p,. According to the method of images, the field in region 1 is given by the current I and an 
image current I ,  (unknown for now) located at distance x = -d just under the current I. The 
field in region 2, on the other hand, is given by a current I, (unknown for now) located at the 
same position of current I. Thus the vector potentials produced by the wire can be easily 
written, using (Eq. 8.52), as follows: 

where 2 is unit vector along the z axis, the values 

p I  = [(x - + y2]112 and p2 = [(x + d)' + yZ]112 (9.1 1 1) 
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Figure 9.13 Application of the method of images to a fila- 
mentary straight current parallel to the interface of two mag- 
netic media. 

are defined in the figure, and I ,  and I ,  are constants to be evaluated from the boundary 
conditions. 

At the interface the tangential component of A is continuous; that is, A,,  = A,,. Since 
p1 = P r  = (d2 + y2)112 in the plane of the interface, we get 

P I ( I  + 11) = P212 (9.1 12) 

The second boundary condition is the continuity of the tangential component of the magnetic 
field H. Taking the curl of A, /p ,  and A2/p,  and equating the y components at the interface 
(there is no z component), we get 

Solving Eqs. (9.1 12) and (9.1 13) simultaneously yields 

P 2 - P I  I I l  =- 
2Pl I and 1 2 = -  

P I  + P z  PI + P2 

Note that I ,  has the same direction as I ,  whereas I ,  is in the same direction only when 
Pz  ' P1. 

It is instructive to apply the magnetic scalar potential method to this problem. The scalar 
potentials in both regions are 

I I 1 12 
= - - -  and O , = - - 4 ,  

2n 2n 2n 

where the angles 4 ,  and 4 ,  are shown in Fig. 9.13 and are given as follows: 

4 ,  = tan-' - 
(x ' d )  

and 4 , = t a n - ' -  
(x : d )  

We now use the boundary conditions to evaluate I ,  and I , .  One condition requires the 
normal component of B to be continuous at the interface. The magnetic field is calculated 
from the scalar potential using the relation B = - / A  VO. Thus 

P l I l  -sin 4 ,  n + cos 4 ,  93 + ---- [-sin 42 11 + cos 42 91 
2np2 

Note that at the interface x = 0, p, becomes equal to p,, and 4 ,  + 4 ,  becomes equal to n. 
Equating the normal components of &that is, the components along the x axis-gives 
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p,(I + I,) = p,I , ,  which is exactly the result of Eq. (9.112) arrived at by using the vector 
potential method. 

The second condition requires that the tangential components of H be continuous. Using 
H = B / p  and taking the y components of B from Eqs. (9.11 7) and (9.118) gives I  - I ,  = I , ,  
which is precisely what we arrived at in Eq. (9.1 13) using the vector potential method. 

Both methods therefore give exactly the same image currents. Also it is easy to show that 
the fields derived from the vector potentials of Eqs. (9.109) and (9.1 10) are identical to those 
of Eqs. (9.117) and (9.118), which were derived from the scalar potential. 

We would like to note that the scalar potentials of Eqs. (9.1 15) and (9.1 16) are not con- 
tinuous at the interface. Substituting 4 ,  = n - 4, and I ,  and I ,  from Eqs. (9.114) into Eq. 
(9.1 15) gives 

and 

This result reflects the fact that the region considered is not simply connected and hence the 
scalar potential in this region is not single-valued, as we discussed above. 

Example 9.10 A Magnet Near a Plane Interface of Magnetic Materials 

A magnet of magnetic moment m is placed at distance zo at an angle 0 from the surface of a 
semiinfinite slab of magnetic material whose relative permeability is p  >> po , as shown in Fig. 
9.14. 

Figure 9.14 Application of the method of images to a 
magnetic dipole near the interface of a ferromagnetic 
material. 

The interaction between the magnet and the slab can be analyzed using the method of 
images. In fact, if the magnet is represented bv an effective length 1 and a pole strength q, then 
the problem becomes completely analogous to the problem of an electric dipole placed near a 
conducting plane (see Example 3.13). The magnetic slab can be replaced by an image magnet 
placed at distance - 2 ,  at an angle -0  from the interface, as shown in Fig. 9.14. The force 
and the torque experienced by the magnet can be evaluated using the same procedure fol- 
lowed in Example 3.13; thus we leave the details as an exercise. Specifically, one finds that 

po m2 sin 20 
'5=--- 

64n z: 



Figure 9.15 A solenoid with a line of B is 
shown and labeled as a loop C. 

*9.7 Magnetic Circuits 
So far in this chapter and the previous we have analyzed various problems involv- 
ing current distributions embedded in infinite media. The fields were found to 
extend over all space. In this section we consider some problems where these fields 
are confined to well-defined paths. The situation is different from the free-space case 
to the degree that it embodies an entirely different subject matter called magnetic 
circuits, which are characterized by a close analogy to current circuits. 

Consider as an example the long air-core coil shown in Fig. 9.15, which was 
treated in Example 8.8. Applying Ampere's law to the path C gives 

$$.d = NI (9.1 2 1) 

where N  is the number of turns and I  is the current in the coil. Outside the coil the 
field lines are widely spread, and hence the field is weak. Thus the flux is effectively 
confined to the internal region with the field given by 

where 1 is the length of the coil. 
When ferromagnetic materials are present in space, most of the magnetic flux can 

be channeled through them. This is so because they have very large relative permea- 
bilities; hence the magnetic field inside these materials for a given H is much larger 
than the corresponding field in free space. Figure 9.16 shows the idea of a magnetic 
circuit. A coil of N  turns is distributed over a small section of an iron ring. Although 
the coil does not cover all the ring, it is found that the flux produced by the coil just 
follows the ring, with very negligible flux outside of it. 

Figure 9.16 An iron ring with a current coil 
distributed over a small section of it constitues 
a magnetic circuit. 
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Figure 9.17 A magnetic circular core com- 
posed of several materials. 

In the magnetic-circuit point of view, the external flux is neglected and thus the 
fields are assumed to be totally confined to the core. Therefore, Eq. (9.53) implies 
that the magnetic flux is continuous throughout the circuit. Moreover, the flux is 
assumed to be uniformly distributed over the cross section of the core. 

Let us now analyze in detail a magnetic circuit. Consider an N-turn coil dis- 
tributed over a section of a ferromagnetic core. The core is composed of several 
materials-three, for example, in Fig. 9.17. Applying Ampere's law around a path 
taken in the center of the core gives 

where li and Hi are the length and the magnetic intensity in the ith section. Equ- 
ation (9.123) is closely analogous to electric circuits. Applying Kirchhoffs law, Eq. 
(7.83), around a single loop containing three resistors and an electromagnetic source 
d gives d = Vl + V2 + V3, where l/i is a voltage drop across the ith resistor. This 
comparison suggests that NI in Eq. (9.123) can be viewed as a magnetomotive force, 
A, and Hili  as amperage drop. The analogy can be developed further by using the 
magnetic flux. Using Hi = Bi/pi  and F, = BiAi ,  where Ai and pi are the cross section 
and the permeability, respectively of the ith section of the core, transforms Eq. 
(9.123) to 

Since we are dealing with a magnetic circuit where the flux is assumed to be con- 
fined to the core, then F ,  = F2 = F3 = F, and thus 

where 

is the reluctance of the ith section and W is the sum of the individual reluctances. 
The analogy with electric circuits is now more evident. The relation in Eq. (9..125) is 
similar to what we encountered in a series current circuit where the current and the 
electromotive force are related by 8' = RI, where R is the total resistance of the 
circuit. Moreover, the expression for the reluctance of the iron core in terms of I ,  p, 
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Figure 9.18 A multiloop magnetic circuit. 

and A is very analogous to the expression for the resistance of a wire length I ,  cross- 
sectional area A, and conductivity o,; that is, R = l/a,A. 

A word of caution needs to be mentioned now concerning the analogy between 
the electrical and magnetic cases. The permeability must be known for each of the 
materials before one can calculate the reluctance of the circuit and hence the fields 
in the circuit. However, B or H must be known in each material before the permea- 
bility can be calculated. It is clear that iterative procedures or graphical methods 
will have to be used to solve simultaneously the problems, as we will show later in 
this section. This is in contrast to the electrical case, where the conductivities, and 
hence the resistances, of the elements are independent of the current (for linear 
materials). 

So far only reluctances in series were considered. We will now discuss parallel 
magnetic circuits. Consider Fig. 9.18. The magnetomotive force .M = N I  sets up a 
magnetic flux F ,  in the circuit. At junction a the flux encounters two parallel paths 
2 and 3 where part of it, F,, takes path 2 and the rest, F,, takes path 3. The 
equivalent reluctance of the two paths is 919,/(91 + 9,) where 9, and 9, are the 
reluctances of the individual paths, and the ratio F 2 / F l  is 9,/9,, with the result 
that the flux prefers passing through the lower reluctance. 

Because the reluctance is inversely proportional to the permeability, cores made 
from ferromagnetic materials have lower reluctances than those made from nonfer- 
romagnetic materials, since ferromagnetic permeabilities are about lo3 to lo4 po. 
This enforces the accuracy of the assumption that most of the flux goes through the 
ferromagnetic core, with only negligible amounts leaking into free space. 

It is common to have air gaps in magnetic circuits in order to have access to the 
magnetic field. The gap size is chosen as small as possible in order to minimize its 
reluctance. The area of the gap is not completely defined because the field fringes 
out at the gap, thus making the effective cross section of the gap larger than its iron- 
core face. A first-order correction to the area of a rectangular gap is given by 

where d l  and d ,  are the geometrical dimensions of the gap, A, = d l d 2 ,  I, is the gap 
length, and l,/d,, I,/d, z lo-'. 

Example 9.11 A Cast-Iron Core with an Air Gap 

Consider a cast-iron magnetic core with N I  = 1000 A, as shown in Fig. 9.19. It has an area 
A, = 4 cm2 and a length 1, = 44 cm. The length of the air gap is 1, = 0.2 cm and its effective 
arca is A, = 4.8 cm2. Applying Ampere's law to the circuit gives 
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4 L 
'g 

Figure 9.19 A magnetic circuit with an air 
gap. 

where H, and H, are the magnetic fields in the core and the gap, respectively. The magnetic 
flux F is continuous throughout the circuit; thus we take F/poA, for He, which gives 

Again, because the flux in the different sections of the circuit is conserved, we take F = B,A,; 
hence Eq. (9.129) becomes: 

which is a linear relationship between B, and H, of the cast-iron core. The slope of the line is 
proportional to the ratio of the cross section of the gap to that of the cast-iron core and also 
proportional to the ratio of the length of the cast-iron core to the length of the gap. The 
intercept of the line is proportional to the magnetomotive force NI. In most cases AJA, x 1, 
so the slope effectively becomes proportional to lc/l, and the intercept becomes proportional 
to NI/l,. 

To solve for the flux and the fields in the gap and in the cast-iron core, the above-derived 
relation between B, and H,, and the B-H magnetization curve of the iron core are solved 
simultaneously. We plot Eq. (9.130) using the given dimensions and quantities of the above 
circuit along the magnetization curve, as shown in Fig. 9.20. The intersection of these two 
curves gives the operating point of the magnet: 0.4T for the B field in the core, and hence the 
field in the gap B, = (B, A,/A,) = 0.33T. 

H, amperes per meter 

Figure 9.20 Graphical solution for the operating point of 
magnetic circuit with an air gap. 
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Example 9.12 A Magnetic Circuit with a Permanent Magnet 

In the previous example the magnetomotive force in the circuit was produced by current 
windings. Magnetomotive forces can also be supplied by permanent magnets. Consider the 
magnetic circuit shown in Fig. 9.21, which is made up of a permanent magnet of length I,, 
two soft-iron side arms of total length I,, and an air gap of length I,. The cross-sectional areas 
of the magnet, the arms, and the gap are A,, A,, and A,, respectively. Moreover, the arms 
have an N-turn current winding and a current I. 

Soft iron 

Figure 9.21 A magnetic circuit that includes a cur- 
rent coil and a permanent magnet. 

Applying Ampere's law to the circuit gives 

where H,, H,,  and H ,  are the magnetic fields in the magnet, arms, and the gap, respectively. 
Using the constancy of the flux in the circuit we write 

and therefore Eq. (9.131) becomes 

We should note that the relation between B, and H ,  as given in this equation is not linear 
because of the presence of the H,l, term. Again, using the constancy of the flux gives 

which clearly shows that it is a nonlinear equation since A of soft iron is a nonlinear function 
of the fields, A(H,,,). The same relation can also be written in terms of the total reluctance of 
the circuit 9 as follows: 

where 

To determine the fields, Eq. (9.135) and the hysteresis curve must be solved simultaneously. 
The complication, of course, arises because the circuit contains two nonlinear media: the 
magnet and soft iron. In cases where the gap length is not too small, one can have 



In this case the effect of the arms can be neglected; hence Eq. (9.133) or Eq. (9.135) becomes 

The fields can now be easily determined by solving this linear equation with the hysteresis 
curve of the magnet, as was done in the previous example. Situations where two nonlinear 
materials that are equally important in a magnetic circuit are discussed in the following 
example. 

Example 9.13 Two Nonlinear Core Sections 

We now take up the case where the circuit consists of two nonlinear materials. The circuit 
shown in Fig. 9.22 consists of parts 1 and 2, which are of lengths I, and l2 and cross-sectional 

Figure 9.22 A magnetic circuit composed of 
two ferromagnetic materials. 

areas A ,  and A,, respectively. Moreover, an N-turn coil carrying a current I is wound on the 
coil. Applying Ampere's law gives 

where HI  and H, are the magnetic fields in parts 1 and 2, respectively. The continuity of flux 
in the circuit gives an equation relating B ,  and B,; that is, B, = B,A,/A,. These two equa- 
tions relating the pairs (B,, Hz) and (B,, H,)  can be solved graphically with the aid of the 
magnetization curve of material 1. The generated points (B,, Hz) are then plotted simul- 
taneously with the magnetization curve of material 2. The intersection of the latter curves 
gives the operating point of the circuit. 

Example 9.14 Magnetic Shielding 

The fact that most of the magnetic flux can be channeled through ferromagnetic materials as 
a result of their very large relative permeability (small reluctance) makes possible the concept 
of magnetic shielding. Magnetic shielding is of considerable practical importance since low 
field regions are often required in experiments or for electronic devices to work reliably. 

To see this effect let us consider a very long cylindrical shell of magnetic material, with 
relative permeability K, and internal and external radii a and b, respectively. It is placed in a 
uniform magnetic field H,, with its axis normal to the field. The relative permeability of the 
material in the cavity and outside the shell is 1. 

We try the magnetic scalar potentials 
A cos I$ a,= -HOpcos4+- 

P 

C cos f#J 
@, = Bp cos 4 + - 

P 
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Figure 9.23 The lines of B when a ferromagnetic 
cylindrical shell is placed in an initially uniform 
magnetic field with its axis normal to the field. 

for the regions outside, within, and inside the cylindrical shell, respectively. Taking @ and B, 
to be continuous on all boundaries, we can find all of the magnetic scalar potentials, and 
hence all of the fields. For example, we have 

@, = -2Hoa2(Km - 1) { p cos 4 + - - i)cos t$}{a2(Km + 1)' - b2(Km - 

The magnetic field inside the cylinder for example is 

This result illustrates the phenomenon of shielding. We see that the inner field is proportional 
to K,' as K, % 1. Therefore a cylindrical shield made of high-permeability material with Km 
of lo3 to 10' induces a great reduction in the field inside it even with a relatively thin shell. 
Figure 9.23 shows a schematic of the lines of B, showing their tendency to pass through the 
permeable medium if possible. See Problems 9.9 and 9.10 for further details of shielding. 

9.8 Summary 

The magnetization M of a macroscopic piece of material is defined as the density of atomic 
magnetic dipoles: 

The magnetic properties of a macroscopic piece of material of magnetization M can be 
calculated by replacing all of the atomic dipoles by effective volume and surface currents Jm 
and K, (called magnetization currents); hence 

where fi is a unit vector normal to the surface of the material. The vector potential of such a 
material is 

and hence B = V x A,. 
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Alternatively, the magnetic properties of the material can be calculated by replacing the 
atomic dipoles by an effective volume and surface magnetic pole densities p, and a,; that is, 

The magnetic scalar potential @, and hence the magnetic field take the expressions 

It is convenient to define the field H such that 

In the presence of external currents J f ,  then 

The differential equations of magnetostatics in magnetic materials are V x B = poJ ,  and 
V.B = 0, where J  = J ,  + J ,  is the total current including the external current J f  and the 
magnetization current J , .  Using H, these equations become 

Ampere's integral law in the presence of magnetic material becomes 

where li is the total free current that goes through C. 
The response of a material to an external field H depends on the microscopic structure of 

the material. Here we classify materials according to their macroscopic response 

where x is called the magnetic susceptibility. If x is independent of H (magnitude and direc- 
tion) and independent of space, the material is said to be linear (simple). The material is 
further classified as diamagnetic or paramagnetic if x < 0 or x > 0, respectively. For linear 
materials M = xH, and hence 

where p  is the permeability of the material, and K, is its relative permeability. 
Ferromagnetic materials are nonlinear materials whose p  is a nonlinear function of H; they 

exhibit a high degree of magnetization compared to paramagnetic materials, with K ,  in 
certain cases reaching about lo5. They also exhibit the irreversible phenomenon of hysteresis. 

When a given space is composed of regions of different magnetic properties, then the fields 
can be determined using boundary value techniques. In a given region of permeability p, the 
equations V x A = B and V x H = J f ,  and hence V x B = p J f ,  combine to give (taking 
V.A = 0) 

On the other hand, in regions away from J ,  we have H = -V@,, which, when substituted in 
V.B = 0, gives 
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The equation for a, (or A) can be solved in the different regions independently. The solutions 
then are matched at the boundaries according to the following rules 

B1, = Bzn or Al, = Azt (9.45),(9.5 1) 

HI,  = Hz, or a,, = a,, (Kf = 0 on boundary) (9.47),(9.49) 

(H, -HI), = Kf x d (9.46) 

where t means tangent to the boundary and A is a unit vector normal to the boundary. 
The method of images is useful in solving some magnetic problems that contain free 

currents and prescribed boundary conditions. 
The magnetic field of current distributions in the presence of low-permeability materials 

extends over large distances. In the presence of ferromagnetic materials of high p, the field 
can be mostly trapped in these materials and hence confine it to well-defined paths, thus 
creating what are called magnetic circuits, which exhibit a close analogy to current circuits. In 
this analogy we have the quantities (NI, F, 41) parallel to (emf, I, R) of current circuits, where 
41 is called the reluctance, given as follows: 

in analogy with the resistance of a circuit R = l/u,A. Additions of reluctances obey the same 
rules as additions of resistances. 

Problems 

9.1 A sphere of radius r is magnetized, with the magnetization given by M = (aly2 + b , ) j  
+ a,x21, where x and y are measured using a coordinate system with origin at the 
center of the sphere. (a) Calculate the pole densities. (b) Calculate the magnetization 
current. 

9.2 A hemicylinder of radius R and length L is magnetized in the y direction. The magnet- 
izatiomis M = M , j ,  with M ,  a constant (see Fig. 9.24). (a) Find the volume magnetic 
pole density. Find the surface magnetic pole density on all the surfaces. (b) Find by 
integration the net poles on the hemicylinder. (c) Explain why your answer to (b) is 
expected for physical reasons. (d) Find by integration the dipole moment relative to the 
origin 0. Calculate the dipole moment also by using the definition of the magnetization 
M. Do the two answers agree? 

Figure 9.24 



A disk of a magnetic material has a radius R and thickness T < R. It is uniformly 
magnetized, and the magnetization, M = M,f, is in the plane of the disk (x-y plane) 
(Fig. 9.25). (a) Determine the magnetic pole densities. (b) Determine the magnetization 
current densities. (c) Determine B and H at the center of the disk. 

Figure 9.25 

Determine the potential produced by a cylinder uniformly magnetized along its axis 
(Example 9.3) using the method of magnetic pole density. 

A sphere of radius R is magnetized with the magnetization given by M = M,(r)P + M,, 
where M,(r) is any function of r = Irl, and M, is a constant vector. Show that (a) the 
external field produced by the sphere is independent of MI,  and (b) the magnetic scalar 
potential inside the sphere is 

A circuit is lying on the plane interface between two media with magnetic permea- 
bilities p, and p,. If the field produced by the circuit in the absence of the magnetic 
materials is H,, show that the fields in the magnetic materials are given by Eq. (9.63). 

An infinitely long cylindrical tube of inner radius p, and outer radius p, carries a 
uniformly distributed axial current I. (a) Determine the magnetic field everywhere using 
Ampere's law. (b) Determine the vector potential everywhere by solving Eq. (9.43), and 
then determine the magnetic field. (c) Compare the results of (a) and (b). 

A uniformly magnetized sphere with magnetization M is placed in a uniform magnetic 
field H. Determine the torque acting on the sphere. 

A spherical shell of a magnetic material of permeability p, and internal and external 
radii R, and R,, respectively, is placed in a uniform magnetic field H,. The permea- 
bility of the material in the cavity and in the surrounding region is p,. Determine the 
magnetic field in the cavity. Discuss the case p, + p, (see Example 9.14). 

A very long cylindrical shell of magnetic material of permeability p, and of internal and 
external radii a and b, respectively, is placed in a uniform magnetic field H, with its 
axis normal to the field. The permeability of the material in the cavity and outside the 
shell is p,. (a) Determine the scalar potentials and the fields in all regions. (b) Deter- 
mine the equation of the lines of the magnetic field B within the material of the 
cylinder. 

Determine the magnetic field produced by an infinitely long magnetic cylinder of 
radius p, and permeability p, The cylinder is uniformly magnetized, with its magnetiz- 
ation M, being normal to the axis of the cylinder, and immersed in a material of 
permeability p,. 

An infinitely long magnetic wire of radius p, and permeability p, is placed in a uni- 
form magnetic field H, with its axis normal to the field. The wire carries a current I, 
and the permeability of the material surrounding the wire is p,. Determine the magne- 
tic field inside and outside the wire. 
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A very large ferromagnetic material of uniform magnetization M has small cavities in 
it. There also exists in the material a magnetic field H, which is in the direction of M. 
Determine B in (a) a spherical cavity of radius r, (b) a very long cylindrical cavity of small 
radius p, whose axis is parallel to M, and (c) a very long cylindrical cavity of radius p 
and axis normal to the magnetization. 

Two magnetic media 1 and 2 of permeabilities p,  and p,, respectively, are separated by 
a plane interface. The field B, just below the interface in medium 1 makes an angle 0,, 
and the field B2 just above the interface in medium 2 makes an angle 8,. The angles are 
measured with respect to the normal to the interface. Show that p, tan 0, = p, tan 0,. 

Determine the magnetic moment of the current distribution produced by the spinning, 
charged sphere of Example 9.8 by (a) using m = r x J dv, (b) using m = M dv, and 
(c) using the potentials produced by it [Eq. (9.108)]. 

A wire is placed at a distance d parallel to the plane face of a semiinfinite medium of 
permeability p. If a current I  flows in the wire, show that the wire is attracted to the 
material and determine the force. 

Show that the force acting on a unit length of the current of Example 9.9 is 
dF/dl = (p0/4nd)12 if p2 + p, = pO. 

A straight wire carrying a current I is parallel to the axis of an infinitely long cylinder 
of radius a and at a distance b > a from it. The permeability of the cylinder is p, + p,, 
where p, is the permeability of the material surrounding the cylinder. Find the force 
per unit length of the wire. 

Solve Problem 9.18 for the case where a > b and p, p p, (a wire inside a cylindrical 
cavity). 

Prove Eqs. (9.1 19) and (9.120). 

Two very long cylindrical magnets are placed next to each other, as shown in Fig. 9.26. 
Each magnet is of length L and diameter p,, and has uniform magnetization M along 
the axis. The magnets are separated by a small gap of lengths I, < L, p,. Determine the 
magnetic fields H and B in the gap. 

= 4JL L 

I ,  
Figure 9.26 

9.22 Consider the magnetic circuit shown in Fig. 9.18. The circuit is made of cast iron. The 
circuit dimensions are I, = 0.04 m, I, = I, = 0.1 m, and the circuit cross section is 1.5 
x m2. Determine the flux in the circuit if NI  = 5.25 x lo2 A. 

9.23 Consider the magnetic circuit given in Fig. 9.21 with I  = 0. The hysteresis curve of the 
permanent magnet (Alnico 5) is given in Fig. 9.8~.  The arms are made of soft iron 
whose hysteresis is negligible compared with that of the permanent magnet. The di- 
mensions of the circuit are: length of gap I, = 1 cm, area of the gap A, = 2 cm2, length 
of the magnet I, = 10 cm, and cross section of the magnet A, = 2 cm2. Determine the 
fields in the gap and in the magnet. 

9.24 Consider the magnetic circuit given in Fig. 9.22 of Example 9.13 where material 1 is 
cast steel and material 2 is a nickel-iron alloy. The dimensions of the circuit are 
I, = 0.08 m, I, = 0.1 m, A ,  = 3 x mZ, and A, = 2.25 x m2. Determine the 
flux and the fields in the two materials when NI = 40 A. 

9.25 Consider two coaxial toroids of a ferromagnetic core, of mean radius R and thickness 
t 4 R and separated by 2d. The magnetic field inside each of them is B and outside is 
zero. (a) Determine the vector potential at the axis due to one of them. (b) Determine 
the magnetic vector potential at the axis of the toroids. (Hint: Use V x A = B, in 
analogy with V x B = p,J, along with the result of a current loop). 
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9.26 The hysteresis curves of certain special ferrites have nearly rectangular loops, as shown 
in Fig. 9.27, thus enabling them to be used as memory elements. Consider a toroid of 

Figure 9.27 

this material of inner and outer radii a and b, thickness c and a current-carrying coil of 
No turns, and current I. (a) If I = 1 ampere, determine the minimum N o  required to 
saturate it. (b) What is the magnetization when the current is reduced to zero? 



THE MICROSCOPIC 
THEORY OF MAGNETISM 

In Chapter 9 we discussed the macroscopic properties of magnetic materials, but 
deferred the discussion of their microscopic nature. In this chapter we take on the 
microscopic aspect of magnetization by analyzing the response of individual atoms 
or molecules to external magnetic fields. The objective here is not to present a full 
discussion of this subject, but as we dealt with the microscopic theory of dielectrics 
in Chapter 5, we will discuss simple ideas that describe the qualitative nature of the 
different classes of magnetic materials and give an order of magnitude of their 
permeabilities. 

Part of the treatment requires the introduction and utilization of two quantum 
mechanical properties of the atoms; however, the actual treatment is carried out 
classically. 

10.1 The Interaction of Atoms and Molecules with Magnetic Fields 

We now consider the interaction of individual atoms or molecules with magnetic 
fields. Unlike the electrical effects of matter, where the atomic charge interacts with 
electric fields whether it is in motion or static, only charges in motion interact with 
magnetic fields. Since atomic electrons orbit around the nuclei, they produce a 
magnetic moment at large distances (rotational or orbital magnetic moments) (see 
Example 8.15, which deals with a rotating ring of charge) and hence interact with 
external fields via this moment; as discribed in Section 8.8.4. This picture is approxi- 
mate, of course, since the electronic orbits are not actually well defined according to 
quantum mechanics. The correct solution of this problem can be found in quantum 
mechanics books; it involves the solution of the Schrodinger wave equation of the 
electron in the presence of a magnetic field. Nevertheless, we will go ahead with the 
foregoing simplified model using classical ideas and be content with an order of 
magnitude of the effects. 

We should mention that the applicability of classical models is close to reality in 
some physical cases. For example, in a plasma or in regions where the number of 



330 THE MICROSCOPIC THEORY OF MAGNETISM 

free electrons is large, the behavior of electrons is governed by classical mechanics. 
In fact, the early work on the nature of magnetic materials was based on classical 
ideas and surprisingly led to intelligent guesses at the behavior of these materials. 

Charges in matter can also interact with external magnetic fields via their spin, 
which is an intrinsic quantum mechanical effect that can be viewed classically from 
the point of view of a charge distribution spinning about itself: Such a classical 
analog predicts a magnetic moment (see Example 8.19). Both the electrons and the 
nuclei have spin or intrinsic magnetic moment; hence they interact with external 
magnetic fields. 

The total magnetic moment of an electron is the sum of its rotational and intrin- 
sic magnetic moments. Based on this total moment, various atoms are classified into 
two categories: atoms that have net permanent magnetic moments (magnetic), and 
atoms that have no net permanent magnetic moments (nonmagnetic). In the latter 
case, the rotational and the intrinsic moments cancel. 

As we will see in Section 10.2, when a nonmagnetic atom is placed in an external 
magnetic field, an induced current is produced in the atom. The direction of this 
additional current is such that the induced magnetic field opposes the external field 
in accordance with Lenz' law (to be introduced in Chapter 11). Thus, as a result of 
the interaction, the atom acquires an induced magnetic moment, which is in oppo- 
site direction to the external field. Such an atom is called a diamagnetic atom. We 
should note that this effect occurs in all atoms whether they are nonmagnetic or 
magnetic. However, in the case of magnetic atoms other effects may occur. 

As we will see in Section 10.3, the permanent moment of a magnetic atom expe- 
riences some degree of alignment along the external field (analogous to the align- 
ment of electric dipoles in an electric field). This alignment effect is the origin of 
paramagnetism. Moreover, in some substances called ferromagnetic materials there 
are internal forces (called exchange forces) between the magnetic moments of differ- 
ent atoms; they are pure quantum mechanical forces that result in a great degree of 
alignment. 

We now consider the question: Which atoms of the periodical table are magnetic? 
Atoms that have "unfilled shells" have magnetic moments. In these atoms the num- 
ber of electrons is odd, and it is the electron in the unfilled shell that gives the atom 
a spin and hence a magnetic moment. Electrons in "filled shells" are paired; every 
two electrons have their spins in opposite directions such that the sum of their 
magnetic moments vanishes. Consequently, atoms with filled shells have no mag- 
netic moments. 

The compounds formed from magnetic atoms are not necessarily magnetic. Com- 
pounds whose atomic constituents have unfilled outer shells are not necessarily 
magnetic because the outer-shell electrons of opposite spins get coupled, thus result- 
ing in cancellation of the total moment. Such coupling, however, is absent in com- 
pounds whose atomic constituents have unfilled inner shells. The latter class of 
atoms include the transition elements and the rare earth elements. 

10.2 The Origin of Diamagnetism-Induced Dipole Moments 
The origin of diamagnetism can be described using the following simple model of 
the electronic motion around the nucleus. The electron of charge e is taken to rotate 
around the nucleus in a circular orbit of radius p and frequency o (see Fig. 10.1), 
which constitutes a current loop with a current equal to -eo/2n and a magnetic 
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Figure 10.1 An electron of circular orbit in a 
uniform magnetic field that is normal to the 
orbit. 

moment equal to the product of the current and the area of the orbit and a direc- 
tion normal to the plane of the motion: 

where 2 is a unit vector normal to the plane of the motion. The moment can be 
directly related to the angular momentum of the motion L = m e o p 2 2 ,  where me is 
the mass of the electron, as follows: 

A magnetic field B whose direction is normal to the plane of the orbit-that is, 
along the z axis-is now switched on the atom. The act of switching induces an 
electric field in the atom according to Faraday's law (to be discussed in detail in 
Chapter 11): 

where E is the induced electric field, C is the orbit of the electron, and F is the 
magnetic flux of the external field traversing the orbit. Taking the tangential compo- 
nent of the electric field, E,, constant for a given p  in Eq. (10.3) gives 

The induced electric field E, produces a torque on the electron equal to 7 = 
-eE,p, which when equated to the rate of change of the angular momentum of the 
electron (Newton's law for rotation) gives 
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which gives a change OL in the angular momentum resulting from a change in the 
magnetic field AB as follows: 

1 
SL = - ep2 AB 

2 
(10.7) 

Thus Eq. (10.7) shows that a buildup of a magnetic field B causes a change in the 
angular momentum of the electron, AL, and hence a change in the magnetic mo- 
ment governed by Eq. (10.2); that is, 

We can now calculate the induced magnetization of an ensemble of molecules 
placed in an external magnetic field. If each individual molecule has n electrons, 
each with an orbit of radius ri making an angle 0, with the magnetic field, then the 
change in the magnetic moment of the molecule is 

The magnetization M of a material of N molecules per unit volume can be deter- 
mined from Eqs. (9.3) and (10.10) as M = N Am. Therefore 

and thus the macroscopic diamagnetic susceptibility of the medium, % = M/H, is 

This expression can be alternatively written in terms of an average of the radius. 
Since r' cosVO = p2 = .u2 + y2, (p2) = (2/3)(r2); therefore 

10.3 Paramagnetism-Permanent Moments 

As mentioned above, when the atoms being investigated are magnetic (that is, when 
they have permanent magnetic moments), the field causes some degree of alignment 
of the moment along its direction in addition to simultaneously inducing a magnetic 
moment (diamagnetic effect). Since the diamagnetic effect has been discussed, we will 
now turn to the alignment effect. 

According to quantum mechanics, the motion of atomic electrons and the orien- 
tation of their spins under the influence of an external magnetic field are quantized. 
In other words, the total magnetic moment of the atom has a discrete set of orien- 
tations relative to the field. From a classical point of view, on the other hand, one 
ignores these restrictions on the direction and assumes that all orientations are 
possible. Although we will discuss the problem from the classical point of view, we 
will later give an example where the discreteness is used and compare both results. 
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Also we will defer the discussion of the dependence of the magnetic moment on the 
spin to the following section. 

In a macroscopic sample of a magnetic material, some thermal effects take place. 
The thermal energy of the molecules, which results in collisions among them, tends 
to randomize the molecular dipole orientation. In fact, in the absence of an external 
field the vector sum of the dipole moments of all the molecules vanishes. The 
magnetic field, on the other hand, exerts torques on the individual dipoles and tend 
to align them. The degree of alignment for a particular sample, therefore, depends 
both on the strength of the field and on the temperature. 

The classical treatment of paramagnetism is very similar to that of the alignment 
of electric dipoles of molecules placed in an external electric field (discussed in 
Chapter 5), which was derived quantitatively using statistical methods. Consider an 
assembly of N magnetic molecules per unit volume, each of magnetic moment m 
and at a temperature T Classically, each dipole moment can make an arbitrary 
angle 8 with respect to a given direction such as the z axis. In the absence of an 
external magnetic field, the probability that the dipole will be between angles 8 and 
8 + d8 is proportional to 271 sin 8 do, which is the solid angle dR subtended by this 
range of angle. This probability leads to a zero average of the dipoles. When the 
field is present and is taken along the z axis, this probability becomes also propor- 
tional to the Boltzmann distribution e-"IkT, where U is the magnetic energy of the 
dipole when it is making an angle 8 with the magnetic field, k is the Boltzmann 
constant, and T is the absolute temperature. The Boltzmann factor introduces the 
dependence of the probability on the field and on the temperature in a quantitative 
way. 

In a magnetic field B, the magnetic energy of an atomic dipole is U = - m . B = 
-mB cos 8, where B is along the z axis and 8 is the angle between the moment and 
the z axis. The same procedure used in Section 5.2.2 gives the average of the dipole 
moment, (m), and hence the magnetization, M, in terms of the Langevin function: 

(m) = m[coth q - :If 
where 

For most cases of paramagnetic materials, q G 1 at ordinary temperatures even 
for B as large as lo4 gauss (1 tesla); therefore, M can be approximated by the lowest 
order in q ;  

It is apparent that the magnetization at high temperatures is proportional to the 
magnetic field that yields a constant (independent of the field) magnetic 
susceptibility: 
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mB 
9 = 7 3  

Figure 10.2 The magnetization of an ensemble of para- 
magnetic material placed in a magnetic field B as a 
function of r] = mB/KT. (a) Classical calculation with 
no restriction on the direction of the dipole. (b) Quan- 
tum mechanical calculation with direction restricted. 

The fact that x is proportional to T-'  is known as Curie's law. 
At lower temperatures, such that q% 1, M becomes 

which is independent of magnetic field. In this case M takes its maximum value; 
that is, it reaches saturation. For intermediate temperatures, the dependence of M 
on B is nonlinear. The complete dependence is shown in Fig. 10.2~. 

Example 10.1 The Magnetization of a Quantum System 

We would like to consider paramagnetism from the point of view of quantum mechanics. For 
atoms with a magnetic moment due to a spin of 4, there are only two discrete orientations of 
the moment m with respect to the external field, B: parallel or antiparallel corresponding to 
angles 0 = 0 and n, as shown in Fig. 10.3. The corresponding magnetic energies of these 

B field B field 

Figure 10.3 A magnetic atom of spin f in an 
external B field showing two possible configur- 
ations along and opposite to the field. 

orientations are -mB and mB. The probability of finding the moments in the parallel and 
antiparallel orientations are CeQnd Ce-q respectively, where C is a normalization constant; 
hence the mean magnetic moment is 

e'l - e-q 
(m) = m- 2 =m2 tanh r]  

eq + e-v 
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where q = mB/kT was defined in Eq. (10.16), and % is a unit vector along the field. The 
magnetization of the ensemble is then given by: 

M = Nm% tanh q (10.21) 

Figure 10.26 shows a plot of M/Nm as a function of q. When q is very large, tanh q = 1; 
therefore M/Nm approaches unity, indicating saturation where the moments are all in the 
spin up position. 

For most materials at ordinary temperatures and fields, q g 1; hence tanh q = q and the 
magnetization is 

indicating a linear dependence on B and on T-I  just as was found using the classical 
treatment. There seems, however, a discrepancy in the magnitude of the effect. The quantum 
result appears to predict that the magnetization is a factor of 3 larger than the classical 
prediction. In actuality this discrepancy is not genuine since the definitions of the magnetic 
moments in both treatments differ. In fact they are related as follows:* 

where m, and m, are the classical and quantum mechanical magnetic dipole moments of the 
atom, respectively, thus clearing the discrepancy. 

Example 10.2 Susceptibility of A Free-Electron Gas 

Consider a system that consists of particles of charge e and mass me. Each particle moves in a 
circular orbit. The system is placed in a magnetic field and taken to be in a state of statistical 
equilibrium. We would like to calculate the magnetic susceptibility of the gas. Classically, the 
total magnetic susceptibility is the sum of the paramagnetic and diamagnetic susceptibilities 
given in Eqs. (10.13) and (10.18): 

The kinetic energy of the electron E,, in terms of its angular momentum L, is 
E, = L2/2m,r2. Thus m2 can be written as: 

In the case of statistical equilibrium, the average kinetic energy (E,) can be found from the 
theorem of equipartition of energy. Because the electrons are rotating in planes, they have 
two degrees of freedom; hence their average kinetic energy is equal to kT. As a result, the 
average magnetic moment is 

Substituting this result in Eq. (10.24) gives x = 0. 
This result indicates that the magnetic susceptibility, and hence the magnetic moment of a 

charged body that obeys classical statistics, is zero. It is to be noted that if quantum effects 
are included, which are important in the case of atomic electrons (bound electrons), a finite 
magnetic moment would exist. These effects include the spin angular momentum and quan- 
tization of the electronic orbits. 

* See R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, (Reading, Mass.: 
Addison-Wesley. 1966), Vol. 2, page 35.9. 



10.4 Ferromagnetism 

10.4.1 Spin-Spin (Exchange) Interaction 

In accounting for the diamagnetic property of matter, atoms were not required to 
have permanent magnetic dipole moments or to have any interaction among them- 
selves. The paramagnetic property of matter, however, can be accounted for only by 
a quantum mechanical property-a permanent magnetic moment produced by the 
intrinsic spin, S ,  accompanied by an interaction among themselves-that is, interac- 
tion through collisions that tend to randomize the directions of the moments. As we 
previously stated, the spin is an intrinsic angular momentum, analogous to the 
orbital angular momentum, that can only have discrete orientation in a magnetic 
field (see Example 10.1). Associated with the atom's spin is a magnetic moment, 
which is related to it by 

where p' = eh/2me is the Bohr magneton, h is Planck's constant divided by 271, and g 
is a constant called the g factor, which has a value of 2.001 (x2). Equation (10.27) is 
analogous to Eq. (10.2), which relates the orbital magnetic moment to the orbital 
angular momentum. 

Another magnetic property of matter is the ferromagnetic effect exhibited by 
some materials whose macroscopic properties were discussed in Section 9.4, The 
Magnetic Constitutive Relation's. It turns out that these above principles are not 
sufficient to account for this effect, which point towards the fact that there must be 
other types of interactions between the atoms of ferromagnetic materials. One type 
of interaction that may readily come to mind (but does not, however, account for 
the effect) is the dipole-dipole interaction; it is caused by the magnetic field pro- 
duced by one of the atomic dipoles at the position of another. This effect will be 
considered in further detail in Example 10.3. Also see Example 5.3 for the corre- 
sponding effect in the electrical property of matter. 

The effect that accounts for the ferromagnetic property is a quantum mechanical 
effect resulting from the Pauli exclusion principle; it is called the spin-spin (exchange) 
interaction.* According to the Pauli exclusion principle, electrons cannot occupy the 
same total state; for example, if two electrons on neighboring atoms occupy the 
same orbital state, then their spins have to be antiparallel. Conversely, if the 
electrons have parallel spins, then they have to be in different orbital states. Because 
electrons that occupy the same orbital state can get closer to each other more than 
those that are only allowed to be in different orbital states, the electrostatic energy 
of the two electrons depends on the configuration of their spins. 

The quantum mechanical exchange interaction energy U' of a pair of atomic 
electrons is written in terms of their spins, and hence in terms of their magnetic 
moments, as fol1ows:t 

which can be approximated by the much simpler expression 

* W. Heisenberg, Zeitschriji f i r  Physik, vol. 49, p. 619, 1928. 

t See the discussion of the interaction of two classical magnetic dipoles in Examples 10.3 and 12.2. 
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where (Sj, Sjz) and (S,, Skz) are the spin and its z component of the jth and the kth 
atom, respectively, and u > 0, a quantity that depends on the distance between the 
interacting atoms, measures the strength of the interaction; specifically, it falls rapid- 
ly with increasing distance. 

We should note that the quantum mechanical interaction energy between the 
spins (moments) of atoms j and k implicitly defines a field HA along the z axis 
produced, say, by atom k at the site of atom j. Comparing Eq. (10.29) with U' = 
- pornj, H; gives 

With the introduction of the quantum mechanical permanent magnetic moments 
[Eq. (10.27)] and their quantum mechanical interactions [Eq. (10.29)] and fields 
[Eq. (10.30)], the rest of the treatment of the various effects are done classically. 

10.4.2 The Molecular Field 

To analyze the ferromagnetic effect, one needs to calculate the field at the site of a 
particular atom caused by the external sources and by all the magnetic atoms in the 
medium. This field is called the molecular field or the local field, H. We will first set 
aside the spin-spin interactions and hence calculate .the classical local field. 
Although we already mentioned that this field does not account for the permanent 
magnetization of ferromagnetic materials (sometimes called spontaneous magnetiz- 
ation), it will shed some light on the nature of the effect. After all, it was the 
breakdown of the classical theory that led to the development of the quantum 
theory. 

The classical local field of a magnetized material of magnetization M can be 
determined using the procedure introduced in Section 5.1 for the calculation of the 
local electric field produced by the electric dipole moments of neighboring atoms. 
The method used assumes that such a field at a particular atom is the same as 
would be found in a small spherical hole in the material, whose presence is assumed 
not to affect the rest of the material. The fieid H [see (Eqs. 4.34) and (5.2)] is 
therefore given by 

where Ho is the macroscopic field in the material. We should note that the corre- 
sponding electric molecular field of a polarized dielectric material, Eq. (5.2), was 
sufficient to account for the ferroelectric property of dielectrics. In the magnetic 
case, however, Eq. (10.31) does not explain ferromagnetism, as we will see later. 

We now turn to the calculation of H in a ferromagnetic material placed in an 
external field H, taken along the z axis when the spin-spin interactions are included. 
It is to be noted that the general quantum mechanical problem is so difficult that up 
to the present time it has not been solved exactly. However, some approximate 
methods have been developed. Here we will briefly describe the molecular-jield 
method developed by Weiss. 

In the Weiss molecular-field approximation the attention is focused on a partic- 
ular central jth atom. Because the spin-spin interaction falls rapidly with distance, 
only a few neighboring atoms interact appreciably with this central atom. As an 
approximation, the effect of these neighboring atoms is replaced by their average 
interaction. Thus one can write, using Eq. (8.1 1 I), U = - m B, or 

E = -pomjz(Ho + H') = -pomjzH (10.32) 
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where H' is the field produced along the z axis by n neighboring atoms; that is, 

and H is the molecular field at the site of jth atom. The number of contributing 
atoms n is not known at this stage and is expected to be a function of the strength of 
the exchange interaction (namely, u) and hence of the bulk properties of the fer- 
romagnetic material. In any case, we take it at this stage as a parameter in the 
theory (see Problem 10.8). 

The response of the jth atom to the total field H, + H' can be calculated using 
the procedure followed in Section 10.3, Paramagnetism. However, because of the 
quantum nature of this effect, it is more accurate to use the procedure discussed in 
Example 10.1, which imposes quantum mechanical restrictions on the direction of 
the magnetic moment with respect to the direction of the magnetic field. Nonethe- 
less, we will follow the classical treatment here.* The average (mi,) is given by the 
Langevin function [see Eq. (10.14)] : 

where 

In the above derivation we concentrated on the effect of neighboring atoms on a 
given central jth atom. Because the atoms are identical, the result would be the same 
if one repeated the derivation with any of the neighboring atoms taken as the 
central atom. Therefore, we conclude that the average magnetic moment given in 
Eq. (10.34) is the same for all neighboring atoms, or 

where k = 1,2, . . . , n. The average molecular field at a given central atom can now 
be determined in terms of the Langevin function by substituting Eq. (10.36) into Eq. 
(10.33); that is, 

2un 2unm H'=- 
PO P2 (m,) = --7 B(v) 

P O P  

* A quantum mechanical treatment gives 

<miz> = BSBArl? 

where 

is called the Brillouin function, and 

In fact, for large S the Brillouin function is essentially equivalent to the Langevin function. (Quantum 
mechanics approaches classical mechanics for large quantum numbers.) 
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Figure 10.4 A self-consistent graphical solution of the ferro- 
magnetic effect using the Langevin function. The magnet- 
ization in the presence of an external field and in its absence 
(spontaneous magnetization) are determined. 

Since H = H, + H', then this result relates H to the atomic properties of the 
sample. This relation is nonlinear and therefore cannot be solved analytically; how- 
ever, a graphical solution can be obtained by parameterizing it, via the introduction 
of the function y, 

Y = B(?). (10.38) 

Equation (10.37) can now be solved by plotting y as a function q for both Eqs. 
(10.38) and (10.39), as shown in Fig. 10.4. The intersection of the curves gives the 
value of q and hence the value of Hf. 

10.4.3 Spontaneous Magnetization 

The magnetization of the medium can now be evaluated using Eq. (10.36). If N is 
the density of the magnetic atoms in the medium, the magnetization M will be 

Now we can answer the question whether a magnetization M can exist even in 
the absence of the external magnetic field H,. Such magnetization, if it exists, is 
called spontaneous magnetization, and the materials that exhibit this property are 
called ferromagnetic materials. To answer the question we reexamine the graphical 
solution of Eqs. (10.38) and (10.39). For H,=O, Eq. (10.38) becomes 
y = (kTb2/2anm)q, which is the equation of a straight line passing through the 
origin (see Fig. 10.4). Since the function B(q) passes through the origin too, a so- 
lution exists at the origin-namely, ? = 0. This solution, however, is a trivial so- 
lution. Another solution may exist at u # 0 if the initial slope of B(q) at r]  = 0 is 
larger than the slope of the line. To investigate this possibility we focus on the limit 
1 6 1 .  For q e 1 ,  Eq. (10.34) gives 

1 
B(?) % 5 1 tl + l  (10.41) 
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17 

Figure 10.5 The solution for the spontaneous 
magnetization using the Langevin function as a 
function of temperature showing the Curie tempera- 
ture T,. 

which is a linear function of slope f. The slope of the line, on the other hand, is 
kTb2/2anm2; therefore the condition for nontrivial solution is 

This result may be viewed as a condition on the temperature of a magnetic material 
of given atomic properties that allows the occurrence of spontaneous magnetization. 
The limiting case where the slopes are equal defines what is called the Curie temper- 
ature, Tc, an experimentally measurable quantity below which the magnetization is 
nonzero (see Fig. 10.5). Taking the equality sign in Eq. (10.42) gives: 

As T decreases, the spontaneous magnetization, which is determined by the inter- 
section of the line with the Langevin function, increases until it reaches its max- 
imum value (saturation limit), Ms = Nm, which is an experimentally measurable 
quantity. Figure 10.6 shows a comparison between theory and experiment for the 
spontaneous magnetization M as a function of TITc for the case S = 9. 

It is instructive to recast the quantum mechanical expression of the molecular 
field H = Ho + H' in the form of the classical result, given in Eq. (10.31). The field 
H' can be easily written in terms of the magnetization M of the medium by use of 
Eqs. (10.37) and (10.40); that is, 

Hence 

where 
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T - 
Tc 

Figure 10.6 The spontaneous magnetization 
of a ferromagnetic material as a function of 
temperature, with T, being the Curie tempera- 
ture, along with the experimental measure- 
ments. shown as circles. 

The quantity y can also be written more conveniently in terms of the measurable 
properties of the material (Curie temperature). Using Eq. (10.43), one finds 

where M s  = Nm is the saturation magnetization. We take iron as an example; its 
experimental saturation magnetization poMs = 2.15 T, and its experimental Curie 
temperature is 1043 K. Thus, y = 995, which is much larger than the classical 
prediction of 4, and hence shows the need for the spin-spin interaction to account for 
ferromagnetism. 

10.4.4 The Magnetic Susceptibility of Ferromagnetic Materials 
Above the Curie Temperatur-The Curie-Weiss Law 

Above the Curie temperature, ferromagnetic materials do not exhibit spontaneous 
magnetizations. However, because they have permanent magnetic moments, they 
exhibit paramagnetic properties in the presence of external magnetic fields. The 
paramagnetic susceptibility calculated above for nonferromagnetic material [Eq. 
(10.18)], however, will turn out to be not accurate in the case of ferromagnetic 
materials. We will show below that the departure from Eq. (10.18) is caused by their 
ferromagnetic properties. 

Consider Eqs. (10.38) and (10.39). Above Tc, q can be taken small, so one can 
represent B(q) by Eq. (10.41); therefore these equations give 
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or, in terms of the Curie temperature, 

which can be easily solved for ' lo: 

Po"H0 
'lo = 

k(T - Tc) 

The magnetization of the medium can now be calculated using (Eq. 10.40). Taking 
qo to be small gives 

which, when 47, is written in terms of H o  as in Eq. (10.49), gives 

Thus, the magnetic susceptibility x = M / H ,  is 

This is the Curie-Weiss law, and C is called the Curie constant. Table 10.1 gives the 
Curie temperatures of ferromagnetic elements. 

Table 10.1 Curie Temperatures of 
Ferromagnetic Elements 

Element T,, in kelvins 

Fe 1043 
Co 1393 
Ni 63 1 
Gd 289 
DY 105 

Example 10.3 Dipole-dipole Interaction and Ferromagnetism 

As remarked above, the dipole-dipole interaction between magnetic atoms is not sufficient to 
explain ferromagnetism. Let us concentrate on a central atom of magnetic moment m in a 
ferromagnetic sample and consider its interaction with its nearest n atoms. The magnetic field 
produced by a magnetic dipole moment m is given by Eq. (8.98): 

where r is the distance from the dipole to the point of observation. The interaction energy of 
an atom of magnetic moment mi placed in this field is -mi.B [see (Eq. 8.1 ll)]. Therefore the 
total interaction energy of n nearest atoms with the central atom is 

where ri is the distance from the central atom to the ith nearest atom. 
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Because we are interested in an order of magnitude of this interaction we make the 
following approximations: ri = r for all i ,  m . mi - 3(m. Pi)(mi. Pi) x m2 for all i, where P, is a 
unit vector along ri. Thus 

An order of magnitude can now be evaluated by taking n = 15, m = joules per tesla 
(J/T), and r = 2 A; thus U = 1.5 x joules. The ratio U I K T  is of the order of unity at - I K; therefore this type of interaction cannot produce ferromagnetic effects in the region 
below 1000 K, where metallic iron is ferromagnetic. 

10.4.5 Ferromagnetic Domains 

It is observed that ferromagnetic materials do not always exhibit the ferromagnetic 
properties at temperatures below the Curie temperatures. In order to explain this 
phenomenon, Weiss* advanced in 1907 the hypothesis that the bulk of the material 
may be divided into domains, as shown schematically in Fig. 10.7 for a single crystal 
and a polycrystal. Each domain is taken to obey the above theory; that is, to be 
spontaneously magnetized at temperatures below the Curie point, with a random 
direction of its resultant magnetization. The degree of magnetization of each 
domain, however, is governed by the temperature of the material. The overall mag- 
netization of the material is the vector sum of all the magnetizations of the various 
domains. With the domains randomly magnetized, the bulk magnetization of the 
specimen would be zero. On the other hand, when the domains are magnetized in 
the same direction, they reinforce each other, thus giving a large magnetic field. 
Such reinforcing can be achieved by the action of a weak external magnetic field. 

Figure 10.7 Ferromagnetic domain structure. (a) Single 
crystal, showing domain walls dotted. (b) Polycrystal, 
showing crystal walls solid, and with domains not shown. 
The arrows indicate the direction of magnetization of in- 
dividual crystals. 

* P. Weiss, Journal de Physique, vol. 6, p. 667, 1907. 
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An experimental technique developed by Bitter* provided evidence supporting 
the domain hypothesis. In this technique, a colloidal suspension of a fine ferromag- 
netic powder is prepared. The domain structure of a ferromagnetic crystal is studied 
by placing a drop of this colloidal suspension on the surface of the crystal. When a 
photomicrograph of the surface is investigated, it is observed that the particles 
gather at some boundaries (domain boundaries). The gathering occurs because adja- 
cent domains are magnetized in different directions, thus resulting in strong local 
fields at interfaces of the domains. With this method, the actual movements of the 
walls and the sizes of the domains are observed under the influence of an external 
magnetic field. 

The formation of multidomain structure of a ferromagnetic specimen is usually 
energetically favored. There are three types of magnetic energy that enter into con- 
sideration. We will see in chapter twelve that a magnetized crystal has stored mag- 
netic energy associated with its magnetization; hence this energy will depend on the 
domain structure. This is so because if the crystal can arrange itself into domains 
with opposite magnetization, the overall magnetization will be reduced, resulting in 
the stored magnetic energy. Another type of magnetic energy is the magnetic energy 
needed to set up and maintain the domain boundaries. Such energy is needed 
because the exchange forces favor parallel and oppose antiparallel orientations of 
the magnetization (see Section 10.4.6). In addition to these considerations, most 
crystals have two axes, where establishing magnetization is easier along one axis 
(easy axis) than along the other axis (hard axis). The difference in energy between 
these two cases is called the anistropy energy. The number and shapes of the 
domains that a perfect ferromagnetic crystal may tend to form is dictated by the 
above energy considerations, in such a way as to minimize the total magnetic energy 
of the crystal. 

10.4.6 Antiferromagnetism and Ferrimagnetism (Ferrite) 

Equations (10.28) and (10.29) give the exchange interaction energy between two 
magnetic atoms. For ferromagnetic materials, a > 0; that is, parallel spins have 
lower magnetic energy than antiparallel spins. In certain materials such as 
chromium and manganese, a is negative: that is, antiparallel spins have lower mag- 
netic energy than parallel spins. These materials, which are called antiferromagnetic, 
have a tendency for antiparallel spin alignment. This alignment property is also 
temperature-dependent; below a certain temperature, which is also called the Curie 
temperature, the spins become aligned in an alternation configuration, as shown in 
Fig. 10.8~. Above this temperature the spin directions are random. 

This alternating spin configuration in chromium can be proved by scattering 
some particles, which themselves have spins such as neutrons, from a crystal of 

t l t l  
(a)  ( b )  

Figure 10.8 Schematic representation of 
atomic spins in (a) antiferromagnetic and (b) 
ferromagnetic material. 

* F. H. Bitter, Physical Review, vol. 41, p. 507, 1932. 
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chromium. The degree of scattering depends on whether the neutron spin is parallel 
or antiparallel to the scatterer. Thus, the interference pattern of the scattered neu- 
trons changes when the spin state changes from a random state (above the Curie 
temperature) to an alternate state (below the Curie temperature). 

Another type of antiferromagnetic materials has a combination of the ferromag- 
netic and antiferromagnetic alignment, and is called a ferrimagnet, or simply a 
ferrite. This is possible in the case of ZnOFe203 because it has two magnetic atoms 
(metal atoms zinc and iron) arranged in a spiral structure. The various iron spins 
line up together, and the various zinc spins also line up together. The lowest energy 
of the whole system together is the situation where the resultant iron spin is antipar- 
allel to the resultant zinc spin. If the opposed spins have unequal moments, as in 
Fig. 10.8b, the antiferromagnetic substance is called a ferrimagnetic material or 
simply a ferrite. The mineral magnetite (Fe304) is an example of a ferrite which has 
been known since ancient times. Other examples of ferrimagnets (ferrites) include 
the oxides in which Zn in ZnFe,O, is replaced by Co, Ni, Mn, Cu, Mg, Cd, or 
divalent iron. 

An important property of ferrites is their large resistivity (up to lo4 C2.m). Such 
large resistivity makes them poor conductors of electricity-a property that is valu- 
able in high-frequency applications. When very good conductors are used in these 
applications, eddy currents become very effective in causing large heat losses (see 
Example 11.3). Therefore, the use of ferrites instead of good conductors in these 
applications helps to minimize these losses. 

10.5 Summary 
Atoms are classified into two categories: atoms which have net permanent magnetic dipole 
moments (magnetic) resulting from spin, and atoms which have no net permanent magnetic 
moments (nonmagnetic). When a nonmagnetic atom is placed in an external magnetic field 
normal to its orbit, the field induces a magnetic moment opposing the field itself (Lenz' law) 

where p and me are the radius of the orbit and mass of the electron. For an ensemble of 
atoms of number density N placed in the magnetic field, this effect results in the induced 
susceptibility 

where an average over the orientation of the orbit was made. 
When magnetic atoms of permanent moment m are placed in a magnetic field B = Bt, they 

exhibit an additional susceptibility resulting from the tendency of the field to align permanent 
dipoles along its direction, just as in the electrical case. This tendency is opposed by the 
randomizing collisions with other atoms. Just as in the electrical case, this orientational 
susceptibility, at a given absolute temperature T, is given by the Langevin function 

(m) = m(coth q - :)t (10.14) 

where q = mB/kT, and (m) is the average component of m along the field. At high tempera- 
ture, we get the Curie law 

m2B pomZN 
(m,) z 3 k ~  and = - 

3kT 
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where N is the number density of the ensemble. At very low temperatures and/or large B, the 
field may overcome the effect of randomization and result in complete alignment (saturation). 
The magnetization of the ensemble then approaches 

M = Nm2 (10.19) 

Ferromagnetic atoms are magnetic atoms that can have an additional interaction among 
themselves that works in favor of alignment in addition to the above randomizing interac- 
tion. This additional interaction is a quantum mechanical effect arising from what is called 
spin-spin interaction. The effect of this interaction effectively results as an additional magnetic 
field at the site of every atom due to the n neighboring identical atoms. This field is effectively 
equal to 

where ( t n ; )  is the average moment of the identical atoms along the external field, p = eh/m,, 
and r is a constant that depends on the type of material. Thus the total field at the site of 
each indentical atom is given by the sum of this field and the external field H,; that is, 

Under the influence of this field, the magnetic moment of one of the identical atoms will have 
a degree of alignment just as the case of paramagnetic atoms. Hence (m,) is given by the 
Langevin function 

where q = p,mH/kT. Because H itself depends on (m,) through H', then the question that 
remains to be answered whether there is a nontrivial physical solution of the Langevin 
relation for (m,). 

If such a solution exists, then one would like to know how does (m,) depend on T, 
compared to (m,), which one can get in the absence of the spin-spin interaction (compare to 
the paramagnetic effect), and finally whether there will be a solution even when the external 
magnetic field H, vanishes. 

Graphical as well as numerical examinations of the above condition indicates that there 
exists a nontrivial solution, and the solution exists even when H, = 0; that is, the material 
can exhibit spontaneous alignment (magnetization) under the influence of this additional 
interaction. The spontaneous magnetization, however, has a temperature threshold, called the 
Curie temperature T,, above which it is ineffective. 

At T < Tc the interaction can cause a sizable alignment (magnetization M), which explains 
the phenomenon of ferromagnetism. The magnetic field H' can be easily cast in terms of such 
magnetization M, as follows: 

where y comes out to be nearly 1000 for iron as an example. This is much larger than what 
the classical relationship gives H' = $M. At T > T,, the material behaves as a paramagnetic 
material with 

Because of domain structure, even below the Curie temperature, a macroscopic ensemble 
of a ferromagnetic material may not show a permanent magnetic moment. 
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Problems 

Consider an atomic electron in circular motion of radius p and frequency w. The atom 
is placed in a magnetic field B normal to  the orbit of the electron. (a) Determine the 
magnetic moment of the atom in the absence of the field. (b) Determine the magnetic 
moment in the presence of the field. (c) If the magnetic susceptibility of an ensemble of 
density 2.8 x loz8 atoms per cubic meter is - determine the atomic radius. 

An atom has two electrons traveling in opposite directions in the same circular orbit of 
radius p and frequency w. The atom is placed in an external magnetic field B normal to  
the orbit of the electrons. Determine the magnetic moment of the atom in the absence 
and in the presence of the field. 

A solid contains weakly interacting paramagnetic atoms of spin $, and magnetic mo- 
ment m = 9.27 x l o z 4  J/T. TO what temperature does one need to cool the sample in 
the presence of a field of 3 x lo4 G to  have 75 percent of the atoms with their spins 
parallel to the field? (See Example 10.1.) 

Paraffin contains many protons, each of which has a spin $ and a magnetic moment 
m = 1.4 x J/T (about a factor of a thousand smaller than the moment of atomic 
electrons). To  what temperature does one need to cool the sample in the presence of a 
field of 3 T to have 75 percent of the protons with their spins parallel to the external 
field? 

A bar of metallic iron is of length 10 cm, cross section 1 cm2, and density loz3 atoms 
per cubic centimeter. The magnetic moment of each atom is 1.8 x A.cm2. 
(a) Assume that ferromagnetism does not play a role in iron; that is, if iron were 
paramagnetic, determine the susceptibility of iron at 300 K. (b) What is the dipole 
moment of the bar when immersed in a field of lo3 G, if it has the susceptibility 
found in part (a)? (c) What would be the magnetization and dipole moment of the 
bar if all the atoms were aligned in one domain (saturation) as a result of the ferro- 
magnetic interaction? 

The inverse of the magnetic susceptibility of gadolinium metal above its Curie tempera- 
ture was found to be equal to 5.82 x lo3 cm3/g at  600 K and 1.35 x lo4 cm3/g at 
1000 K. Determine the Curie temperature. Plot 1 / ~  as a function of temperature. 

Nickel has a density of 9.1 x loz8 atoms per cubic meter, an atomic magnetic moment 
of 9.28 x A.m2, and a Curie temperature of 631 K. Determine the saturation 
magnetization and y for nickel. 

Determine the product of a (the strength of exchange interaction) and n (number of 
contributing atoms to this interaction) from the macroscopic properties of nickel. 
(Thus, if one is given a, n can be estimated.) 



INDUCTION 

Until now we have limited our considerations to static phenomena. We have con- 
sidered electric and magnetic fields that .did not change in time. In this chapter we 
shall discuss situations where variations of charge and current distributions, and 
hence electric and magnetic fields, are permitted in time. We shall see that once such 
time variations are allowed, we no longer have two separate subjects, electricity and 
magnetism, but one subject called electromagnetism. The phenomena and appli- 
cations of this subject are infinitely more diverse than the disjoint subjects of 
electrostatics and magnetostatics. 

Once we allow for the possibility for time-varying charge densities, several com- 
plications arise. Most of these are related to having a consistent interpretation of 
physical phenomena that are observed from different inertial reference frames of 
motion-that is, frames that have no acceleration with respect to each other. Thus, 
as a simple example, whether a point charge in the presence of a magnetic field 
experiences what we interpret to be a Lorentz force or not depends upon whether or 
not the charge is moving in our reference frame. Because we believe that all inertial 
reference frames are equivalent with respect to the validity of physical laws, it turns 
out that what we call an electric field in one reference frame must be interpreted as a 
magnetic field in another. Thus, the requirements of the special theory of relativity 
lead naturally to a kind of coupling of electric and magnetic fields, which is manifest 
in the basic electromagnetic equations for the field vectors. As another aspect of 
these relativity requirements it will be seen that the impossibility of physical signals 
propagating across space with infinite speed requires changes in the electromagnetic 
equations to account for this phenomenon. In our studies of statics such consider- 
ations were unimportant. In the dynamic real world, however, they assume a pri- 
mary importance. For these consideration see Chapter 14. 

As our starting point we shall assume that Gauss' law has a more general validity 
than was implied in our study of electrostatics. Many experiments have shown this 
law to be true at any point in time even when the charge distribution and electric 
fields are changing in time. Thus, we shall assume that the equations 

P V . E = -  and Q(t)  
& 0 
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are true at any instant in time, even though E, p, and Q may all be functions of the 
time variable t. The surface integral is always to be understood as being evaluated 
at some definite instant in time. 

~nalogously, the equations for the magnetic field vector B  

V . B = O  and $?.da = 0  

are also thought to be valid even when B  is a function of time. Equations (1 1.1) and 
(1 1.2) are two of the keystones of the theory of electromagnetism and will henceforth 
be assumed to be most generally valid. 

11.1 Faraday's Law 
Equations (1 1.1) and (1 1.2) have the same forms as encountered in statics. On the 
other hand, a departure from the behavior observed in statics is implicit in what is 
known as Faraday's law. Consider an open 'surface S, bounded by a curve C and 
located in a region in which there is magnetic field B. We assume that S, C, and B  in 
general all depend on time. The flux F(t)  through S is then given by the surface 
integral 

Faraday's law states that an electomotiue force d is generated around the curve C, 
and d is proportional to the time rate of change of F. That is, 

If the electric field in space is denoted by E, then, by definition, the induced emf or 
the electromotive force around C is 

From Eqs. (1 1.3) and (11.4) we get 

We now consider a curve C that is fixed in our reference system-and, corre- 
spondingly, a fixed surface S and defer the general case to Section 11.2. Thus for 
now neither S nor C depends on t ,  and as a result we can move d/dt  inside the 
integral. Therefore Eq. (1 1.5) becomes 

where partial derivatives are used inside the integral because B  is a function of 
position and time. Using Stokes' theorem, the left-hand side of Eq. (1 1.6) can be 
changed to a surface integral. Thus 



Because this is true for any arbitrary surface S, we may equate the integrands of 
these expressions, as follows: 

This is the (local or diflerential) equivalent of Faraday's (integral) law and thus is 
itself to be considered as one of the fundamental equations of electromagnetism, and 
i t  will be assumed to apply at every point in space. 

We observe that the electric field E is now not in general a conservative field. This 
follows directly from Eq. (1 1.4), which asserts that, in general, $ Eedr # 0. We thus 
observe that the sources of E are not only charges (from V.E  = PIE,), but dB/at 
fields (ultimately arising from nonsteady, time-varying currents). In general, neither 
the curl nor divergence of E is zero. We should, however, note that E is conservative 
in the special case when B is constant in time. 

The minus sign in Eq. (1 1.3) of Eq. (1 1.7) embodies Lenz' law, which ensures that 
perpetual-motion machines will be impossible to construct. Thus, if we have a curve 
C that lies in a conductor, the induced emf d will produce currents in the conduc- 
tors that tend to oppose the change in flux through the curve. If the minus sign were 
absent, this would imply that the induced currents could increase the flux change, 
possibly giving rise to a runaway, regenerative behavior. Lenz' law ensures that 
"negative feedback" is present, implying a tendency to stability, rather than "posi- 
tive feedback," which could result in the creation of infinitely intense B fields. Thus, 
Lenz' law is the law of the status quo: the systems to which it applies will always 
resist change. 

We shall now show how E can be decomposed into two parts, of which one is 
conservative and the other is not. The latter is called solenoidal (meaning its diver- 
gence is zero.) Since the divergence of B is zero, then it follows that B can be written 
as V x A. Substituting this result in V x E = -aB/dt gives 

that is, 

If the curl of a vector field is zero in a region, it can be written as the gradient of a 
scalar field there [see Eq. (1.52); hence Eq. (11.8) gives 

where @ is a scalar field. Because V@ is a conservative vector field, and -aA/at 
satisfies 

we have established the proposed decomposition of E: 
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The quantity cD is a scalar function, but its relationship to the potential function 
introduced in electrostatics is perhaps not yet clear. Therefore we write E = Ei + Eq, 
where 

The field Ei is the induced field; it is nonconservative (solenoidal). The field Eq, 
however, is emanating from charges; it is nonsolenoidal and conservative. Thus 

We now determine an integral relationship between the induced field and the 
vector potential associated with the magnetic field. Integrating the curl equation of 
Ei over an area, S, substituting B = V x A, and using Stokes' theorem, we get 

Example 11.1 Pulsating Solenoid 

Consider a long solenoid of radius R and of n, closely packed turns of wire per meter, as 
shown in Fig. 11.1. Let current I ( t )  flow in the wire. For a solenoid of length & diameter, B is 

Figure 11.1 Pulsating solenoid illustrating 
Faraday's law. 

negligible outside the solenoid, and is approximately uniform inside. For path C,, of radius p 
less than R, Eq. (11.5) gives 

where Bnp2 is the "flux-linking" curve C,, and E is the tangential component of the electric 
field on C,. Since E is not dependent on the rotational angle 4 by symmetry considerations, 
and B = p,n,l  for the interior solenoidal field, we have 
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and 

  he induced emf and field for p > R can be calculated in a similar way. (We leave this as an 
exercise.) 

Example 11.2 A Wire and a Rectangular Loop 

Consider a long straight wire whose current is given by I(t)2, as shown in Fig. 11.2. The emf 
induced around a rectangular curve C of area S in a plane containing the wire can be 
calculated from d = -dF/dt. The flux F through C is 

But da = z0 dp and B, is given by Eq. (8.24); that is, 

Therefore, 

The induced I is then 

If a wire is placed coincident with C, and dlldt > 0, a current will flow around C in a 
counterclockwise direction. 

Figure 11.2 A current-carrying wire in the 
plane of a rectangular wire. 

Example 11.3 Eddy Current-Induction Heating 

It is known that when B changes in time, currents are induced in the conducting materials 
near the region where B # 0. Such currents are called eddy currents. In electromagnetic 
machinery they are often undesirable because they absorb energy and heat up the conducting 
materials through p,J2 losses (Joule losses). In order to eliminate the eddy currents, conduc- 
tors are often laminated. The effect of such lamination is illustrated in Fig. 11.3. In Fig. 11.3a 
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(c) 

Figure 11.3 Lamination of a conductor in 
order to minimize the effect of eddy currents. 
(a) A block without lamination in a changing 
B field. (b) A block laminated into four sec- 
tions. (c) The reduction of the change B field 
near a conducting plate due to eddy currents 
in the plate. 
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we show a block of a conductor in a changing field, B(t). The circulating current in such a 
block will be proportional to LZ (see Problem 11.3) and thus the power dissipation, which is 
proportional to the square of the current, will be proportional to L ~ .  If we now subdivide the 
block in Fig. 11.13a into four sections, as shown in Fig. 11.36, such that the current cannot 
flow from one section into another, then the current in each section will be proportional to 
(L/2)2. The power dissipation in each sectiop will thus be proportional to (L/2)4, and the total 
power dissipation in all four blocks will be proportional to 4(L/2)4 = L4/4. This is less by a 
factor of 4 than we had originally. The general result is that if a cross section (perpendicular 
to the B field direction) of the conducting material is laminated by subdividing it into N 
parts, then power losses due to eddy currents are diminished by a factor proportional to 1/N. 

The effect of eddy currents near a conducting material is to reduce the magnitude of the 
changing B field, because the eddy currents are so set up as to oppose the change in the 
inducing field B. Such an effect is shown in Fig. 11.3~. [If the conductor had infinite conduc- 
tivity (as, e.g., in a superconductor) the B field in and near the conductor would be reduced to 
zero thereby.] This type of effect may be used to shield a region from changing magnetic 
fields. It does not, however, provide shielding against constant magnetic fields. 

Finally, eddy current "induction" heating may be employed beneficially to heat an object 
without disturbing it otherwise. Thus, food may be uniformly cooked in an induction field by 
being placed in a region of intense alternating B fields. 

Example 11.4 The Betatron* 

The operation of a betatron, an accelerator of electrons colloquially known as an 
"ausserordentlichhochgeswindigkeitselectronentwickeldenschwerarbeitsbeigollitron"t is a 
prime example of the application of Faraday's law. The idea of a betatron (see Fig. 11.4) is to 
accelerate charged particles by means of an induction field and to contain the particles in 
space by using that same changing magnetic field. 

/ Coil windings / Doughnut 

Figure 11.4 Schematic diagram of cross section of a 
betatron used to accelerate and confine charged par- 
ticles by means of a changing magnetic field. 

The particles are to be contained in an evacuated ring-shaped object known as a "dough- 
nut." If the average radius of the circular particle trajectory is R, its charge is q, and the 
frequency of revolution is o ,  we require that the change of its momentum to be equal to the 
centripetal force 

where p is the momentum of the charge. Equating the centripetal force to the Lorentz force 
(qRoB) gives 

p = BqR (1 1.17) 

'Here at the University of Illinois, where the betatron was developed, there were two active betatrons 
whose electron beams were used in nuclear physics research. 
tcopyright, E. C. Hill (notes on electromagnetism). 
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where B is the magnetic field. Thus the momentum of the particles, of charges q, is directly 
related to the field B. Now, if B is made to increase in time in the space through the hole of 
the doughnut, there will be an induced electromotive force 

where ( B )  is the average field inside the circle of radius R. The corresponding induced field 
Ei = l I 2 n R  exerts a force on the charge such that 

An integration of this equation yields 

where po is the initial momentum of the particle (when ( B )  z 0) and may be taken to be 
zero. Then 

We must now require the two expressions for the momentum of the particle: p = BqR given 
by Eq. (11.17) and that given by Eq. (11.18) to be equal. Thus 

q A ( B )  BqR = - 
2nR 

or, if A = nR2, 

Thus, the "guide field," B, must equal one-half the average induction field, ( B ) ,  if the particle 
is to be maintained on a constant radius as it is accelerated. A typical (small) betatron might 
have a radius R of 0.5 m and a maximum field (B), , ,  of 0.5 T. The energy of electrons that 
would be produced by such a machine would be given by pc x eR(B)c /2  (relativistic) or 
about 35 MeV.* 

11.2 Motional EMF 
Thus far, we have considered only the consequence that changing magnetic fields 
may induce electric fields in the space about us in fixed and rigid loops. Now we 
consider the case where the loops may change their size, orientation, position, or 
shape. Let us consider first the question of what happens if a conductor moves with 
respect to our assumed stationary reference frame. A hint of the answer is obtained 
by considering an observer 0' to move along with the conductor. Consider a cur- 
rent circuit that is stationary in the laboratory frame 0 and carries a steady-state 
current. A conductor is moving in the magnetic field of the circuit, B, with a con- 
stant velocity v. From the point of 0' the sources move in the opposite direction. 
Therefore, 0' will notice a varying magnetic field, and consequently an induced 
electric field, Ei. This electric field will exert a force qEi on q and hence cause it to 
move in the conductor. We at rest, however, see no induced electric field because for 
us the magnetic field is unvarying. We know, however, that the free charge q in the 

*The relativistic energy of a particle of mass mo is given by ,,/(pc)2 + ( r n , ~ ~ ) ~ ,  which is approximated by 
pc if pc 9 m0c2. 



moving conductor experiences a Lorentz force F by virtue of the motion of the 
conductor through the magnetic field: F = q(v x B). If v 4 c, as we shall assume 
here, both we and the observer who moves with the conductor should observe the 
same phenomenon of moving charge and the same acceleration of this charge. Only 
the explanations of the source of the forces that cause the charge motion will differ 
between us. Thus 

E ' = V X B  (11.19) 

If, in addition to the force associated with the magnetic fields there are also 
electric fields produced by charges, in the rest frame of reference E, then (non- 
relativistically) the electric field observed by one moving with the conductor is 
E' = E + Ei; that is, 

The use of the term "nonrelativistic" is a hint that the effects being discussed here 
may only be fully understood with the help of the special theory of relativity (discus- 
sed in Chapter 17). It is to be noted that Eqs. (11.19) and (11.20) have not been 
proved. With their use, however, we can now find expressions for the emf of a loop 
(closed curve), each part of which may be moving through our space. 

An emf for a loop is defined at a specific instant in time, t. It is the work that 
would be required to move an (imaginary) unit point charge around that loop at 
that instant. It is thus the energy delivered to a unit point charge imagined to 
proceed around the loop under the conditions prevailing at time t. Assuming that 
the only forces acting are from electric and magnetic fields, we have the following 
expressions for the emf of a loop lying in a conductor. 

1. In a rest system 0, with measurable fields E(t) and B(t), and where a point of 
the loop C instantaneously has a velocity v(r, t), the emf around C is given by 

where all quantiXes are evaluated at points on the loop at time t. Note that E in 
general has components Eq and Ei governed by Eqs. (1 1.1 1) and (1 1.12). 

2. In the reference frame 0' of a loop which is moving rigidly with a velocity v 
with respect to the rest system above, the emf d' is given effectively by 

(1 1.22) 

where E' is measured by an observer in the moving frame 0'. The values measured 
are related to the values of E and B of the rest frame 0 by Eq. (1 1.20). 

We will now take on Faraday's law from the point of view of the motional 
electromotive force. As was stated above, we will consider loops changing their size, 
orientation, position, or shape in a magnetic field. For simplicity we assume that the 
magnetic field is constant in time-since, when it varies, we know how to calculate 
the induced electric fields (see the previous section). Example 11.1 1 discusses a 
situation where both are occurring simultaneously. 

Consider loop C to be a conducting filament that moves in a static magnetic field 
B(r), such that it assumes the shapes C(t) and C(t + dt) at times t and t + dt, respec- 
tively, as shown in Fig. 11.5. Because of this motion an emf is induced, according to 
(Eq. 11.21), as follows: 

8 = $c(,(v x B) . dl 
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dr dl d 2 s  

Figure 11.5 A conducting filament in the 
form of a closed loop in motion in a static 
magnetic field showing two positions at t and 
t + dt .  

where v is the velocity of the element of C ,  dl. Since v x B . d l  = d1.v x B 
= (dl x v ) . B ,  then 

r 
&(t) = (dl x v )  . B 

Taking v = dr/dt,  where dr is the displacement of the element dl in a time dt ,  we get 

Now, dl x dr is the element of area d2a,  swept out in a time dt by the dl, and B . d 2 a  
is the flux through this element of area. Thus 

where -dF is the flux of B through 4 d2a,  the total area swept out by C in a time dt. 
Note that we have chosen the flux to be positive when it points in the direction 
- d2a  = dr x dl. With this definition, we have 

Now we show that dF is actually the change in flux through loop C between 
times t  and t  + dt .  Considering the closed surface composed of S(t), S(t + dt) ,  and 
4 d2a we know that, evaluated at any time, the total flux through these surfaces is 
zero: 4 B . d a  = 0 [see Eq. (9.52)] .  But 

$ B . d a  = 1 B . d a  - SSeB.da  - dF 
S(t + d t )  

[The minus sign in the second integral over S(t) is required because of the sense 
chosen for C(t) . ]  Thus 

0 = F(t + d t )  - F(t)  - dF 

that is, 

dF = F(t + d t )  - F(t)  

Thus dF is shown to be the change in flux through loop C between times t  and 
t + dt .  
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We may summarize these results by stating that dF/dt  in Eq. (11.23) may 
represent 

1. The change in magnetic flux through a loop fixed in space (i.e., in our re- 
ference system) due to variation of B in time, as given by Eq. (11.3). 

2. The change in magnetic flux through a well-defined conducting loop which 
moves (relative to our reference system) through a magnetic B field constant 
in time. 

3. The flux "swept out" by a conducting loop as it changes its dimensions in the 
presence of a B field constant in time. 

4. A linear combination of items 1 and 2 or 1 and 3 above. 

It is well to emphasize that the law expressed in Eq. (1 1.23) is useful for moving 
media when such media consist of well-defined conducting filamentary loops. It 
cannot be used without ambiguity when such loops are not clearly defined. 
(Example 11.7 illustrates this fact.) It is nonetheless remarkable that two different 
kinds of physical phenomena can be described by the one law: kP = - d F / d t .  

Example 11.5 Conducting Bar Moving Through a Constant Magnetic Field 

We consider a conducting bar moving with velocity v < c normal to its axis, through a 
constant magnetic field. This situation is illustrated in the Fig. 11.6. From the rest frame, 

Figure 11.6 A conducting bar moving with velocity v 4 c normal 
to its axis through a constant magnetic field: (a) as seen from the 
rest system; (b)  as seen from the bar. 

when motion starts, charges under the influence of the Lorentz force and the forces constrain- 
ing the charges to remain in the bar will move until equilibrium is established, at which time 
no further charge movement with respect to the bar is observed. In this latter condition, it 
must then be true that on any free point charge q inside the bar the total force given by Eq. 
(11.20) must vanish; that is, 

where E is the field due to the equilibrium charge distribution on the bar. Thus, inside the 
bar, 

E = -(v x B) 

meaning a uniform electric field exists inside the bar. Outside the bar the electric field pro- 
duced by the charges will not be uniform. 

From the observer moving with the bar, an electric field Ei is observed everywhere in space 
having the constant value 
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(The observer might not know that his or her velocity is v, but this expression is what he or 
she finds anyway.) The bar, being a conductor, cannot sustain an internal electric field. 
Therefore, a redistribution of charge occurs tending to cancel the field Ei, so ultimately the 
total electric field inside the bar is zero: E' (inside bar) = 0 = E + Ei. Inside the bar then, 
E = -Ei = -(v x B), as above. 

One should carefully note the different interpretations given by observers in the rest and 
moving frames of reference to the physical phenomena observed, namely, the occurrence of 
charges appearing on the surface of the conducting bar. This is one thing that both observers 
agree upon. They do not agree upon the values of electric fields existing (except for Eq, which 
both agree upon nonrelativistically). Nonrelativistically, both see the same B field. 

Example 11.6 Conducting Bar Moving on Stationary Tracks Through B Field 

We now extend the content of Example 11.5 above by making the bar move at constant 
velocity v on stationary conducting tracks, again in a constant B field, as shown in Fig. 11.7. 
Now in an equilibrium situation, we observe a steady current flow around the loop formed 
by the tracks and the bar. 

Figure 11.7 A conducting bar moving at 
constant velocity on stationary conducting 
tracks through a constant magnetic field. 

We interpret this result as follows. We know that the charges in the bar move with its 
velocity v, and so feel a Lorentz force q(v x B), which, in the configuration shown, at any 
instant is directed along the bar, as shown. In addition, there will also be forces due to 
charges appearing on the bar that keep the charges inside the conductor. These forces, for 
example, must annul the effect of the force that B exerts on the charges moving along the bar. 
(The latter force is in a direction perpendicular to the bar.) If we calculate the emf around the 
loop at any instant, we thus find 

where b and t stand for the bar and the tracks, respectively, and u is the drift velocity of the 
charges in the conductor and is parallel to the sides of the conductor. Thus, u x B.dr = 0, 
and the last integral may be neglected. The second and third integrals, when lumped together, 
give 4 Eq.dr, which is zero by the conservative nature of Eq. Consequently, 

If the total resistance of the loop is R, then a current I will flow, of magnitude 6/R = vBl/R. 
Let us next analyze the result from the vantage point of one moving with the bar. This 

observer sees everywhere the electric field E' = E + Ei = E + v x B, and knows that inside 
the bar 

E'.dr = E.dr + (v x B).dr = 0 I S S  
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However, the moving observer sees the U-shaped section of the loop moving with velocity 
v' = - v .  Thus just as the rest observer found an emf vB1 because of the moving bar, so our 
moving observer will find an emf IvBll due to the moving loop. The sense of current flow will 
be the same as was found above. Again, consistent results are obtained for the two observers. 

Example 11.7 Faraday Disk-Induction Generators (Motors) 

The example of the Faraday disk shown in Fig. 11.8 is basic to an understanding of induction 
generators (or motors). Here a conducting disk is made to rotate with a constant angular 
frequency w about its central axis. If the disk is placed in a (uniform) magnetic field B that is 
perpendicular to its plane, then the Lorentz force on the charge carriers in the disk will cause 

Figure 11.8 Schematic representation of 
Faraday's disk, which is basic to the under- 
standing of induction generators (or motors). 

a charge separation to occur. After equilibrium is attained, the electric field produced by 
the charge separation will balance the Lorentz fields at all points in the disk. Thus, 
E + v x B = 0. Since v = w x p = 6 w p ,  we have E = - w p &  x B, or E = - w B p  inside the 
disk. As shown in Fig. 11.8, positive charge accumulates in the outer edge of the disk and 
negative charge toward the center. Thus, a constant potential difference exists between the rim of 
the disk and its axis 

which, upon using the above expression for E, gives 

If one now attaches a wire between the + and - terminals, a current will flow. The emf 
associated wlth the Faraday disk is given by Eq. (1 1.21); that is, 

where the loop C passes through the disk along a radius and back outside the disk. This 
shows that the induced electromotive force is identical to the potential difference. A disk 
spinning at 1000 Hz, with a radius of 0.2 m, placed in a field of 1000 G would give rise to an 
emf of approximately 12 V. 

If, instead of mechanically rotating the disk, we caused a rurrent to flow from the axis to 
the rim, the disk would be set into rotation. The Faraday disk generator would then become 
a Faraday disk motor. 
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It should be observed that in calculating the emf associated with the Faraday disk, we have 
not employed the relation d = - d F / d t ,  because we do not have here a case of a loop moving 
through a magnetic field, and thus there seems to be no well-defined area to discuss when 
calculating d F / d t .  

11.3 Application of Faraday's Law to Circuits: 
Coefficients of Inductance 

Electric circuits always consist of closed loops. Thus, if we are to account for the 
electrical behavior of such circuits, we must include the effects associated with 
Faraday's law, which, for closed loops, means that we must take all induced emf's 
into account. 

Suppose, for example, that we have a loop in a changing magnetic field. This field 
must itself be produced by currents presumably flowing in other loops. A very 
simple situation exists if we consider only two loops, C ,  and C , ,  with currents I ,  
and I ,  flowing in these loops. Consider surface S ,  associated with loop C , .  If the 
flux of B through S,  changes for any reason, then an emf will be induced about C , .  
This flux, F, ,  may change either because the magnetic field acting at points of S, is 
changing or because of loop C , ,  and so the surface S,  is changing. Moreover, it may 
be split into two parts: the flux F , ,  through C ,  due to the current I ,  around C,, 
and the flux F , , ,  through C ,  due to the current I , ;  

Similarly, for the total flux linking C , ,  

Now F , ,  and F,,  are proportional to I , ,  and F , ,  and F,, are proportional to I , ,  
because the magnetic fields are directly proportional to the currents. We write this 
proportionality as follows: 

where the L's are called "coefficients of inductance." In particular, L , ,  and L,,  are 
coefficients of self-inductance and L , ,  and L, ,  coefficients of mutual inductance. We 
remark that the self-inductances depend only upon the geometrical properties of the 
individual loops, whereas the mutual inductances depend upon the geometrical 
properties of both loops or circuits. Below, we discuss the properties of these coeffi- 
cients. We will discuss the mutual inductance before we discuss the self-inductance. 

11.3.1 Mutual Inductance 

We now prove an important property of the mutual inductance: L , ,  = L, ,  = M .  
Consider Fig. 11.9. The flux F , ,  is written in terms of the magnetic field produced 
by loop C ,  at the site of loop C , ,  or B,,, as follows: 

Using Eq. (8.46) one can write F , ,  in terms of the corresponding vector potential, 
A12: 

(1 1.28) 



362 INDUCTION 

Figure 11.9 A schematic diagram of two 
loops to aid in the derivation of the mutual 
inductance (Neumann's formula) between any 
two loops. 

We next write the vector potential in terms of the parameters of the circuits by using 
Eq. (8.44), as follows: 

F 1 2  = & I 2  f f dl2 . dl, = L1212 
471 c ,  c2Ir1-r2l  

Therefore, 

Similarly, 

dl, . dl2 ~2l=~f~-f~~~r~-~~~ 
and since I r ,  - r2 I = I r2 - r, 1, and the order of integration may be interchanged 
[the integrals are well-behaved (continuous and bounded)], L12  = L2, = M. The 
inductance M is simply called the mutual inductance of the loops, and it may in fact 
be calculated via the formula obtained, called Neumann's formula: 

Using Faraday's law, one can write the emf's 8, and 8, for the two loops in 
terms of these inductance coefficients. We write 

and 
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where 8ij is defined as the emf induced in loop i due to a current in loop j. Using 
Eq. (11.26) to write F,, explicitly in terms of the currents, and the inductances of 
loops that are both rigid and fixed gives 

where we have contracted the subscripts so that L l l  = L,, L,, = L,, and L12 = 
L,, = M. It is seen that the unit of inductance is volts x seconds/amperes, which is 
called the "henry" (abbreviated H). 

For fixed geometry, the relations 8 , ,  = -Ll dll/dt, b12 = - M d12/dt, and so on 
can be used to define the inductance coefficients. The minus signs here simply 
indicate that the induced emf's oppose the change in currents. 

Calculations of inductance are complex for all but a few simple geometrical ar- 
rangements. We shall defer until a later time calculations of self-inductance coeffi- 
cients. Here we shall simply illustrate methods used in calculating the mutual in- 
ductance coefficients, methods that follow directly from the definitions: 

Many common configurations have mutual inductance coefficients listed in hand- 
books of electrical engineering or physics. 

Example 11.8 Mutual Inductance of a Loop Around a Toroid or Solenoid 

Consider a toroid of cross-sectional area S2 and nl windings per meter, as shown in Fig. 
11.10. We assume that it has an essentially constant field B , ,  in its core. If we have a loop of 
cross-sectional area S ,  encircling the toroid, then the flux through the loop due to the toroid 
is the flux in the toroid itself. Thus, using Eqs. (11.27) and (8.35), we get 

The mutual inductance can now be calculated using F , ,  and Eq. (1 1.33), as follows: 

It is interesting that M does not here depend upon the geometry of loop 1 so long as it 
encompasses the toroid. Thus a very long, straight wire on the axis of the toroid has the same 
mutual inductance. (In fact, such a wire would in practice have a "return" path and so would 
constitute a loop.) 

Figure 11.10 A loop around a toroid of a 
ferromagnetic core. 
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Note here that the toroid is not a single loop of current. Yet we still employ the definitions 
given, since circuit 2 creates a flux that "links" loop 1. It is as if we calculated the mutual 
inductances between the loop 1 and all the individual loops constituting the toroid, and then 
added them together. (We neglect here the pitch of the toroid windings.) Similarly, if we have 
N loops in circuit 1 rather than one loop, we can find the mutual inductance between the 
"circuits" by adding up the mutual inductances between all the pairs of loops in each circuit. 
Thus, if circuit 1 has N loops, each loop having the same mutual inductance with the toroid 
circuit, we find 

for the mutual inductance between the circuits. 
One should also note that though M = L, ,  = L,,, it would have been quite difficult to 

have calculated L,,.  We have chosen the simpler mutual inductance coefficient to calculate, 
knowing both are equal. 

If we have a solenoid (see Fig. 11.11) whose length is much greater than its diameter, then 
for loops placed near the center of the solenoid, the results of the toroid are valid. Thus, for a 
single loop encircling the solenoid near its center, M = pon,S,, where S, is the cross-sectional 
area of the solenoid. 

Figure 11.11 A loop around a long solenoid. 

Note, however, that if the loop were placed at one end of the solenoid, where the magnetic 
field is only approximately fpon,l, (see Example 8.13), then the mutual inductance also 
would be one-half the value given above. Thus if one has two long solenoids, one surround- 
ing the other, and of the same approximate length, the mutual inductance will lie between the 
values pon,NS, and pon,NS,/2, where N is the number of turns on the outer solenoid. 

Similar arrangements are frequently used to "couple" circuits together magnetically-i.e., 
inductively. (See the later discussion of transformers given in Chapter 13.) Note also that if 
the magnetic flux could be increased by insertion of a ferromagnetic material, the coefficient 
of inductance would be correspondingly increased. 

Example 11.9 Mutua l  Inductance of  T w o  Circular, Coaxial  Loops 

One might think that the simple geometry of two single loop coils (see Figs. 1 1 . 1 2 ~  and 
11.12b) whose planes are parallel and whose axes are coincident would be amenable to a 
mutual-inductance calculation. As we shall see, however, this is not the case. Nonetheless, 
because it illustrates the use of the Neumann formula, we shall consider this problem in 
detail. 

We take the radii of loops 1 and 2 to be R, and R, and the distance between their centers 
to be h. We also take the currents flowing in them to be I, and I,, respectively. In order to 
apply Neumann's formula, we choose a cylindrical coordinate system whose origin is located 
at  the center of loop 1 and whose axis is along the axis of the loops. Consider two differential 
elements dl, and dl, of circuits 1 and 2 and coordinates (R,,  4 , ,  0) and (R,, 4,, h), respec- 
tively. The elements can be written as 

dl, = R, dr$,t$, dl, = R, d4,t$, dl, .dl, = R,R, d 4 ,  d4,t$, .t$, 

The distance between the elements Ir, - r,I is written in terms of their coordinates as 
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( b )  

Figure 11.12 Determination of the mutual 
inductance of two circular coaxial loops using 
Neumann's formula shows (a) the geometry of 
the loops and (b)  the unit vectors. 
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NOW = cos 412 = where 4,, = 4, - 4, (see Fig. 11.12b). Therefore, substitut- 
ing these expressions in Neumann's formula [Eq. (11.29)] gives 

where we have changed our variables of integration from (4,, 4,) to (4,, 4,,). The integ- 
ration over 4, gives just 271, so 

This integral may be written in terms of elliptic integrals: 

K(k) = d 4  ("first kind") 

4 ("second kind") (1 1.38) 

where k2 = 4R1R2/(h2 + (R1 + R~)'). In terms of these integrals, which are functions of k, the 
mutual inductance is: 

11.3.2 Self-Inductance-Inductances in Series and ip Parallel 

In attempting to calculate the coefficient of self-inductance, L,, = F, ,/I, where I is 
the current through a filamentary loop, a difficulty is encountered-namely, that 
F,, becomes infinite for the case when a finite current is supposed to pass through 
the filament. The reason is that the magnetic field very close to the filament varies 
inversely with the distance from the filament, and so becomes infinite as that dis- 
tance approaches zero. 

Actually, wires of finite surface area or cross section carry the currents around the 
loops, so these infinities do not have physical significance. The magnetic fields 
produced are everywhere finite. The only possible trouble in this case is to decide on 
the area through which to calculate the flux. Often, the so-called "external" self- 
inductance is calculated. In this case, the area chosen is external to the wire-for 
example, in the shaded region of Fig. 11.13. This will usually underestimate the self- 
inductance by a small factor (if the wire's transverse dimensions are small compared 
with the dimensions of the external area). In fact, if the current is assumed to flow 

Figure 11.13 The "external" self-inductance 
of a loop is often calculated by calculating the 
flux through the area external to the wire 
(shaded area) to avoid possible divergences at 
the wire itself. 
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( a )  ( b )  
Figure 11.14 Two current loops connected in series. (a) Fluxes enforce each other and (b) 
fluxes opposite to each other. 

on the surface of the wire, the external inductance can equal the inductance since 
the interior B field can then be zero (if the wire is thin and "kinkless"). 

The exact calculation of self-inductance may therefore be difficult. It is often 
calculated more simply and unambiguously using energy considerations than by 
employing its definition in terms of flux and will thus be largely deferred until such 
considerations are made (see Chapter 12). However, there are some simple consider- 
ations that merit discussion, and we shall describe these here. These include the 
connection of inductances in series and in parallel. 

Consider first the "self-inductance" of loops in series. A schematic diagram of two 
loops is shown in Fig. 11.14 and of the corresponding conventional circuit is shown in 
Fig. 11.15a. (We ignore the flux through the loops due to the straight sections between 
the loops, etc.) Therefore, the fluxes through them are given by Eqs. (1 1.24) and (1 1.25). 

The flux F ,  through loop 1 has two components, one due to the current flowing 
around loop 1 and the other due to the current flowing around loop 2. The latter 

(b )  
Figure 11.15 Schematic diagram of the cir- 
cuit of two inductances connected (a) in series 
and (b) in parallel. 
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contributes a "mutual flux," F , ,  to F , .  Using Eq. ( 1  1.33), the various components of 
the fluxes can be written in terms of the currents: 

F , ,  - L,I  F 1 2  = f M I  = F , ,  F , ,  = L 2 1  
Thus 

F ,  = (L, f M)I  F ,  = ( L ,  f M ) I  
The plus sign is used when the currents traverse the loops "in the same sense," that 
is, when the "mutual flux" reinforces the "self-flux" as shown in Fig. 1 1 . 1 4 ~ .  Other- 
wise, the minus sign is appropriate as in Fig. 11.14b. Now, the induced emf's around 
these two loops, d l  and b,, are given by Eq. ( 1  1.3) 

and the total emf is given by 

d 
d = d l + d 2 =  - - ( F ,  + F 2 )  

dt 
We may thus define the "total flux linkage" for the two loops as F ,  + F , ,  and 
define a self-inductance L for the whole circuit (of two loops) by 

F = 1 Fi = LI = ( L ,  + L ,  f 2 M ) I  ( 1  1.40) 
i =  1.2 

L = L , + L , f  2 M  ( 1  1.41) 

In fact, for N loops, one uses a similar procedure such that 

Then, for fixed geometry, 

as we had for a single loop. It must only be remembered that the fluxes are cal- 
culated through areas whose normals, or positive sides, are defined by the direction 
of current flow in a right-handed-screw sense. 

If one considers two loops, it is clear that the mutual flux linking the loops can 
only be less than (or at best equal to) the self-fluxes of the two loops. Thus F 1 2  I 
F, , ,  F , ,  I F l l ,  and so forth. Writing F , ,  = k 2 F 2 , ,  F , ,  = k l F l l ,  where k , ,  k 2  I 
1 ,  we have M I ,  = k 2 L 2 1 2  and M I ,  = k l L I I l .  Multiplying M I ,  by M I ,  gives 
M21112 = k l k 2 L l L 2 1 1 1 2 ,  implying that 

M = J ~  or M =  k a  - 1  < k <  1 (11.44) 

The purely geometrical constant is known as the "coefficient of coupling" of the 
loops. If k can be varied by varying the geometry, then a variable inductance can be 
constructed. (In fact, this was a popular way of tuning resonant circuits in the early 
days of radio.) 

If the inductors are now connected in parallel as shown in Fig. 11.15b, then one 
expects the effective inductance of the system to be different from that of the series 
connection [Eq. (11.41)].  One can show in this case (see Problem 11.18) that 

where the sign of M depends on the way in which the inductors are connected. 



11.3 APPLICATION OF FARADAY'S LAW TO COEFFICIENTS OF INDUCTANCE 369 

Example 11.10 Self-Inductance of a Solenoid or Toroid 

A solenoid consists of many closely spaced loops. If it is very long, so that end effects are 
negligible, we know that the average flux 'through each of its loops is given by F j  = pon,S1, 
where S is the cross-sectional area of a loop, n, gives the number of turns per meter, and 1 is 
the current passing through it. The sum of all the fluxes going through the loops is 

N 
F = 1 Fj = pon,SNI 

j= 1 

The self-inductance of the solenoid is now calculated using Eq. (11.42). Thus 

The result of a toroid in which the magnetic field is essentially constant, is exactly the same. 
Since n, s N/l, it may be noted that L is proportional to  N2. The reason is simply that 

there is mutual flux between the different loops which multiplies the average flux in a single 
loop by a factor N. Since there are N loops, the result is proportional to  N2. If there were no 
mutual flux, the inductance would be proportional to N alone. 

Example 11.11 Superposition of Time Variation and Motional EMF 

In this example we discuss a conducting loop of area A moving in a magnetic field that itself 
is varying with time. Consider a region in which the magnetic field B = B(t)2. A planar 
rectangular conducting loop is in the x-y plane with its center at the origin. At t = 0, the loop 
is set rotating about the x axis with angular velocity w. We will now calculate the induced 
emf using two methods: 

d F  
6 = -  and 6  - - . d a +  f (v x B).dl 

dt 

In the first method, one calculates the flux passing through the loop at time t :F = 

B(t)A cos wt. Thus 

d 
6  = - - [AB(t) cos wt] 

dt 

dB 
8 = -(A cos wt) - + BAw sin wt 

dt 

In the second method, we have to evaluate two integrals. The first one results from the 
time variation of the B field: 

The second contribution to d is the motional emf. The velocity of a point on the loop 
is v = rwA = yoA/cos wt. Thus 

v x ~ = y w ~ ~ x - - -  - - y w B t a n w t %  
COS wt 

Therefore 

6, = fv x B) .d l=  -wB tan wt yS.dl f f 
Since V x (yS) = -2, then Stokes' theorem gives 
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and thus 8, = BAw sin wt .  It is apparent that 8 ,  and 8, are exactly the same as the two 
terms arrived at in the first method. 

11.4 Summary 
The independent subjects of electrostatics and magnetostatics are coupled together via the 
time variation of the magnetic field. Faraday's experimental law states that the rate of change 
with respect to time of the magnetic flux through an area S produces an induced emf, and 
hence an induced electric field, a t  the perimeter of the area C; that is, 

The minus sign is a statement of Lenz' law. This integral law for a stationary rigid area S can 
be changed to the differential law 

which shows that in the presence of a varying magnetic field, the total electric field is not a 
conservative field. This differential equation along with the two divergence equations are 
three of Maxwell's equations which always hold. Substituting B = V x A in Ampere's dif- 
ferential law gives 

which implies that 

The contribution Eq = -V@ is a conservative field where as Ei = -dA/dt is the non- 
conservative. 

The magnetic flux through a nonrigid orland nonstationary area S can vary with time even 
if the magnetic field is not a function of time. Faraday's law is still applicable here, and the 
induced emf, called the motional emf, is 

In order to  account for the electrical behavior of electric circuits that always consists of 
closed loops, we must include the effects associated with Faraday's law and hence for all 
induced emf. It is convenient for this purpose to  relate the flux through each loop directly in 
terms of the current through all of them: 

The coefficients Lij are geometrical coefficients that are independent of the currents and the 
fluxes. For j = i, Lii = Li depends on the self-geometry of the individual loops and is called 
the coefficient of self-inductance, and the coefficient L,, = M , j  for i # j depends on the relative 
geometry of a pair and is called coefficient of mutual ~nductance. In terms of these coeffi- 
cients, Faraday's law becomes 

dFi d l ,  
li = --= - E L . , -  

dt j " dt 

The mutual inductance of two loops C, and C, is given by Neumann's formula 

L , ,  = M = - 
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where r, = r, is the distance between elements dl, and dl, of the two loops. In fact, this 
formula shows an important property of the coefficients, L,, = L,,. 

When two loops of L,, L,, mutual inductance M, and negligible resistance are connected 
in series and in parallel we have, for the effective inductance L,,,, 

Lei, = L,  + L, f 2M (series) (1 1.41) 

L,L, - M2 
Lerr = (parallel) L, + L2 f 2M 

If M is negligible, then this shows that L, and L, combine like resistors. In general, M = 

k m  where Ikl I 1 is the coefficient of coupling. 

Problems 

11.1 The magnetic field in the region p I p, = 0.1 m is increasing at a rate of 0.12 T/s. 
Determine the magnitude of the electric field at any radius p. Plot E as a function 
of p. 

11.2 A long solenoid has 100 turns per centimeter and a diameter of 3.0 cm. A thin coil 
having 20 turns and a diameter of 2 cm is placed inside the solenoid such that their 
axes are parallel. The current in the solenoid I = 3t + 2t2 where I is in amperes and t 
in seconds. Determine the induced emf in the coil. What is the instantaneous current 
in the coil at t = 2 s if its resistance is 0.15 R? Neglect the flux produced by the 
induced current. 

11.3 A conducting disk of radius a, thickness 6, and conductivity o, is placed in a cylindri- 
cally symmetric B field: B = Bo(t)% for 0 I p I R, and B = 0 for p > R (R c a) such 
that its axis is along the z axis, and its center is at the origin. (a) Determine the vector 
potential A associated with B in all regions. (b) Determine the induced electric field in 
all regions. (c) Determine the current density inside the disk. (d) Show that the total 
power dissipated in the disk is 

(If the 
power 
dBo/dt 

field completely covered the disk, the logarithmic term would be zero, and the 
would be proportional to the square of the disk area and to the square of 
. This is a general property of such "eddyn currents. See Example 11.3). 

11.4 A semicircular piece of wire, shown in Fig. 11.16, travels with constant velocity 
v = v,P in a constant magnetic field B = Bo2. What is the emf induced between the 
ends of the wire? 

Figure 11.16 

11.5 A rectangular wire of width a and length b is moving parallel to its width at a uniform 
speed v. A very long wire, carrying current I, stationary, coplanar with the rectangle, 
and parallel to its length is at distance 1 from the nearest long side. (a) Determine the 
emf induced in the rectangle. (b) Determine the mutual inductance of the circuits. 
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Two thin vertical conductors of length 50 cm are parallel to the z axis and at dis- 
tances p, = 3 cm, and p, = 5 cm from it. A resistive wire connects the two tops and 
the two bottoms, thus making a rectangular loop of resistance R = 0.2 R. The loop 
rotates about the z axis at w = 2n x 500 rad/min (keeping the same geometry), in a 
nonuniform magnetic field: B, = 0.25fiT at p, and B2 = 0.8BT at p,. (a) Determine 
the current in the loop. (b) Determine the electric power generated in the loop. 
(c) Determine the rate at which mechanical work is done on the loop, and compare 
with the result in (b). 

Consider the bar moving on the stationary conducting tracks shown in Fig. 11.7. We 
take the B field here to be normal to the plane of the tracks and to depend on time: 
B = 0.3 sin wt(T), where w = lo4 rad/s. (a) Determine the induced voltage when the 
bar is stationary and the loop area is 25 cm2. (b) Repeat for the case where the bar is 
moving with uniform speed o = 1.5 x lo4 cm/s and at an instant of time when the 
area is 25 cm2. Take the area to be zero at t = 0. Take 1 = 5 cm. 

Two infinitely long, parallel, fixed wires are located at x = f a  and are parallel to the 
y axis. The wires carry constant currents f I ,  respectively. Another infinitely long 
parallel wire is moving with its instantaneous position at distances r, and r, from 
the wires at x = a and x = -a, respectively. (a) Use the Neumann formula to show 
that the mutual inductance between the circuit composed of the two fixed wires and 
the circuit composed of a unit length of the moving wire is L = po log(r2/rl)/2n. (b) 
Calculate the induced emf per unit length in the moving wire when it is at the origin if its 
velocity there is v = voS. 
A loop of wire of area A, ,  with its center at the origin and carrying a constant current 
I,, is rotated with constant angular velocity w about the z axis. At t = 0, the loop is in 
the y-z plane. Find the current induced in a stationary loop at a large distance r on the y 
axis. The second loop is fixed in the y-z plane and has area A ,  and resistance R. 
Determine the inductance of an N turn toroid of square cross section of inner and outer 
radii p, and p, and thickness a. 
A toroidal coil has N turns, a mean radius b, and a circular cross section of radius a. 
Show that its inductance per unit length is L = p,N2(b - Jn). 
The space between two coaxial conducting cylindrical shells of inner and outer radii a 
and b is filled with a material of permeability p. Find the self-inductance of the system 
per unit length. 
A conducting wire of radius a is surrounded by a thin coaxial conducting cylindrical 
shell of radius. The wire and the shell have magnetic permeability p,. The space between 
them is filled with a material of permeability p. Determine the self-inductance per unit 
length of the line. 
Consider a very long cylindrical conductor of radius a parallel to a very large ground 
plane. The distance between them is d. Show that the mutual inductance per unit 
length is L/1= p, cosh- '(d/a)/2n and po ln(2d/a)/2n if d % u. 

Consider two identical parallel conductors of radius a and separation d. (a) Show that 
the inductance per unit length is L/l = po cosh- '(d/2a)/n. (b) Calculate the inductance 
per unit length when d = 25 feet and a = 0.8 inch. 

A circular loop of radius a, resistance R, and inductance L is rotating in a magnetic 
field H = Ho sin wt, about a diameter that is normal to H. (a) Determine the current in 
the loop. (b) Find the retarding torque. (c) Calculate the average power necessary to 
maintain the rotation. 

Determine the mutual inductance of the two loops of Example 11.10 when the two 
loops (a) are far away from each other (h >> R,, R,)  and (b) have about the same 
radius and are close together (R, x R, x R and h < R). 

Two inductors L, and L, with a mutual inductance M and negligible resistance are 
connected in parallel. If the total current through them is I, determine (a) the voltage 
across them, and (b) the effective inductance of the system. See Eq. 11.45. 



MAGNETIC ENERGY 

In Chapter 6 we calculated the electric energy stored in charge distributions and in 
polarized dielectric materials. The same energy was shown to be alternatively ex- 
pressible in terms of energy stored in the corresponding electric field. 

In this chapter we consider the magnetic case: We calculate energy stored in 
current distributions and in magnetized materials. We will also show that this 
energy can be accounted for in terms of the energy stored in the corresponding 
magnetic field. Moreover, we will show that the energy formulation is very conven- 
ient for calculating forces and torques between different elements of the current 
distributions. 

12.1 A Current Loop Immersed in a Linear Magnetic Material 

Let us consider a closed loop. Between t = 0 and t = t a current I is established in 
the loop with the aid of an external source. In establishing such currents (fields) the 
external source does electric work that gets stored as magnetic energy. If the 
material the loop is immersed in is a linear magnetic material and there are no 
losses to heat in the loop, this energy may be recovered when the current is switched 
off. 

The energy stored can be calculated with the aid of Faraday's electromotive force 
law [see Eq. (1 1.3)]. We assume that the circuit has negligible resistance such that 
we can neglect energy losses to heat (lZR). The rate of electric work, d W / d t ,  in the 
circuit caused by the induced electromotive force is 

where d and I are the induced instantaneous emf and current in the loop. But, from 
Eq. (1 1.3), d = -dF/d t ,  where F is the flux passing through the loop; therefore 
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the corresponding rate of work done by external sources (batteries, for example) is 
d W(b)/dt  = - d l ;  hence 

d W'b' = I dF (12.3) 

Alternatively, d W can be written in terms of L and I, where L is the self-inductance. 
From Eq. (11.43), d = -L(dl/dt); thus Eq. (12.1) becomes 

or, in differential form, 

d W =  - L I d l  (1 2.4) 

This can be easily integrated from 0 to the final current I :  W = -)L12. Thus the 
magnetic energy stored in the system, U = - W is 

It is useful to express this energy in terms of the total flux passing through the 
loop. For a single loop L = dF/dl,  which is equal to F/I since F is linear with the 
current; thus, Eq. (12.5) becomes 

12.2 N Loops Immersed in a Linear Magnetic Medium 
In this section we generalize the above results for a single loop to N coupled loops. 
Again, we assume the resistances of the given loops to be negligible, and thus the 
energy losses to heat can be neglected. The currents in the circuits are raised from 
zero to some final values. At a given instant of time the induced electromotive force 
in the mth circuit, 8, is given by 

where Mmk is the mutual inductance between the mth and kth circuits and I ,  and I ,  
are the currents in them, respectively. Thus the rate of work by the induced emf in 
the mth circuit is 

d Wm N dlk d l ,  -= - l M m k I m - - L  I - 
dt k f m  dt " " dt 

dWm = - 1 MmkIm dlk  - LmIm d l ,  
k f m 

The total differential work done in all circuits is calculated by summing Eq. (12.9) 
over m, as follows: 
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We now write MmkIm d l ,  + MkmIk d l ,  = Mmk d( lk lm) ,  where m < k. Thus, Eq. 
(12.10) becomes 

N N 

d W  = - C Mmk d ( l , l k )  - CL,I, d l ,  (12.11) 
m, k m 

m < k 

which can be easily integrated from 0 to 1, and I,: 

Therefore, the total magnetic energy stored in the system U = - W is 

To express the energy of the N circuits in terms of the flux passing through them, 
we first rewrite Eq. (12.13) as follows: 

where M,, = Lm for m = k. The inductance Mmk is defined in terms of the flux 
passing through the mth circuit and caused by the kth circuit, Fmk; that is, 
Mmk = dFmk/dlk ,  which gives for linear systems Mmk = Fmk/Ik.  The total flux passing 
through the mth loop; therefore 

Substituting this result in Eq. (12.14) gives 

For a single circuit, Eq. (12.16) gives the previous result of Eq. (12.6). 

12.3 Energy Stored in a Magnetic Field 
in the Presence of Linear Materials 

In the previous sections the magnetic energy of current circuits was expressed in 
terms of the currents, self-inductances, and mutual inductances of the circuits. Also, 
it was expressed in terms of the currents and the total magnetic fluxes passing 
through the circuits. In this section we give yet another way of expressing the 
energy, by expressing it in terms of the associated magnetic field. 

In order to do this we use a more general concept of a "current circuit," which is 
not necessarily defined by wires but can be defined by a line of current (line of force 
of the corresponding electric field). The magnetic energy given by Eq. (12.16) will 
now be transformed to an expression in terms of the associated magnetic field and 



the permeability of the medium. We can express the flux passing through the cir- 
cuits in terms of the local magnetic field via Eq. (8.45); however, for the transform- 
ation, it is more convenient to express it in terms of the local magnetic vector 
potential A, given by Eq. (8.46). Upon substitution of Eq. (8.46) in Eq. (12.16), we 
get: 

where C ,  is the boundary of the mth "circuit" and dl, is a differential displacement 
along C, .  The product I, dl, can be changed to J dv and the sum over the different 
line integrals can be changed to an integration over the volume 

That is, 

The current density can now be written in terms of the magnetic intensity J = 

V x H;  that is, 

Using the vector identity given by Eq. (1.60), V.(A x H) = (V x A) .H - (V x H).A, 
Eq. (12.19) becomes 

The second integral of this equation becomes a surface integral when the divergence 
theorem is applied to it. Moreover, using B = V x A, U becomes 

where S is the surface that encloses the volume V. We would like now to choose S 
and hence V such that the surface integral vanishes. If the current distributions are 
bounded-that is, if they do not extend to infinity-it is possible to take V very 
large and hence S becomes very large, so all points on it are at very large distances 
from the di~tributions. The dominating radial dependence of the vector potential 
and the magnetic fields at the surface can then be taken of the form l/r and l/r2, 
respectively, where r is the distance from the points at the surface to the points in 
the current distributions. The other radial dependences, if any, fall off as r-" ,  where 
m is an integer 2 3 in the case of the H and > 2 in the case of the potential. In any 
case the integrand A x H falls off as l/r3 or faster and because the area element da 
goes as r2, the surface integral vanishes as r goes to infinity. Therefore, Eq. (12.21) 
becomes 

H . B dv (all space) 
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where V is now the volume of all space (infinite volume). For linear isotropic media 
of permeability p such as being considered in this section we have B = pH and 

for the energy density which depends on the final values of the fields. 
It is instructive to express the energy density in ternls of H and the magnetization 

M. Substituting B = poH + poM in Eq. (12.22). we get 

The first term of u is interpreted as the energy density of the magnetic field in 
vacuum. The second term is therefore interpreted as the energy density stored in the 
material itself. This form of writing the energy density will be very useful in the case 
of nonlinear materials (to be discussed in the next section). 

Example 12.1 The Magnetic Energy of Two Filamentary Currents 

The total magnetic energy of two long filamentary currents can be evaluated using Eq. 
(12.18): U = f 5 J . A  dv where A is the total vector potential and the volume includes both 
currents. The interaction energy U""'), on the other hand, is given by (using the filamentary 
approximation) 

U""" = [ , A ,  .d l ,  = [ , A ,  . d l ,  S S 
(See the discussion in Section 6.6.) Consider the currents to  be along the z axis-one located 
at the origin and the other at p = p,. The vector potential at p = po due to the current at 
p = O i s  

Thus 

where I is the length of a section of the second filament. Thus, the interaction energy per unit 
length, is 

where C is a constant. 

Example 12.2 The Magnetic Energy of a Magnetic Dipole in a Uniform B Field 

Current Loop. In Section 8.8.4 we discussed the forces, torques, and energy of a current loop 
in an external magnetic field. It was remarked that the result U = -m. B is only a part of the 
magnetic energy in a uniform B that is associated with the torque exerted by B on the 
distribution. The other part, which we did not calculate, is associated with the work done by 
the external source that maintains the current in the loop when it is introduced in the field. 

In this example we derive the total result using the methods developed in this chapter. 
Consider a long solenoid of n, turns per unit length, carrying current I ,  whose axis is along 
the z axis as shown in Fig. 12.1. A small loop, carrying a constant current I , ,  and of an area A 
is placed inside the solenoid. 
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Figure 12.1 Magnetic energy of a current- 
carrying loop inside a long solenoid. 

The magnetic field produced by the solenoid is uniform and parallel to its axis; it is equal 
to B = pon,12 (see Example 8.8). The magnetic flux passing through the loop is 
F,= pon,IAI 2 .  dl,  where d is a unit vector normal to the loop. 

The mutual inductance of the system is determined by taking the derivative of F with 
respect to I :  

Using Eq. (12.14), the interaction energy of the loop with the solenoid is 

which can be rewritten in terms of the magnetic dipole moment of the loop, m = I,AA, and 
the magnetic field B: 

U = + m . B (current loop) (12.26) 

This result shows that the total magnetic energy when the current is maintained is the 
negative of the energy associated with the torque, W(") = - m.B,  which tells us that the 
batteries maintaining the current must have done the work 

This can be understood as follows. When a loop connected to a constant current source I is 
introduced in a magnetic field and the magnetic flux increases in it by dF, the battery, 
according to Eq. (12.2), does the work 

if it is to maintain the current I .  The magnetic energy U = +IF, on the other hand, changes 
due to the increase in the flux according to Eq. (12.6) by the amount 

Thus 

But 

which gives W(b) = 2,. B. 

Permanent Atomic Dipole (or Very Small Magnet). We now consider a magnetic dipole 
moment that is associated with the spin of a magnetic atom. Since there is no real current in 
this case, then the interaction energy of this dipole with a uniform external magnetic field is 
associated only with the torque exerted on the dipole. Thus the magnetic energy in this 
case is 

U = - rn . B (atomic permanent dipole) (12.27) 
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Example 12.3 The Magnetic Energy of Two Magnetic Dipoles 

In this example we consider the magnetic interaction of two permanent atomic magnetic 
dipoles (or two very small magnets). We take the dipoles sufficiently small compared to the 
distance between them that the variation of the magnetic field produced by one of them over 
the other can be neglected. Thus the interaction energy is: U = -m, .B2, where m, is the 
magnetic moment of the first dipole and B, is the magnetic field produced by the second 
dipole at the site of the first. 

The magnetic field produced by the second dipole of moment m, is given by Eq. (8.98); 
that is, 

where r is the distance of the point of observation to the second dipole. Taking the point of 
observation at the position of the first one gives 

12.4 Magnetic Energy in Nonlinear Materials 

In linear systems such as the cases considered so far in this chapter the work needed 
to establish a magnetic field depends only on the final value of the magnetic field. 
This implies that these systems are reversible, meaning that the energy consumed in 
establishing the magnetic system can be recovered as the field is switched off. In this 
section we take on the case of nonlinear materials where this is not true because 
hysteresis plays an important role. The irreversible changes in the domain configur- 
ations that are responsible for the hysteresis cause energy losses in the form of heat. 

Consider a circuit in the form of a solenoid that has N current turns and negli- 
gible resistance, and completely filled with a ferromagnetic material, as shown in 
Fig. 12.2. Because of the large air gap, the flux lines will not be confined to a single, 
well-defined path. Each flux line, however, may be viewed as a magnetic circuit, and 
all of them are connected in parallel. Each line C k  is characterized by length I ,  and 
area A,, which may be a function of I,. The work done by an external source AW"' 
in a time interval At at time t and current 1 is given by means of Eq. (12.3); that is, 

where 8, is the induced emf associated with C,. Now one substitutes for 8, in terms 
of the flux 1, along the curve C,, or 8, = -dF, /d t ;  therefore Eq. (12.29) becomes 

Figure 12.2 A solenoid with a ferromagnetic 
core, showing one of the flux lines. Each flux 
line may be viewed as a magnetic circuit, and 
all of them are connected in parallel. 
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The magnetic intensity H at  time t can be related to I by using Ampere's law 
$,, H . d l ,  = NI. Therefore Eq. (12.30) becomes 

Since the magnetic flux is continuous along each circuit [see Eq. (9.53)], we write 
AF, = NA, AB, where A ,  is the cross section of the circuit a t  the interval dl,. 
Therefore 

A W @ '  = E $ c k ~  dl ,  A ,  AB. 

Because I ,  is along the flux line, the quantity dl,  AB can be written as dl ,  AB. 
Moreover, we can replace 

by { dl., where v is the volume containing all flux lines. Therefore 

(12.33) 

The magnetic energy density in an  increment d B  per unit volume is then given by 

This expression represents the energy required to change the magnetic field from B 
to B + d B .  Writing B = p,H + pOM in this expression gives 

which indicates that dW"' represents the work necessary to establish the magnetic 
field from H to H + d H  and to magnetize the material from M to M + d M .  The 
total energy required to establish the field from 0 to H ,  and M from 0 to M(H,) per 
unit volume of the sample is determined by integrating Eq. (12.35) or  Eq. (12.34): 

1 , W'" = JIOH d B  = - p0HH + po 
2 

(12.36) 

Example  12.4 Hysteresis Loss  

Consider a ferromagnetic material whose hysteresis curve is shown in Fig. 12.3. The mater~al 
is initially in a magnetic field - H , , , .  The magnitude of the field is gradually decreased to 
zero, reversed in polarity, and gradually inc;-eased to H , , , .  The opposite of this procedure is 
then performed such that the field is returned to its initial condition. 

Since the system is returned to its initial magnetic state (that is, to the same H  and B 
values), the overall change in its magnetic energy is zero. The total work done by the external 
source per unit volume of the material, however, is not zero; it is equal to 

where C is the hysteresis loop. The integral can be easily calculated; it is the area enclosed by 
the hysteresis loop. It is now apparent that it takes more energy to produce the magnetiz- 
ation than is returned when the magnetization is reduced. The energy lost is called the 
hysteresis loss; it goes into heat. 
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Figure 12.3 A hysteresis curve of a ferromag- 
netic material. 

Example 125 Magnetic Cooling 

Because we have seen in Section 12.3 and in this one that it is possible to  d o  work on a 
magnetic sample by varying the magnetic field applied to it, it is possible to change the 
temperature of the sample (heat it o r  cool it). This principle has been used to provide a means 
for attaining very low temperatures. The magnetic cooling method can be easily described as 
follows. The sample is first placed in thermal contact with liquid helium at about 1 K. The 
contact is achieved by heat conduction via a low pressure of helium gas. The helium liquid at 
this temperature constitutes a heat bath at temperature T .  In a second step, a magnetic field 
of intensity H, is switched on. As a result, the sample becomes magnetized and work is done. 
Because the sample is in thermal contact with the heat bath, it gives the produced heat to the 
bath; hence it remains at  temperature q. The helium gas, which maintains the thermal 
contact with the' heat bath, is now removed, resulting in the thermal isolation of the sample. 
Finally, the magnetic field is reduced quasi-statically to a final value H j ,  which results in a 
reduction in the temperature of the sample to  Tj < q.  This adiabatic demagnetizatio~l process 
can cool the sample to  as low as 0.01 K. In fact, further elaborations of this process have 
produced temperatures as low as K.  

12.5 Forces and Torques Using the Magnetostatic Energy 
We have found in the previous sections that work must be done against the induced 
electromotive forces in order to establish some given currents in a set of rigid, fixed 
current circuits. This work has to be supplied by the external source being used such 
as batteries. We have also previously found that current circuits produce magnetic 
fields and hence exert forces on each other. These magnetic forces become more 
involved if the rigid circuits were allowed to move during the process. As a result of 
the motion, mechanical work would be done by these forces. In this section we show 
how the magnetic-energy formalism discussed in the previous sections can be con- 
veniently used in determining such forces. 

Consider a system of rigid circuits. Let one circuit make a virtual rigid displace- 
ment dr while the currents in all of the circuits are kept constant by the external 
sources. Moreover, consider only static situations where the circuits are stationary 
(no kinetic energies are involved) such that there is no heating or cooling of the 
circuits. As a result of the virtual displacement, a mechanical work dW'm"h' is done 
by the magnetic forces, and an electrical work dW(*' is done by the batteries against 
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the induced electromotive forces to maintain the currents in the circuits. The sum of 
these two effects is equal to the change in the magnetic energy of the system: 

If the change in the flux passing through circuit i is called dFi ,  then using Eq. 
(12.3) we write dW'b' = Ei Ii d F i .  On the other hand, the corresponding change in 
the magnetic energy is given by Eq. (12.16); that is, 

which indicates that d W ( b )  = 2 d U .  Thus Eq. (12.38) becomes 

dw'mech) = d U  (constant currents) (1 2.40) 

The mechanical work dW(mech)  can now be written in terms of the magnetic force 
F acting on the circuit in question, as follows: 

dw'mech) = F .  dr 

Thus, Eqs. (12.40) and (12.41) give 

d U  = F . d r  

which implies the existence of a magnetic energy U such that 

F = V U  (constant currents) (1 2.43) 

The various components of F follow from this result: 

where Fg is the force acting on the circuit in the 6 direction, and the vertical bar 
with its subscript I  is inserted to emphasize the constancy of I in all the circuits in 
taking this derivative. 

Another physical situation arises when the circuits are isolated from the external 
sources (batteries). In this case, a virtual rigid movement of one of the circuits 
results in a change in the currents in all of them. However, according to Lenz' law, 
the amount of change in the induced current due to the induced emf is such that the 
magnetic flux passing through the circuits stays the same. Therefore, we take 
d W ( b )  = 0 in Eq. (12.38); thus 

d~ = -dw(mech) (constant flux F )  (1 2.45) 

It is interesting to note that in this case the change in the magnetostatic energy is 
the negative of the mechanical work, whereas in the case of constant currents [Eq. 
(12.40)] the change is equal to the mechanical work. Again, in this case, d W(mech' can 
be written in terms of the magnetic force F acting on the circuit and in terms of the 
differential displacement dr;  that is, d W(mech)  = F . dr. Thus 

F = - V U  (constant flux) (1 2.46) 

and the various components of F are 

where F g  is the component along the direction, and the differentiation is carried 
out keeping the flux in all the circuits constant. 
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Finally, the same procedure followed above can be used to find the magnetic 
torques acting on the circuits. If, instead of a virtual translation, the circuit is 
allowed to have a rigid virtual rotation dB, then 

gives the torque in the increasing 0 direction in the case of constant currents, and 

gives the torque in the increasing 8 direction in the case of constant fluxes. 

Example 12.6 Force Exerted by a Solenoid on a Magnetic Slab 

This example is analogous to the problem of finding the force exerted on a dielectric slab 
partially inserted in the field of a capacitor (Example 6.13). Consider a solenoid of cross- 
sectional area A, N turns, and length I .  The solenoid is connected to an external source that 
sets up a constant current I through it. A rod of a magnetic material of constant permeability 
p and cross-sectional area A is partially inserted in the solenoid while keeping their axes 
parallel to each other, as shown in Fig. 12.4. 

Figure 12.4 Force exerted on a magnetic material 
when inserted into a solenoid using energy 
methods. 

T o  calculate the force, we need to calculate the magnetic energy of the system as a function 
of x. This requires a knowledge of the magnetic field everywhere including the neighborhood 
of the ends of the solenoid and the slab. Dealing with end effects is not simple since they 
involve very complicated fields. However, an approximation that simplifies the solution tre- 
mendously can be used. We assume that when the slab is slightly moved by a distance Ax 
from its position, the structure of the field remains the same, the only difference being that a 
Ax of the slab is effectively transferred from the very outer region to the region well inside the 
solenoid. With this approximation, the energy difference of the two configurations as a func- 
tion of Ax can easily be determined: 

where V =  A Ax is the change in volume caused by the displacement, and H = NIJI  is the 
magnetic intensity inside the solenoid. The integration can be easily carried out since H is 
constant; thus, Eq. (12.50) becomes 
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The force on the slab is then equal to  

F z -  :I, z 2 ( p - P o )  ( : I )  - A 

*Example 12.7 The Force Between a Magnet and a Magnetic Slab-Magnetic 
Circuits 

Consider the magnetic circuit shown in Fig. 12.5. It consists of a U-shaped arm of a magnetic 
material of high constant permeability p and is wound with N  turns of wire that carries a 
constant current I. The cross section of the arm is rectangular, with an area A. A bar of the 
same material and the same cross section is placed against its poles, thus making the total 
length of the circuit I .  

Figure 12.5 Force on a magnetic slab by a U- 
shape magnet using energy methods. 

To  determine the force between the bar and U arm, we make a virtual displacement of the 
bar from the poles. The magnetic field in the various parts of the circuit can be found using 
Ampere's law and the principle of continuity of flux. We apply Ampere's law to the circuit 
before the virtual displacement is made $ H o . d l  = N I .  Thus 

After the displacement of the bar by an amount Ax I ,  Ampere's law gives 

where H ,  and H ,  are the magnetic fields in the material and in the gap, respectively. The 
continuity of flux gives another relation between H ,  and H,;  that is, 

Equations (12.54)  and (12 .55)  are now solved simultaneously for H ,  and H , ;  that is, 

The change in the magnetic energy AU is 

where Vm and 5 are the volumes of the magnetic material and the gap, respectively. Subst- 
ituting H ,  and H ,  from Eqs. (12.56)  and (12.57) ,  respectively, gives 



12.5 FORCES AND TORQUES USING THE MAGNETOSTATIC ENERGY 385 

Thus the force acting on the bar is 

Example 12.8 Force Between a Wire and a Circular Loop 
Using the Energy Method 

In this example we use the energy method to calculate the force between the two current- 
carrying circuits shown in Fig. 12.6. A current I ,  flows in a circular loop of radius R. An 
infinite wire carrying a current I ,  is in the plane of the loop and at a distance d > R from the 
center of the loop. 

7 

12 

Figure 12.6 Force between a current- 
carrying wire and a current-carrying loop 
placed in the same plane. 

Since we are interested in the force between the wires, we will calculate only the interaction 
magnetic energy U = I , F , ,  where F ,  is the flux passing through the loop due to the field of 
the wire. The flux F ,  = B,.A du,  where A is a unit vector normal to the loop and B, is the 
field produced by the wire can be calculated as follows: Consider a differential area p d p  dq!J 
located at distance p from the center of the loop and hence at a distance d + p cos from the 
wire and at  an angle q!J with respect to the diameter of the loop normal to the wire. Therefore 

r ,  =" 1' f /02' P d p  dq!J 
2n d + p cos q!J 

Noting that 

then 

Integrating over p gives 

The interaction magnetic energy is therefore 

The force between the wire and the loop can now be calculated from U using Eq. (13.44). as 
follows: 
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Example 12.9 Calculation of Self-Inductance Using Energy Considerations 

The energy formalism will be used in this example to  calculate the self-inductance of two 
infinitely long wires, shown in Fig. 12.7. The wires, of radii p, and p,,  carry currents I and 

Figure 12.7 Self-inductance of two infinitely 
long parallel wires using magnetic-energy 
methods. 

- I ,  respectively, and their centers are a distance h apart. The magnetic energy U of the 
system can be calculated using Eq. (12.18): U = f J .  A do. The vector potential of a straight 
wire of finite diameter was obtained in Example 8.10. For wire 1 ,  the vector potential is 

For wire 2, the vector potential is 

Taking J ,  = I/np: and J ,  = - I /np: ,  then U takes the form 

I 
U = -  f ( A ,  + A z ) . d a l  dz - - ( A ,  + Az) .da2  dz (12.69) 

2np: s, 

where S ,  and S, are the cross-sectional areas of wires 1 and 2, respectively. Since the potent- 
ials are independent of z and are in the direction of z ,  then the energy per unit length u = U/1 
is 

U = - = -  1 ( A ,  + A2)da, -- 
1 2 n d  s, 

1 ( A , + A z ) d a 2  
2 n d  s, 

The integration gives 

Using the definition of the self-inductance per unit length, Eq. (12.5), we find that 
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12.6 Summary 
To establish a current I in a loop of inductance L, negligible resistance, and immersed in a 
linear magnetic material requires an external source, such as a battery, to d o  work dW(b); 
then 

dW'b' = I dF (12.3) 

where dF is the change in flux through the loop. The corresponding work done by the 
induced emf is just the negative of this work, or 

Taking dF = L dl gives 

The magnetic energy stored in the system is therefore 

This result can be generalized to a case of N loops of self-inductances and mutual inductances 
L,,, and M,,, as follows: 

where M,, = L, for m = k, and F, is the total flux through the mth loop due to all currents. 
Alternatively, the energy of the loops can be written in terms of the magnetic field o r  the 

vector potential produced by the loops: 

where the integration over dl includes a summation over the various loops, and the ex- 
pression in terms of J describes a more general current distribution, which is not necessarily 
filamentary. Thus one can define a density of magnetic energy 

In the presence of nonlinear magnetic materials, the work necessary to be done by the 
external source to establish the magnetic field (H,, B,) is 

The last term is a hysteresis loss. 
In analogy with the electrical case, we can find forces acting on the various elements of a 

magnetic system from its magnetic energy. For isolated systems, flux stays constant by Lenz' 
law (if there are no losses due to Joule heating), and hence 

au 
F - - - (constant flux) 5 - (12.47) a t  
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For a system whose currents are maintained at  certain values by regulated external sources, 
we have 

(constant currents) Fc=z (12.44) 

If the < represent a rotation, the F ,  represent a torque. 

Problems 

12.1 A coil has an inductance of L = 5 H and a resistance of 20 R. An emf of 6 = 100 V is 
applied. (a) What energy is stored in it after the current has built up to its maximum 
value 6/R? (b) What is the flux in the coil? 

12.2 A coaxial conductor of inner radius a and outer radius b carries a current + I .  (a) 
Determine the B field between the conductors and the magnetic energy per unit 
length. (b) Determine the inductance per unit length. 

123 A cylindrical conductor of radius a carries a current I, which is distributed uniformly 
across its cross section. (a) Determine the B field and the stored magnetic energy per 
unit length in the conductor. (b) Determine the self-inductance (internal) per unit 
length. 

12.4 A toroidal coil of N turns is wound on a nonmagnetic form of square cross section of 
side a. The inner and outer radii of the toroid are p ,  and p,, and it carries a current I. 
(a) Determine the magnetic field in the toroid using Ampere's law. (b) Determine the 
stored magnetic energy. (c) Determine the self-inductance of the toroid. 

12.5 An inductance is formed of 100 turns of wire wrapped around a closed iron loop 
20 cm in length and a cross section of 1 x 1 cm. A 60-Hz alternating current is passed 
through the coil. The iron goes through the hysteresis loop once each cycle. (a) Find the 
approximate power loss due to  hysteresis. (b) Use the expression for 4 H .dl to  obtain the 
peak current in the coil from information given on the hysteresis plot shown in Fig. 12.8. 
(c) What is the self-inductance of the inductor under the conditions of the problem? (d) If 
twice the current were passed through the coil, how would this affect the inductance 
(qualitative)? 

Figure 12.8 A inductor formed from a closed rectangular iron loop with a coil wrapped 
around it, along with its hysteresis loop. 
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12.6 The magnetic field B between the poles of an electromagnet is uniform and is held at 
a constant value B, even in the absence or in the presence of magnetic materials (case 
of constant flux). A thin, paramagnetic rod of susceptibility X,  is partially inserted in 
the field, as  shown in Fig. 12.9. Determine the force on the rod. 

Figure 12.9 The force on a paramagnetic rod 
when inserted in a region of uniform B field 
that is held constant between the pole faces of 
an electromagnet. 

12.7 The current I  in a very long solenoid of N turns, length I, and radius R is kept 
constant by a battery. (a) Find the magnetic energy and hence the force on one turn of 
the winding per unit length of the circumference. (b) Repeat assuming that the flux 
remains constant instead of the current, and the system is isolated (using super- 
conducting windings). 

12.8 Two small coplanar magnets of moments 2 m, and 3 m,, where mo is in A.m2 are free 
to turn about their fixed centers. The line joining their centers has a length d and is 
perpendicular to an external uniform field H. Calculate the energy of the system. 
Show that a position of equilibrium is one in which their axes are in the direction of 
H. 

12.9 Consider two parallel, infinitely long, straight-line conductors with currents I ,  and I, 
are placed at  a distance R from each other. (a) Determine the vector potential of 
current I,. (b) Determine the interaction energy between the two currents. (c) Use the 
interaction energy to find the force between the wires. 

12.10 Consider a long solenoid of N turns, radius R, and length Lo carrying current I , .  The 
turns are closely and uniformly spaced and have negligible resistance. The ends of the 
solenoid are connected by a conductor that has negligible resistance and inductance, 
and the system is isolated (flux remains constant). (a) Determine the magnetic field. 
the magnetic-energy density, and the total magnetic energy inside the solenoid. 
(b) How does the current I ,  vary if the length of the solenoid is changed to L ,  
while keeping the radius unchanged? (c) Determine the tension in the solenoid-that 
is, the force required to stretch the solenoid. Neglect the stiffness of the wire. 

12.11 Two thin rings of radii a and b are placed such that their planes are normal to the line 
joining their centers. The rings carry currents I ,  and I , ,  and the distance between 
their centers is I a, b. Determine the force between the rings. 

12.12 A rod of paramagnetic material of permeability p and uniform cross section A is 
placed in a nonuniform magnetic field between the poles of a magnet similar to the 
arrangement of Fig. 12.10. If the field at the bottom of the rod is H I  and at the top is 
H,, determine the vertical force on the rod. 
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Figure 12.10 The force on a paramagnetic 
rod when inserted in a nonuniform H field. 

12.13 Consider two rigid circuits carrying constant currents I ,  and I,. The force between 
these circuits can be calculated using the Biot-Savart law. Show that this force can be 
derived from the magnetic energy of interaction U = I , I ,M,  according to the defi- 
nition F, = - F ,  = V,U, where M is the mutual inductance given by Neumann's 
formula, and V ,  operates on the coordinates of the second circuit. 

12.14 An electromagnet is constructed as shown in Fig. 12.11. The total length of iron in the 
two parts is L, the cross-sectional area is A, and the permeability of the iron is p. A 
current I  through N turns activates the magnet. The two halves of the magnet are 
separated by a distance x, where x << L. Find the force of attraction between the two 
halves of the magnet. 

Figure 12.11 



CIRCUITS WITH 
NONSTEADY CURRENTS 

In Chapter 7 we treated electric circuits that contained only resistors. Resistors are 
passive elements that dissipate energy as heat or in some other fashion. In this 
chapter we consider electric circuits that contain elements that store energy, such as 
inductors and capacitors. For example, an inductor is a device that stores energy by 
virtue of a current passing through it, and a capacitor stores energy by virtue of a 
voltage across it. These elements have quite different voltage, current, and charge 
relationships: For a resistor, the current is proportional to the voltage; for an 
inductor, the voltage is proportional to the rate of change of the current; and for a 
capacitor, the voltage is proportional to the charge or the integral of the current. 

The methods that were applicable to the purely resistive circuits-namely, 
Kirchhoffs laws-are also applicable to the more general circuits containing capaci- 
tors and inductors. In the more general case, however, Kirchhoff's equations are 
integral differential equations rather than algebraic equations. 

The electromotive sources that can supply energy to the circuits may include any 
time dependence in principle, but the most commonly used are step functions, im- 
pulses, and sinusoidal functions. A step function is a suddenly applied constant 
source; it represents a single jump. On the other hand, an impulse is a very large 
pulse of voltage with a very short time duration. A sinusoidal source is a periodic 
source such as a cosine or a sine function of time. 

In these three source cases the response of the circuit can be readily found analyt- 
ically. The response to other types of excitations are difficult to be directly deter- 
mined analytically. However, because the elements in the circuits being discussed 
are linear, and hence the principle of superposition is applicable, solutions to an 
arbitrary source can be represented by a sum of responses to steps, impulses, or 
sinusoidal sources. This is possible since an arbitrary source can be decomposed 
into summations of steps, impulses, or sinusoidal sources. 

If the decomposition of the source results in step functions or impulses, then the 
problem is solved in the time domain. If, on the other hand, the decomposition 
results in sinusoidal functions, then it is solved in the frequency dqmain. It is to be 
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noted that the time domain is a transient response (that is, the time dependence 
eventually decays to zero), whereas each wave in the frequency domain has a steady- 
state solution. 

13.1 Definition of Quasi-Static Circuits 
When energy-storing elements are present in the circuit, the currents and charge 
densities, and consequently the magnetic and electric fields, vary with time. In 
Chapter 11 the equations of electrostatic and magnetostatics that describe only 
static distributions were modified to include the variations of the magnetic field via 
Faraday's law: 

where the total electric field E = Eq + Ei [see Eq. (1 1.1 I)]. These resulting equations 
are called quasi-static equations because they still do not account for all the time 
variations. In Chapter 14 they will be modified further with the incorporation of the 
time variation of the electric field. It will be found that the time variations of E and 
B result in the production of waves that carry energy away from the conductors. As 
a result of this propagation, the analysis of circuits becomes very complicated. 
However, there exist physical conditions under which the time variation of the 
electric field, and hence the propagation, can be neglected. When these conditions 
are met, circuits can then be analyzed using the quasi-static equations. The above 
equations are sometimes referred to as "quasi-static" inasmuch as they are valid 
only if the fields (and consequently currents, and charge densities) do not vary "too 
rapidly" in time. What "too rapidly" implies will be specified more precisely later. 
Suffice it to say here that with the combinations of wires and materials used to 
construct "circuits" of physical dimensions whose distances are of order d, the time 
parameters z characterizing fluctuations of the fields should satisfy 

For sinusoidal signals, r is chosen as the period. If L is the length of a segment of 
wire, we may disregard propagation effects without undue error if 

Thus, Table 13.1 indicates that for frequencies associated with power lines (60 Hz), 
transmissi6n-line effects are only important for distances of the order of lo6 meters 
(or close to a thousand miles), whereas at lo9 Hz we must account for these effects 
in the wires of our laboratory circuits. 

It is apparent from the study of these equations that they will not be truly 
consistent with our circuit equations. In particular, the fact that V x B is taken to 
equal p0J implies that V .  J = 0, which implies further that all current filaments are 
continuous. However, we know this is not true when a wire carrying current tern+ 
nates in a capacitor. We shall come back to this problem later in Chapter 14. Here 
we shall simply assume that current filaments are continuous everywhere except at 
capacitors, where, if a current enters, it will build up charge. In fact, then, we shall 
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Table 13.1 Approximate Sizes 
at Which Propagation 
Effects Become Important 

L = c/f 

f (Hz) (meters) Application 

60 1 O6 Power 
lo4 3 x lo4 Telephone 
1 O6 300 Microwave 
1 o9 0.3 Radio 

assume that magnetic fields can be calculated from the equations V . B  = 0 and 
V x B = po J in excellent approximation, but we shall not assume that V . J = 0 every- 
where. We shall only assume that V . J = 0 wherever the charge is not " building up" 
or "decaying away." That is, we are assuming that charge densities change in time 
only at "capacitors" [and there with time constants satisfying Eq. (13.1)]. As stated 
previously, this will be a good approximation if Eq. (13.1) is fulfilled. 

13.2 Kirchhoff's Circuit Law 
In Chapter 7 we stated Kirchhoffs circuit laws for the case of steady-current cir- 
cuits. Here we consider these laws in the case of quasi-static circuits. We will first 
take a specific circuit and analyze it, and then laws for general circuits will be stated. 
We consider the current loop shown in Fig. 1 3 . 1 ~  containing a source of applied emf 

Figure 13.1 (a) A current loop containing a 
source of applied emf 8, which has a self- 
accumulate anywhere in this circuit. The cur- 
rent I is continuous around the loop. (b) A 
convential sketch of the circuit. 
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8, which has a "self-accumulate" anywhere in this circuit, and the current I is 
continuous around the loop. 

The force per unit charge, which is capable of doing work, at any point of the 
circuit, can be generally written as 

where EYs  the force per unit charge associated with the source of applied emf, 
which enables work to be done as a charge is transported completely around the 
circuit. It is the source (thus superscript s) of energy that enables the field E = 

Ei + Eq to exist. It may be attributable to batteries, generators, or fields associated 
with "other" circuits specifically employed to activate this circuit. By definition, 
4 Es.dl = 8, where the line integral is taken around the circuit; (thus we use dl 
rather than dr). Usually EYs localized in space, as in a battery, so the contribution 
to the total closed line integral comes from only a small part of the total path 
length : 

(13.4) 

Now in the media of the circuit we assume Ohm's law to be true; that is, J = a,ET. 
Therefore 

ET.dl = -.dl = Es.dl + Ei.dl  + Eq.dl I I i I I (13.5) 

the line integral being taken completely around the circuit (in the media). The left- 
hand side of Eq. (13.5) can be written in terms of the resistance of the circuit using 
Eq. (7.14), or 

where R is the total series resistance (including wires and emf's) of the loop and I is 
the continuous constant current around the loop. Note that I would not be con- 
tinuous and constant if capacitance were present. The line integral of Es is just the 
electromotive force of the source as was defined in Eq. (13.4). Moreover, 4 E4. dl = 0 
and $ Ei . dl is given by Faraday's law: 

Therefore Eq. (13.5) becomes 

This is the basic equation of a single, isolated, ohmic current loop containing only 
inductance and resistance. 

Conventionally, we lump the inductance L in the symbol, - for an induc- 
tor, and the resistance R into a resistor + and sketch the circuit as in Fig. 13.lb. 
The assumption is that the ordinary connecting wires have negligible inductance 
and resistance: all the inductance of the circuit is associated with an "inductor" (like 
a toroid or solenoid of many turns where the B fields are relatively large) and all the 
resistance is in a "resistor" (of presumably low conductivity). Of course these are 
only approximations; the inductance ?nd resistance of the closed loop in fact have 
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contributions from all parts of the loop. Thus, we may formulate the "law of loop" 
having resistance, inductance, and emf by the simple obvious assertion that "The 
sum of the potential differences taken serially around loop C is zero," coupled with 
the statement that these potential differences are given by RI, L(dl/dt), - B for 
resistors, inductors, and sources of emf, respectively. In general, we may be obliged 
to analyze circuits containing many loops coupled together. By "coupled" we sim- 
ply mean that certain circuit elements are common to two or more loops (see 
Section 13.4). The method for analyzing such circuits is to write down the following 
Kirchhoffs circuit equations: 

1. At any instant the sum of the potential drops around any closed circuit loop 
equals zero. 

2. At any node there is no charge accumulation, so the algebraic sum of the 
entering currents is zero at any instant. 

We can specify as many linearly independent equations as there are independent 
currents, and can then "solve" for all the desired currents. Of course, our equations 
will be linear differential equations, and their solutions may be complicated, but in 
principle their solution can be found uniquely if sufficient initial conditions are also 
specified. 

13.3 Time Domain Solutions 
We now treat circuits with step or impulse sources. These have transient solutions 
where the time dependence eventually decays to zero. We first treat RL loops, then 
RC loops, and finally RLC loops. 

13.3.1 Series RL Loop 

Let us now find an expression for the current I of the RL loop of Fig. 13.lb. 
Multiplying Eq. (13.7) through by the (integrating) factor e(RIL)r, we obtain 

that is, 

Integrating with respect to time, between times to and t, we have 

Calling the initial time the zero time (to = 0), we obtain the result 

I(t) = 1(0)e-(~ '~" + - &(t')eRr'lL dt' 
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Figure 13.2 The decay ofcurrent in an RL circuit if the 
voltage source is suddenly turned to zero. The time 
constant of the circuit is shown as t = LIR. 

It will be observed that this solution for I ( t )  has two terms: one independent of d,  
called the transient solution; and the other dependent o n  8, called the particular 
solution. If t % L / R ,  only the particular solution persists. The transient solution is a 
solution for the homogeneous differential equation (8 = 0) subject to the initial 
"condition" prevalent for the circuit a t  the fiducial time t = 0 .  The particular so- 
lution is one that simply satisfies the nonhomogeneous differential equation. 

If d = 0 in Eq. (13.9),  then current will exist in the circuit only if I(0)  = I ,  # 0 .  
Then our solution is: 

An exponentially decaying current is observed (Fig. 13.2) that decreases to  1/e o 37 
percent of its initial value in a time t = L / R ,  which is called the time constant of this 
circuit. (In three time constants, the current will have decayed to 
Io/e3 z 10/(2.72)3 z 1,/20 z 0.051,). This is the behavior that would be observed if 
the voltage across a n  electromagnet was suddenly changed to  zero. 

We now consider the source effects in an  R L  circuit. Let E = V,, a constant 
voltage, in Eq. (13.9).  We then obtain 

The grouping of first plus third terms on  the right will be recognized as a solution 
to the homogeneous equation L ( d l / d t )  + RI = 0 ,  subject to the initial condition of 
I(0).  It has the form I = Ae-(RIL)' ,  clearly of a transient character, where A = I(0) 
- Vo/R. The second term in I ( t )  is therefore the "particular" solution to the actual 
differential equation. If I(0) = 0 ,  so  no current is flowing initially, then I( t )  ap- 
proaches Vo/R exponentially, again with a time constant L / R .  Of course, for "long 
times" ( t  % LIR), I z Vo/R (see Fig. 1 3 . 3 ~ ) .  

Example 13.1 Source Effects in RL Circuits (d = V,) 

It will now be observed that if d is given by the rectangular shape (shown in Fig. 13.3b). 
perhaps obtained by opening and closing a switch in the circuit, then two cases are easily 
distinguished: LIR < T and L / R  $ T, where T is the period of switch action. These two cases 
are illustrated in Fig. 13.36. In the latter case the voltage across L in the circuit will eventu- 
ally oscillate about VJ2, the slope being approximately linear. In the former case the poten- 
tial difference across the inductor follows closely the input waveform. Thus, if one desires to 
reproduce a fast-rising pulse, one must take care to have as small an inductance as possible. 
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I / Line of initial slope 

Figure 13.3 (a) The buildup of current in a RLcircuit if a 
voltage source is suddenly turned on. (b) The top sketch is 
the emf in the RL circuit when a switch in the circuit is 
periodically opened and closed. The middle and bottom 
sketches are the voltages across the inductance when 
L/R g T and L/R 9 T. 

13.3.2 Series RC Loop 

The analysis for a series RC loop (see Fig. 13.4) is similar to that for an RL loop. 
The capacitance of the loop is now assumed to be concentrated in the capacitor. 

Figure 13.4 A series RC loop. 
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The inductance is deemed negligible, and the charge density is therefore assumed to 
change only at the capacitor. Since the sum of the potential drops around complete 
loop of the circuit must be zero, we have 

where q is related to I, by I = dqldt, meaning that when current flows as shown, q 
must increase. Thus we may also write Eq. (13.12) as 

which is identical in form to Eq. (13.7). We need merely make the substitutions 
L -+ R, R -+ 1/C, and I -, q in order to obtain the solution [see Eq. (13.9)]:  

where q(0) is the charge on the capacitor at the initial, or fiducial, time t = to = 0 .  
Again, we note the characteristic time, RC,  and the fact that q(0)e-'IRC is the so- 
lution of the homogeneous equation, whereas the other term contains the particular 
solution of the differential equation. 

If Q = 0 ,  q(t)  = q(0)e-tlRC. The charge on the capacitor decays exponentially, with 
the time constant RC. The current in the circuit is 

where Vc(0) = q(O)/C is the potential drop across the capacitor at t = 0.  
If &' = Vo, we obtain 

q(t) = q(0)e-'IRC + CVO(l - e-'IRC) (13.16) 

Example 13.2 Integrating and Differentiating Circuits-Analog Computers 

Circuits containing resistance and capacitance are often used in "integrating" or "differentiat- 
ing" signals. An integrating circuit is shown in Fig. 13.5~.  We suppose that the input signal, 
I, has fluctuations in times no longer than T, a characteristic time associated with I. If I 
were sinusoidal, T, would be its period. In the integrating circuit, RC = z must be chosen so 
that z $ T. Then Eq. (13.14) may be written 

q(t) = - &(t')e"iRC dt' 

In the interval (0, t )  such that t' t 5 T < RC, we have e"IRC z 1. Then the potential across 
the capacitor Vc = q/C is 

v ( t )  - = - b(t') dt' 
i C  Jd (13.17) 

The output potential difference is the integral of the applied input potential difference divided 
by the RC time constant in this approximation. It is valid for single pulses of time duration 
< RC. 

For a differentiating circuit, Fig. 13.5b, we observe the potential difference across the 
resistor rather than across the capacitor. Moreover, here we require the RC << T. Differen- 
tiating Eq. (13.12) with respect to t gives: 
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(b)  

Figure 13.5 (a) An RC integrating circuit showing an 
input step voltage and the integrated voltage across the 
capacitor. (b) An RC differentiating circuit showing a 
periodic rectangular input voltage and the differentiated 
voltage across the resistor. 

Multiplying by RC and taking VR = RI, we get 

Since 

then 
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Moreover, using RCIT < 1, we get 

the result desired for the "differentiating" operation. 
The results given in Eqs. (13.17) and (13.19) show that this RC network has the interesting 

feature that if a periodic voltage is applied to it, the resulting circuit behaves as an analog 
computer for appropriate RC and steady-state conditions. 

13.3.3 The RLC Loop 

We now suppose, as in Section 13.3.2, that we have a loop containing a capacitor C, 
but here the loop also has an inductance L, that cannot be neglected and a re- 
sistance R. The resistance R is to represent the total series resistance of the loop, 
including the wires and the sources of emf. The inductance of the loop L is a 
property of the whole circuit, but practically may be concentrated in special in- 
ductors made of wire coils. The resistance of these coils is included in R. The 
capacitor C is assumed to be loss-free-i.e., to have infinite resistance to the flow of 
current. The schematic representation of the circuit is shown in Fig. 13.6. 

At any instant of time, the sum of the potential drops around the circuit is zero. 
Thus we have the circuit equation 

With the relation I = dqldt, we rewrite this as 

which is a second-order, linear differential equation having constant coefficients. 
This is the equation of state of the single-loop circuit, and governs its behavior. A 
knowledge of q(c) [or 1(t) = dqldt] completely determines the electrical character- 
istics of the circuit. Since R, L, and C are constants, we can write Eq. (13.21) in 
operator form as 

where m, and m2 are constants given by 

Figure 13.6 A series RLC circuit. 



13.3 TIME DOMAIN SOLUTIONS 401 

and 

In terms of m ,  and m,,  it is well known, and may be verified by direct substitution, 
that the solution of Eq. (13.21) always has the form 

where k ,  and k2 are constants independent of t and q,(t) is any solution to all the 
parts of Eq. (13.21). It is the particular solution, whereas the first two terms repre- 
sent the solution to the homogeneous equation obtained from Eq. (13.21) by setting 
d = 0. The current in the circuit I = dqldt is 

The mathematical dependence of q on time will be unique only if the charge on 
the capacitor and the rate of increase of charge (or current) on it are specified at 
some instant of time; that is, t = 0. These conditions are called the initial conditions. 
We thus must specify q(0) = q, and I(0) - I, to determine k ,  and k ,  uniquely. 

We note that even though m ,  and m ,  are complex, q(t) and I(t) are real. This 
results because k ,  and k2 are also complex, but in such a way as to render the 
solutions real when the "initial conditions" [I(O) and q(O)] are real. Also we note 
that as long as R # 0 (so that u # O), the solutions have a part that is exponentially 
decaying away. Moreover, in the instance, when o is real (i.e, R 2 / 4 L 2  < IILC), the 
solution will have an oscillatory character associated with the decaying exponential. 
In the following examples, we discuss some special cases. 

- - 

Examples 13.3 Discharging of a Capacitor in an RLC Loop-Quality Factor 

We consider in this example a capacitor with an initial charge q(0) = q,.  It is to be short- 
circuited with a resistor and an inductance, as shown in Fig. 13.7a. The general solution of an 
RLC circuit is given by Eqs. (13.25) and (13.26). Since 8 ( t )  = 0 ,  then the particular solution 
q,(t) is zero. Moreover, since the current is zero right after the switch is closed and the current 
through inductors cannot change instantaneously, then I(0) = 0. Substituting q ,  for q(0) and 
0 for I(0) in Eqs. (13.25) and (13.26) gives 

where the star indicates complex conjugate. There are three special cases to consider corre- - - 
sponding to w being real, zero, and pure imaginary, that is, corresponding to l/LC >, =, 
< (RJ2L)'. 

(a)  Oscillatory Case (Underdamped). This case arises when w is real. Thus, to* = to, and 
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where 

The scripts Im( ) and Re( ) denote the imaginary and real parts, respectively, of the (com- 
plex) quantities in parentheses. Expanding the cosine fuction, we may alternatively write 

The current is given by I([) = dqldt, or 

If the resistance is small, so that u/w < 1, then 

q(t) z q,e-"' cos wt and I(t) z -gowe-"'sin wt 

This indicates that the current and charge are out of phase by 90°, with the current "leading" 
the charge by 90". Otherwise the current "leads" the charge by the phase angle 7x12 - 4, as 
shown in Fig. 13.7b. 

A measurement of the rate of decay of the oscillations is also given by parameters denoted 
as 6 and Q, called the logarithmic decrement and the qualityfactor, respectively. The logarith- 
mic decrement is defined as 

where T = 2n/w is the period of the oscillation. The quality factor is defined by the relation 

A small 6 is associated with a large Q, and it means that the oscillations die out slowly. 
We now present an alternative definition of Q, and hence 6, using energy considerations. 

We may note that in terms of the maximum magnetic energy, U =*LIZ, where I is the 
maximum current in any circle, 

or, from Eq. (13.31), AU/U = 1 - e-2d. For small 6, 1 - e-2a x 26; thus 

Thus, Q/2n equals the maximum energy stored divided by the energy loss in any given 
oscillation cycle. This definition is the most frequently used for the definition of Q. A "high- 
Q" circuit will perform many charge or current oscillations before dying out. The maximum 
energy stored in the circuit will be seen to vary as l2 - exp[- 2wt/Q]. Since the resistance of 
a circuit in which it is desired to have oscillations is often most directly associated with coils 
(of inductance L) placed in the circuit, one often refers to the "Q" of the coil, as this will give 
an upper limit to the Q of the circuit in which it is placed. A Q of approximately 2 or less will 
yield no oscillations, which brings us to case (b). 

(b) Critically Damped Case. As w + 0, meaning (R/2L)2 + l/LC, we may find the correct 
expressions for q(t) and I(t) from case (a), if we note that, in this limit, sin wtlw + t and 
cos wt -+ 1. Then 

q(t) = qOe-"'[I + at] and I(t) = - qo(u2t)e-"'. (13.34) 
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( c )  

Figure 13.7 Discharging of a capacitor in an RLC 
loop. (a)  Sketch of the RLC circuit. (b) Time 
behavior of the charge on the capacitor and the 
current in the RLC circuit in the oscillatory case. 
(c)  Time behavior in the critically damped case. 

This result is called a critically damped solution. Fig. 13 .7~  shows both I and q as a function 
of time. Note that this case corresponds to the case m ,  = m, = -a-that is, the second form 
of Eq. (13.25). 

(c)  Overdamped Case. In this case, which arises when w is purely imaginary, 

are all real quantities. Equation (13.25) now becomes 
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Differentiating q with respect to time gives the current 

Equations (13.35)  and (13.36)  indicate that the current and charge decay as the sum of two 
exponentials, one of which falls off more rapidly than e-"' and one less rapidly. The result is a 
falloff that is less rapid than in the critically damped case. In that case the falloff is at the 
maximum rate. By definition, j3 I a, so the current always approaches zero at t -+ co. 

Examples 13.4 Charging a Capacitor in an RLC Circuit 

In this example we suppose that a battery of constant output potential Vo is connected in 
series with an RLC loop, as shown in Fig. 1 3 . 8 ~ .  At time zero, when switch S ,  is closed, the 

( b )  

Figure 13.8 Charging of a capacitor in an RLC circuit. ( a )  
Sketch of the circuit. (b)  Time behavior of the charge on the 
capacitor. 

current will be zero, and we shall assume that the capacitor had no charge. Thus, the initial 
conditions are that I(0)  = 0 ,  and q(0)  = 0. The differential equation [see Eq. (13.21)]  for the 
circuit is, for t > 0 ,  

whose solution is given by Eq. (13.25) .  
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It is readily seen that we can set the particular solution equal to CVo: 

&I = CVo (13.37) 

The condition q = 0 and I = 0 at t = 0 can be easily applied to Eqs. (13.25) and (13.26); hence 

q ( 0 ) = k l + k 2 + C V o = 0  and I ( O ) = [ - a + i w ] k l - [ a + i o ] k 2 = 0  

Solving for kl  and k,, we find 

and k 2 = k : =  -- CvO ( 1 + i -  z )  (13.38) 
2 

We can then write k ,  = k = - Ikle-'@, where tan 4 = - a/w, and I k J  = ( ~ ~ ~ 1 2 )  d m .  
Then 

q(t) = -Ikle-a'[ei(a'+@) + e-  i ( w W 1  + cv0 

The time dependence of q(t) is shown in Fig. 13.86. Differentiating, we also find, after 
trigometric simplification, 

The first maximum in q(t) appears where I(t) = &that is, at wl = n. Since cos 4 = 

(1 + ( a / ~ ) ~ ) - " ~ ,  then 

If ct/w @ 1 ,  q,,,, z 2CV0. The potential difference across the capacitor can thus be as large as 
twice the applied emf. Therefore, capacitors in such circuits should have a voltage breakdown 
rating at least twice the applied voltage, Vo. 

13.4 Coupled Circuits 
So far we have only considered single loops. In  this section we consider circuits 
containing many loops coupled together. By "coupled" we mean that certain circuit 
elements are common to  two or  more loops. 

Circuits are called capacitively coupled when a capacitor is common between 
them. The circuit illustrated in Fig. 13.9 is capacitively coupled. Three currents-I,, 
I,, and I,-are shown. It is clear from the schematic drawing that two independent 

11 d 12 

Figure 13.9 Two circuits capacitively coupled. 
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currents are needed to characterize this circuit. In terms of these currents, which we 
choose to be I ,  and I , ,  we note, according to Kirchhoffs laws, that I ,  = I, - I , .  
We also note that the charge on the capacitor is related to I ,  by dqldt = I ,  = 
I ,  - I , .  There are two independent loops in this circuit. Because only two currents 
need be found, only two independent loop equations need be constructed. For the 
loop containing 8, R , ,  and C (labeled abda), we have from Kirchhoffs laws 

4  Q = R I I l  + 

For the loop containing R, ,  L ,  and C we have 

We have in both these "loop equations" taken our line integral (of potential dif- 
ference) in the direction of the currents as we expect them to flow. Thus one can see 
from Eqs. (13.41) and (13.42) that the two loops (currents I ,  and I,) are coupled via 
q/C. 

Two loops of a circuit may be coupled magnetically by means of a mutual in- 
ductance. The situation is schematized as in Fig. 13.10a, where M  is the coefficient 
of mutual inductance between two loops having self-inductances L ,  and L , ,  which 
are shown as lumped (ideal) circuit elements. Resistors R ,  and R ,  are shown to 
indicate that, in practice, resistance is usually present in the coupling elements. 

We seek the potential differences @(a) - Wb) and @(c) - Wd). (Note that these are 
in the same sense as the chosen currents.) Using Eq. (11.32) we write 

d l ,  d l ,  
@(a') - @(b) = L ,  - + M -  

dt dt 

Similarly, 

d l ,  d l  
@(c) - @(df) = L,  - + M -2 

dt dt 

where M  = M , ,  = M , ,  is the mutual inductance of the coils. The inductance M as 
written may be a positive or negative geometrical coefficient, depending on how the 
coils are coupled. Two cases are shown in Fig. 13.10b. In case A, when I ,  is increas- 
ing, the self-induced potential drop is from a to b. The mutually induced potential 
drop in the other loop is from d to c. This correlation is denoted by the solid dots 
placed on the circuit terminals. By study it should be clear that when both I ,  and I ,  
are increasing, counteracting induced emfs are generated (the fluxes oppose each 
other), so M  here is negative. In case B the fluxes reinforce each other and hence M 
is positive. To summarize, then, for the circuit in Fig. 13.10c, we would write 

dl1 dl2 @(a) - @(b) = R , I ,  + L ,  - - I M ( -  (1 3.45) 
dt  dt 

If either one of the current directions were altered or the sense of one of the 
windings were reversed, 1 MI would have appeared with a positive sign. Note that we 
express the potential drops "on each side" of the mutual inductance in the direc- 
tional sense of the currents as chosen-i.e.. in the sense in which we choose to 
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Case A 

(b)  

Case B 

Figure 13.10 Two circuits magnetically coupled via a mutual induc- 
tance. (a) Sketch of the loops. (b) Shows two different ways of coupling 
the loops, with cases A and B giving negative and positive mutual 
inductance, respectively. (c)  Convention for the sign of the mutual in- 
ductance using two dots. 

evaluate our line integrals. The self-inductance terms in the line integrals then ap- 
pear with positive signs. If we had written @(d)  - @(c) rather than @(c) - @(d), the 
terms on the right-hand side of the equation would have had opposite signs. 

13.5 AC Circuits-Frequency Domain 
13.5.1 Phasors-Kirchhoff's Laws for Phasors 

We have seen that the solution for the currents (or charge) flowing in lumped- 
constant circuits are obtained as solutions of linear differential equations with con- 
stant coefficients. In simple cases, where the applied emf's are constant, the solutions 
may be obtained without difficulty. A very important type of excitation, for which 
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the solutions are also easily obtained, is a sinusoidal excitation. Thus, for any loop 
of a circuit, 8 may have the forms do cos o t ,  8, sin o t ,  8, cos(wt + @), or 
go, cos wt + do, sin o t ,  all of which are described as sinusoidal since they differ 
only by a constant phase factor. The 8,'s are constant amplitudes. By "AC" we 
shall mean that the circuit excitations have this form: sinusoidal of angular fre- 
quency w (or f = 4 2 7 ~ ) .  

The reasons why ac circuit analysis is given such an important place in the study 
of electricity and magnetism lies in the fact that our electrical technology largely 
employs such excitations: It is easy to construct generators giving sinusoidal emfs. 
However, the importance of ac analysis transcends these reasons. Since, by Fourier 
analysis, any repetitive signal (excitation) may be decomposed in terms of sinusoidal 
components, if we understand the behavior of circuits for individual frequency com- 
ponents, we can understand their behavior for sums of frequency components, and 
thus for rather arbitrary repetitive excitations. The linearity of our equations ren- 
ders this feasible. Consider Fig. 13.6, which shows a single RLC loop driven by a 
single frequency source d = 8, cos of.  The differential equation describing the cir- 
cuit is 

This equation is real, and basically one is interested in solving it for I or q ignoring 
the initial transient solution caused by the closing of the circuit, which was discus- 
sed in detail in Section 13.3. However, the solution to this equation is most readily 
obtained by considering a differential equation identical to the original one except 
that the applied emf is put in complex form; that is, we associate with the complex 
emf 8ei"' such that Re($eiW') = 8, cos or. The steady-state solution of the complex 
linear differential equation will have a complex current and a complex charge, of the 
forms 

The true real current and charge are then obtained by considering the real parts 
only of the complex quantities via the relations 

I(t) = Re[i(t)ei"'] and q(r) = Re[Lj(t)ei"'] ( 13.49) 

If the emf source driving the circuit had the time dependence B = 6 ,  sin ot, 
instead of 8, cos o t ,  then we would still represent it by 8ei*'. However, in this case, 
the real current and charge in the various elements are calculated from the imagi- 
nary part of the respective complex quantities 

I = lm(iei"') and q = Im(Ljei'"') ( 1  3.50) 

If d = R, cos(ut + @,), then emf will be represented by 8ei'"'+@0', and the real 
current and charge are given by 

The reason for going to the complex plane is that the algebra becomes much 
simpler using a complex exponential than using the real trigonometric function. We 
would like to show now that this procedure is rigorous. Consider the complex 
function f = f ,  + ifi, wheref, andf, are real functions of the scalar variable t. If  & is a 
real operator, and 
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then y must be a complex function, and may be written as y = y, + iy,. This follows 
because, by definition, iff were real, y would be real. Thus we can 

S(y, + iy,) =.L + if. 
Since S is linear, S(y, + iy,) = S(y,) + iS(yi). Equating real and imaginary parts of the 
two sides of the latter equation yields 

which proves that this procedure is rigorous. 
The complex amplitude 8, i, and 4 may be interpreted as the complex entities 8, 

I, and q at t = 0. They are often called phasors. In order to have the correct so- 
lutions to the complex differential equations, certain relations must be obtained 
between these phasors. These relations are specified by the differential equations 
that I and q must satisfy. The essential nature of the relations between these phasors 
is seen by noting that the derivative operation dldt is equivalent (for complex sinu- 
soidal excitation) to multiplying by io. The equation for complex ac excitation is 

writing I = fei"' and hence q = Iliw, we find that 

Thus 

6 8 e i ~ ~  
I =  and I = ( 1  3.55) 

R + i ( w L - 3  

This result is similar to the dc relation I = &/R, except that the denominator, 
z = 8/f, is complex and called the complex impedance. The associated complex im- 
pedance of the present RLC circuit is 

where 

Z = = Jw and 
tan 4 = - Im(z) - wL - 1lwC 

Re(z) - R 
( 1  3.57) 

In terms of the impedance the real current is 

Using this current, we can also find that 

For the RLC circuit, 4 may lie anywhere between - 7112 and + x/2. If  - n.i2 I 4 
< 0, then (wL - l/wC) s 0, and the circuit is "capacitive." If 0 I 4 I 7~12, then (coL 
- 1 / d )  > 0, and the circuit is "inductive." If 4 = 0 the circuit is resistive. The terms 
capacitive, inductive and resistive imply that the circuit behaves like an RC, RL or R 
circuits, respectively. 
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With the voltage phasors for the various elements defined the differential equa- 
tions are transformed into complex algebraic equations relating the phasors. From 
the phasors, one can construct all the quantities of interest. This procedure may be 
described as Kirchhofs laws for phasors, and is analogous to the laws of dc circuits. 
Thus: 

1. Mesh law (voltage law): Around any closed loop in an ac circuit, the sum of 
the potential drop phasors must add to zero. 

2. Nodal law (current law): The sum of the current phasors into all points of an 
ac circuit must be zero. This is especially relevant at nodes of a circuit. (At a 
capacitor we can consider I as the current entering a terminal and dqldt as 
the current leaving that terminal, so the equation dqldt = I relates the charge 
on the capacitor to the incoming current.) 

13.5.2 The Mesh Law 

In order to facilitate the application of the mesh law, the potential-drop phasors for 
the different elements that may occur in any loop are now summarized. A resistor 
carrying a current I has the potential drop RI, and thus the "voltage" phasor, 
P = RI*, is associated with it. A capacitor into which a current I flows such that 
I = dqldt, has q/C for its potential drop and thus the voltage phasor P = d/C,  
which, using the relation i = iog, becomes P = i l i a c .  An isolated inductor of self- 
inductance L, that carries a current I has the potential drop L(dI/dt), and so the 
voltage phasor P = i o ~ j  is associated with it. Associated with any mutual in- 
ductance are two circuits. The potential drop in circuit k due to a current in circuit 1 
is given by hl = M(dl,/dt) and similarly I/;,= M(dl,/dt). Thus, the associated vol- 
tage phasors are I/,, = i o ~ l ,  and c, = iwMI,. 

The impedance was first introduced in Eqs. (13.56) and (13.57) with regard to a 
single RLC loop. Here we introduce and discuss the impedance between any two 
points in a passive linear circuit* through which a current flows. Because of the 
assumed linearity of the system, the voltage and current phasor will be linearly 
related, as follows: 

P= z i  (1 3.60) 

The quantity z is called the complex impedance. As a complex quantity, z may 
always be written 

z = R + i X  (13.61) 

where R, the real part of z, is called the resistance and X, the imaginary part of z, is 
called the reactance. We now summarize the results of the previous discussion in 
Table 13.2. 

Table 13.2 

Complex 
Element Impedance Impedance Reactance Voltage Phasor 

'That is, a circuit containing no sources of emf 
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Impedances are combined just like resistances, which follows from Kirchhoffs 
laws for ac circuits. Thus, if one has complex impedances z, and z , ,  their series 
connection yields the impedance z,  where z  - 2 ,  + z,, whereas their parallel con- 
nection yields l/z = l/z, + l/z,. 

With the concept of impedance, which has meaning only in the context of ac 
sinusoidal excitation at a particular frequency, one may state Kirchhoffs mesh law 
as follows: 

The sum of the applied emfs (phasors) around any ~ losed~loop C in a circuit must 
equal the sum of all the potential drops of the form, z l ,  once around the loop. 
Schematically, 

C S = C Z ~  ( 1  3.62) 

13.5.3 The Nodal Method 

Before we discuss the nodal method, we will introduce the current sources and the 
concept of admittance. Consider Fig. 13.1 la. The circuitry to the left of A and B can 
be represented by a simple ideal voltage generator and a series impedance. 
Inasmuch as we are solely concerned with what happens electrically to the right of 
A and B, this is always a valid procedure for linear, sinusoidal circuits. 

The fact of linearity means that the potential amplitude, P, must be related to i as 

where k ,  and k ,  are in general complex numbers that depend on what is inside the 
"box" whose exit terminals are A and B. Assuming that the devices inside the box 

Linear 
circuitry 

B 

Figure 13.11 (a )  Linear circuitry of single 
frequency w with an output current amplitude 
I^ and voltage amplitude P. (b) The represen- 
tation of the circuit in terms of an ideal voltage 
generator and series impedance (Thevenin emf 
and output impedance). 
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are not themselves disturbed in the measuring process, k, and k 2  may be determined 
by two measurements: 

1. Measure the potential drop across A and B when the terminals are open- 
circuited. Taking i = 0 in Eq. (13.63) gives 

2. Short-circuit the terminals A and B, and measure the current i that flows. 
Taking v = 0 in Eq. (13.63) gives 

Thus, substituting Eqs. (13.64) and (13.65) into Eq. (13.63), we obtain 

v=6-zi ( 1  3.66) 

This relation is easily symbolized as a zero-impedance generator of emf 6 in series 
with the impedance z,  as shown in Fig. 13.1 1b. The quantities 8 and z are called the 
ThPvenin emf and output impedance, respectively. 

In order to determine z and 6 from the schematic representations of an actual 
circuit, we need only calculate ( 1 )  the open-circuit voltage and (2)  the impedance 
seen looking into the terminals A and B of the box. In the latter case, we may 
consider all pure emfs inside the box to be replaced by wires of zero impedance. 

We note that we may write Eq. (13.66) as 

where 

6 I 9-- and Y E -  
z z ( 1  3.68) 

This may be schematically represented by the circuit in Fig. 13.12a, which is the 
"dual" of the Thevenin circuit shown in Fig. 13.12b. 3 represents an emf that 
produces a constant current amplitude 9. This is paralleled by y = l / z .  This is 
called the Norton equivalent circuit. The emphasis here is on the current rather than 
the voltage. When 6 and z are very large, such that .9 remains constant, then y -+ 0, 
and the current i = .3. 

Figure 13.12 (a) Norton equivalent circuit, which is the dual of ( h )  the 
Thevenin circuit. 
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The reciprocal of an impedance is called an admittance. If, between two points of 
a circuit, the complex impedance is z, then the complex admittance between these 
points is given the notation y, and 

Since z is in general complex, so is y, and we may write 

The quantity G is called the conductance, and B is called the susceptance. 
The admittance is specially useful when the nodal equations (Kirchhoffs nodal 

law) are used to analyze a circuit, since the current phasor I^ is related to the voltage 
phasor across an element P by I^ = yP. Thus, for elements in parallel, having ad- 
mittances y ,  and y,, one has the nodal relation = i ,  + i, = ( y ,  + y,)P, which 
may be simpler to manipulate algebraically than the equivalent relation employing 
the 2's. Admittances combine like capacitors. Thus, for two elements in series, with 
admittances y ,  and y,, one has for the total admittance y, = y,y,/(y, + y,), whereas 
for parallel elements y, = y ,  + y,. 

The definition of a current source is now reiterated using the admittance termi- 
nology. In Eq. (13.67) we see that i equals the short-circuit current across A and B, 
and y the admittance looking into A and B when all current sources are replaced by 
infinite impedances. 

Example 13.5 The Nodal Method 

We apply Kirchhoffs nodal law to the circuits of Fig. 13.13a and 13.13b. Consider node 1 in 
Fig. 1 3 . 1 3 ~ .  The current i in the circuit shown is 

Taking the voltages at nodes 1 and 2 to be v, and p2, respectively and using i = y v ,  this 
relation between the currents becomes 

where the admittance, associated with R is y ,  = I/R and that associated with C is y, = iwC. 
Since PI = 8, and taking v, = 0 gives i = b,(l /R + iwC). Using Eqs. (13.48) and (13.49) to 
calculate the real current gives 

where 

Figure 13.13b shows a circuit with more than one node. T o  analyze it using the nodal method 
we replace the voltage source by a current source, calculate the corresponding admittances of 
the different elements, and assign voltages to  the various independent nodes, as shown in Fig. 
1 3 . 1 3 ~ .  Then we write 
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A 

v, v2 - 
9 

Y3 

b I 
A 

v3 

( c )  

Figure 13.13 (a)  and (b) Circuits for demonstrating Nodal 
method analysis. (c) The Norton equivalent circuit of (b).  

Taking p3 = 0 (reference voltage) we obtain 

i = Y, PI + y2(P1 - P2) 

= ~ 2 ( ~ 2  - + ( ~ 3  + ~ 4 1 %  

These equations are algebraic and hence can be easily solved for the various voltages. 

13.6 Power in AC circuits-Impedance Matching 
Of primary importance in practical circuit considerations is a knowledge of the 
electric work that can be done by a source of emf or the energy absorbed by (the 
work done upon) elements of a circuit. The general situation is described rather well 
by assuming we have a source of emf, 8, applied between the terminals of some 
circuit, called the load (as shown in Fig. 13.14). We assume that B is given, and that 
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Figure 13.14 A schematic diagram of an AC 
source of emf showing its internal impedance 
and a load connected to it. 

A 

4 
@ A B  

B 

a current 1 flows into the load. We may take d as simply equal to the potential drop 
across the terminals to the load, a,, = V(t). 

The instantaneous power that flows from the source to the load is given by 

Load 

This is the rate at which work is done by 8. Stating i t  otherwise, the rate at which 
energy is absorbed by the load is given by 

In general this quantity may be positive or negative; that is, energy flow may be into 
or out of the load. In particular, for sinusoidal ac excitations, we may write 
V(t) = Vo cos o t  and 1(t) = 1, cos(wt - 4). If the load is characterized completely by 
a resistance R and reactance X (that is, by an impedance z = R + iX), then 4 is 
given simply as tan-'(XIR), and lo is equal to Vo/Z, where Z = (21. In any case, 

P(t) = Vo lo cos o t  cos(ot - 4) (13.73) 

Clearly if 4 = 0 (that is, if 1 and V are in phase), then P 2 0. On the other hand, if 1 
and V are out of phase by x that is 4 = x, then P 10. 

Time-averaged quantities are often of greater practical significance than the 
values the quantities have at any given instant. Over a period of time of length T 
(defined from t = 0 to t = T), the time average of a function f(t) is defined by 

For sinusoidal functions, if T represents one period, T = 2n/w, the average over an 
interval T will be independent of the starting point of the interval. Moreover, the 
average for time intervals large compared to T will be given to good approximation 
by Eq. (13.74). Thus, the time average power for sinusoidal ac excitation is given by 

(P) = (V(t)l(t)) = - V(t)l(t)dt t SoT 
Setting V(t) = Vo cos o t  and 1(t) = 1, cos(ot - 4) gives 

(P) = -- YO lo /02'cos o r .  cos(ot - $)d(ot) 
2n 

Expanding cos(ot - 4) and noting that 

Jo2~os(ot)sin(ot)d(wt) = 0 and ~02ncos2(ot)d(ot) = n 
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we obtain 

vo 10  
(P) = ---- 2 cos (b 

The quantity cos (b is called the power factor of the impedance or load. The average 
power absorbed by the load will thus be positive or negative depending on the 
phase angle (b between V(t) and I(t). We can see from Eq. (13.76) that if loads have 
no resistance, that is, if they are purely inductive or purely capacitive (or purely 
reactive), then the power factor is zero. The effective impedance of such a load is 
given by z = iX, and tan 4 = Im(z)/Re(z) + f co. Therefore, 4 + f 4 2 ,  and 
cos 4 = 0. A load will be purely reactive only if it is composed of inductors and 
capacitors alone, having zero resistance. If the load has nonzero resistance, as is 
usually true (for nonsuperconductors), then cos 4 > 0, and power will be dissipated 
in this resistance. 

It should be noted that in Eqs. (13.71) to (13.76) we have used real quantities to 
calculate power or average power. It is not valid, for example, to say that 
P(t) = V(t)I(t) if V and I are complex, and obtain the real power by taking the real 
part of P(t). This follows because, for complex numbers z, and z2, 
Re(zlz2) # Re(z,). Re(z2). However, we can find formulas, generally valid, that per- 
mit us to calculate the average ac power from the complex amplitudes V and I. 
Consider the product VI*, where I* is the complex conjugate of I :  

VI* = (Iz)I* = 1 I12z = 1 II2[R + iX] 

Since I I I = I,, then Re[VI*/2] = (P) = 91; R. Thus 

1 1 
(P) = - Re(VI*) = - Re(V*I) or (P)  = Ih ,R  2 2 

(13.77) 

where I,,, = I,/$ and rms stands for root mean square. It is useful to observe that 
in solving for the currents in ac circuit problems, we may indeed interpret the 
complex amplitudes, P, 8, and f so that their absolute values represent root mean 
square (rms) values. We then call these quantities rrns phasors. We need only note 
that the relation P = zf implies I PI = Zl f 1. Also the fact that I PI = Vo = 

~ l f l  = ZI, implies that I/,,, = ZI,,,. Since either of these relations implies the 
other, we may use either interpretation in working a problem. Of course, all the 
complex amplitudes in a problem must have the same interpretation. 

As mentioned above, an ac source of emf always has some impedance associated 
with it, and it may be schematically represented as in Fig. 13.14. It is of interest to 
consider the conditions under which maximum power may be expended in the load, 
which we represent by the impedance z, = RL + X,(z, might represent a factory, a 
motor, a loudspeaker, a toaster, etc.). Power enters the load through terminals A 
and B, and z may represent the generating station and the electric lines leading to 
the terminals. The average power delivered to z, is given by 

Substituting for z and z, in terms of their real and imaginary parts gives 
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Each of the terms in the denominator is positive definite. It is obvious that if X  = 

- X , ,  the average power will be maximized with respect to variations of the circuit 
reactances. Thus if X ,  is inductive, we should make X  capacitive. If we can make 
X  + X L  = 0, then 

If we can only adjust R  while keeping RL fixed, ( P , )  will be maximized by letting R  
be zero, since this minimizes the denominator. If, however, R is fixed and we can 
vary RL,  it may be seen that ( P , )  will be maximized if RL = R. If RL is too large, 
not enough current flows; if R, is too small, the power gets dissipated in R. When 
RL = R, the power dissipation is equalized in the source and load impedances. 
Under optimum conditions the load is said to be "matched" to the source. The 
condition for impedance matching is 

X = - X L  and R = R ,  or z = z Z  (1 3.80) 

13.7 Resonance in AC Circuits 
13.7.1 Series Resonance 

Series or parallel combinations of inductance, capacitance, and resistance appear 
often in ac circuits, and knowledge of their behavior is basic to the analysis of ac 
circuit properties. We discuss first the series combinations of these elements and 
what is called series resonance. As in Fig. 13.6, we assume a voltage amplitude P t o  
appear across the series combination. If the frequency of excitation is w, the current 
amplitude will be given by Eq. (13.55); that is, 

This equation can also be written in a polar complex form 

where 

w2LC - 1 
Z = [ R 2  + ( L .  - ) 2 ] 1 ' 2  and tan 4 = (13.82) 

w C R  

A discussion of any circuit is based upon what happens to the currents (or vol- 
tages) in its components as the circuit parameters are varied. In the present case, 
these parameters are the impedance elements R, L, and C and the excitation fre- 
quency w. We note that when the reactance X  is zero, then 

The circuit at this frequency is said to be in resonance. The frequency w = w, is 
called the resonance frequency of the circuit. 

We now discuss a few features of a resonating circuit. 
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Phase of Current. At resonance, z becomes equal to R and hence tan 4 = 0. Thus 
I,,, attains its maximum value with respect to variation of X, and the current ar d 
applied potential are instantaneously in phase. 

The Voltage Across the Capacitor and the Inductance. Using Table 13.2 we write 
PL = i o ~ f  and PC = f/iwC. Writing f = P/R and using the quality factor at res- 
onance, Q, = o,L/R = (w,RC)-' [see Eqs. (13.32) and (13.83)], we obtain 

P L = i ~ , P  and P C = - i Q o P  (13.84) 

At resonance the complex voltages across L and C are 180" out of phase, and so 
cancel each other, but their real individual amplitudes are Q, times as large as the 
applied voltage amplitude. 

The Energy Stored in the Circuit. The instantaneous energy stored in. the inductor 
is given by Eq. (12.5) and in the capacitor is given by Eq. (6.44). Thus the total 
energy stored is 

The current in the circuit is easily calculated by multiplying Eq. (13.81) by ei"' 
and then taking the real part: I(t) = I, cos(ot - 4), where we have taken the phase 
of P to be zero at t = O(I P I  = V,). The charge is similarly calculated as 
q(t) = q0 sin(wt - d), where I, = Vo/Z, and q, = I,/w = V,/Zo. Therefore 

At resonance, we have Z = R, I = Vo/R, and q, = I,/o,; hence the amplitudes of 
the sine and cosine become equal: qg/2C = 1;/(2Cw;) = 4LI;. Thus the total energy 
stored at resonance becomes 

which is constant, and oscillates between being stored in the magnetic field (in the 
inductor) and in the electric field (in the capacitor). 

Because of the presence of a resistor in the circuit, energy is lost at a rate of 
(P) = RIf,,. Thus the energy lost per cycle is 

AU = RI&,T (1 3.88) 

At resonance, the ratio of the maximum instantaneous energy stored to the energy 
dissipated in one cycle is obtained by dividing U by AU [see also Eq. (13.33)]: 

where Q, is the quality factor at resonance. Thus, as was stated before, a circuit with 
a large Q, dissipates a small amount of energy per cycle compared to the stored 
energy. 

Frequency Dependence of the Circuit. The frequency dependence of the circuit can 
be studied by studying the frequency dependence of the current. We first write it in 
terms of Q, and x = w/o,; that is, 
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Higher Q, 

( b )  
Figure 13.15 Frequency behavior of a series RLC resonance 
near the resonance frequency. (a) Current showing the bandwidth 
of the resonance. (b) Phase angle. 

where j, = PIR. The shape of the function is primarily dependent on the parameter 
Q,. If Q, is small ( 4  I), f changes only slowly with x. If Qo $ 1 , j  becomes appreci- 
able only when x z 1-i.e., near resonance. 

The average dissipation of power in the circuit is equal to Rlf,,. Using 
I,,, = (l/Z)Kms gives 

RVfms - ( P )  = - - V,Z,sIR 
z2 

1 + [Q,(x - ;IT 
Figure 13.15 shows ilj, as a function of x. As a function of frequency, (P) is 
greatest when x = 1 .  It falls to one-half its maximum value when Qo(x - l/x) = + 1. 
This defines two frequencies o+ and o-, whose corresponding values of x are given 
by x +  and x - :  
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The bandwidth of the resonance curve is defined as 

Q, is thus seen to be equal to the reciprocal of the relative bandwidth. A circuit with 
large Qo is selective; that is, it has a sharp resonance 

Quality Factor Away from Resonance: Inductive and Capacitive Circuits. The 
energy in the circuit at any time is given by Eq. (13.86): 

The value of U fluctuates in time, except at resonance, when x = 1 (as was shown 
above) and the maximum value of the energy Urnax is given by the maximum electric 
or magnetic energy depending on whether x < 1 or x > 1, respectively. If x < 1- 
that is, at frequencies lower than the natural frequency-the first term on the right- 
hand side of Eq. (13.93) has a larger maximum than the second term, and the circuit 
is called capacitive. In this case, Urn,, = LIfmJx2 = q;/2C. Since AU = RIfm,T, then 

Taking Urns JAU to be equal to Q/2n, where Q is the quality factor, gives an ex- 
pression for Q: 

1 
Q = -  (capacitive) (13.94) 

oRC 

If x > 1 (that is, at o > o,) the circuit is inductive and Urnax = L I ~ , .  Thus 

Equating UmsJAU to Q/2n gives 

o L  
Q = - (inductive) (13.95) 

R 

The Q of any circuit is thus defined by 2n(Ums JAU). The Q of an inductance is 
thus defined as wL/R, where R is its resistance, and the Q of a capacitance is defined 
by l/wRC. The inductance is presumed to be inductive and the capacitance to be 
capacitive. (One must be warned, however, that at very high frequencies inductors 
may become capacitive and capacitors inductive). 

The selective frequency property of the resonant circuits makes them useful as a 
kind of filter (see Fig. 13.16). In this use one often "tunes" the circuit by adjusting 
the capacitance C. Resonance is achieved when C = l/02L, where w is the fre- 
quency that is to be emphasized. In Fig. 13.16, if Q is large at frequency o ,  only 
signals lying in the range Ao  x o/Q, (around w) [see Eq. (13.92)] will be passed 
strongly to the (high-impedance) amplifier. 

It is interesting to remark that for "high-Q" circuits, the resonance frequency is 
approximately the natural oscillation frequency of the circuit [see Eq. (13.24)]. In 
the latter case, 
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l nput 

V(w)  ~ ' f  Output 

0 
I 0 

Figure 13.16 A filtering circuit. 

A high-Q circuit resonates when the exciting frequency is approximately equal to its 
natural frequency. One then has a "reinforcing" condition on the circuit that allows 
it to build up large oscillations, the energy being injected into the system in phase 
with its free oscillation frequency. This is perhaps the most characteristic aspect of 
resonance. In the limit as R + 0, and if the applied emf continually supplies energy 
to the circuit, the oscillations will grow indefinitely. In a superconducting LC circuit, 
oscillations may indeed persist very long times without any energy being fed into 
the circuit. 

13.7.2 Parallel Resonance 

Rather than elements R, L, and C in series, one often encounters a configuration 
similar to that in Fig. 13.17, where a voltage Vo cos o t  is applied to an inductor and 
capacitor in parallel. The resistance R will commonly be associated with the in- 
ductance, as shown. A resistance in the branch of the circuit having the capacitor is 
omitted here for simplicity and because it is often negligible in practice. 

Some aspects of the behavior of this circuit can be understood qualitatively. If R 
is small, we effectively have an inductance and capacitance in parallel. The current 
iL in the inductance, lags behind the impressed voltage by 90", whereas the current 
I ,  through the capacitance leads the impressed voltage by 90". If the admittances 
l /wL and wC for the two branches differ, the total current i = 1, + 1, will pass 
mostly through the larger admittance. Since from Table 13.2 we find that 
1, = iwCP and I*, = P l i o ~ ,  then 

If the admittances were equal, o C  = l / o L ,  then ic = -f, and = 0 and the circuit 
exhibits what is called parallel resonance. The impedance presented to terminals AB 
under these conditions is infinite. This is to be contrasted with the series RLC 
circuit, whose impedance would approach zero for the same conditions. 

To calculate the current in the circuit when R is not negligible, we calculate its 
total admittance y. The admittances of the resistor and the inductor are 1/R and 

Figure 13.17 A parallel resonant circuit. 
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IliwL. Since they are in series, then their total admittance is y, = 1/(R + iwL). The 
admittance of the capacitor is y, = ioC. The complex total admittance y is cal- 
culated by adding these admittances in parallel: 

and the current in the circuit is 

We will now discuss some properties of the circuit using the details of y. Res- 
onance for a parallel RLC circuit as here discussed is not so unambiguously defined 
as for the series case. We have three situations to consider. 

Phase Resonance. What is called phase resonance occurs when y becomes real, so 
that 4 = 0 and the current and voltage are in phase. From Eq. (13.97) this occurs 
where x = 0 (trivial case), and when 

where x = w/w,. By the resonance condition, we shall usually refer to the phase 
resonance. 

Antiresonance. What is called antiresonance occurs when 1 yl is minimum, and thus 
Ijl is also minimum (if V, is constant). In this case we find 

when we minimize with respect to x (or frequency) alone. 

Simultaneous resonance and antiresonance at high Q,. If Q, > 10, then x, and xb, 
which are given in Eqs. (13.98) and (13.99) and define the resonance and antire- 
sonance cases respectively, become nearly unity to within 0.5 percent. Hence both 
cases coincide within 0.5 percent. 

The filtering property of series and parallel circuits means, for example, that if 
Q ,  S 1, frequencies differing "significantly" from the resonance frequencies will not 
be "passed" by the series circuit or "blocked" by the parallel circuit. The range of 
frequencies passed or blocked will be within a range of approximately oo/Qo. If 
Q, S 1, the "bandpass" or "band stop" will be relatively narrow (Ao/o, 4 1). See 
Examples 13.6 and 13.7 for some applications of resonant circuits. 

We must emphasize, finally, that in discussing resonant circuits, we have assumed 
that a constant voltage amplitude Vo was applied, and therefore the current was 
determined 'by the admittance of the circuits. In practice, we may not have such a 
constant voltage supply, in which case the response of the circuit may be quite 
different. 

If we had a constant current amplitude rather than a constant voltage amplitude, 
the series circuit would not show resonance curves at all for the voltage amplitudes 
across the capacitor or inductor (see Problem 13.22). The parallel circuit in contrast, 
would produce very large voltages across it at resonance, with a resonance curve 
like that of the series circuit for current (see Problem 13.22). In any case, our im- 
pedance and admittance expressions are valid, and there is no difficulty in applying 
our knowledge to specific problems, remembering that parallel resonance implies 
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a high impedance, and series resonance, a low impedance (between the input 
terminals). 

Example 13.6 Resonant Circuits 

Consider the RLC circuit shown in Fig. 13.18. The inductors and capacitors are ideal and 
lossless. The voltage source is 8 = Vo sin wt, where w = I/@. In order to analyze the 

Vo sin wt 

Figure 13.18 Multiloop resonant circuit. 

response of this circuit we use KirchhotT's phasor laws for the three loops using the assigned 
currents; that is, 

After dividing the first and second equations by iwL and utilizing the relation w2LC = 1, we 
get 

Multiplying i3 - 1, by ei"' gives the complex current in the resistor. Because the voltage 
source has sin u)t time depen,dence, then the imaginary part of this complex current gives the 
real current in the resistor; that is, 

I 3  - I~ =-sin v0 . ( wt - - ;) -- - i F  cos wt 
wL 

We observe that the current in the resistor is independent of the resistor itself and 90" out of 
phase with respect to the generator. 

It is interesting to calculate the power supplied by the source. One way to calculate it is by 
use of the complex amplitudes of the current that passes through it and the voltage across it, 
as follows: 

Example 13.7 Filters-Resonant Circuits 

The general class of filters is too complicated to study systematically in an example, but there 
is a special class that can be treated here. In this class the elements are purely reactive (ideal 
capacitors and inductances). Consider Fig. 13.19a, which shows n stages of series/parallel 
elements in the form of a T filter. Figure 13.196 shows the single stage from which the filter is 
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(a)  ( b )  

Figure 13.19 Schematic diagram of multistage filters. (a) The filter. (b) The building T block of 
the filter (one stage). 

built. The complex impedances z1 and z2 represent those of a capacitor and an inductor or of 
an inductor and a capacitor respectively. 

For the Kirchhoffs set of loop equations we obtain 

One can show by substitution that the currents in the various loops are given by 

where 

Capital Z is used to indicate the magnitude of the complex impedance. In general y can be 
complex even though cosh y is a real quantity. That is, in general we have y = a + ib, where a 
and f l  are real. Using the expansion 

cosh y = cosh(a + i j )  = cosh a cos f l  + i sinh a sin f l  = real quantity 

one can show that Eq. (13.102) can be satisfied if y is pure imaginary; that is, a = 0: 

y = i b  a = O  (13.103) 

or is a coqplex quantity whose imaginary part is multiples of n: 

y = a + inn where n is an integer (13.104) 

Upon the substitution of these expressions for y in Eq. (13.101) one can see that the current 
corresponding to the two expressions are drastically different. Whereas for y = ib the solution 
is oscillatory in nature and suffering no decay, we observe that for y = a + inn the solution is 
a decaying one. Which solution is applicable to a given problem depends on the magnitude of 
Z1/Z2. If Zl/Z2 I 2, the oscillatory solution is applicable. On the other hand if Z1/Z2 2 2, 
the decaying solution becomes applicable. Since Zl/Z2 depends on the frequency of the 
source, the response of a given circuit is expected to have a frequency region in which an 
oscillatory solution is applicable and another region in which a decaying one is applicable. 
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Let us first study the nature of the two regions. When y is pure imaginary, then 

The second term represents a sinusoid current of amplitude B that flows from the source to 
the termination unattenuated and has phase shift for each stage of the filter. The first term, 
on the other hand, flows from the termination to the source (reflected current). If now A and 
B are real and equal we have 

I ,  = 2Aeiw' cos mB 

which is just a standing wave. If, on the other hand, A = 0, the filter has the property of a 
delay line with a frequency-dependent delay mp. 

In the second type of solution, we have y = a + inn, with a > 0, and 

This case corresponds to two sinusoidal current waves, in which the second is attenuated by a 
factor e-" for each stage to the right and the first is attenuated by the same factor for each 
stage to the left. If now A = 0 (no reflected wave), the filter has the characteristic of an 
attenuater with the total attenuation e-"". 

Let us now analyze two specific filters. In the first we take z, = iwL and z2 = - i /wC,  as 
shown in Fig. 13.20. In this we h a v ~  cosh y = 1 - w2LC/2.  For w 2  < 4/LC, y can only be 

L L L 

C == C == C == 

Figure 13.20 Schematic representation of a 
portion of a low-pass filter. 

-a L 
(b )  

Figure 13.21 Frequency behavior per stage of a 
low-pass filter. (a) Attenuation. (b) Phase Shift. 
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pure imaginary: y = iP with cos P = 1 - w2LC/2. This solution is called the passband so- 
lution, since it propagates without attenuation. For w2 2 4/LC, y can only be of the form 
y = a + inn with cos a = w2LC/2 - 1,  and the corresponding solution is called the stop-band 
solution since the current gets attenuated. Since this filter passes only frequencies less than m, then it is called low-pass filter. Figure 13.21a shows the attenuation per stage of this 
filter as a function of frequency, while Fig. 13.21b shows the phase shift per stage as a 
function of frequency. 

Figure 13.22 Schematic diagram of a portion 
of a high-pass filter. 

-K 

( b )  

Figure 13.23 Frequency behavior per stage of a 
high-pass filter. (a)  Attenuation. (b) Phase shift. 

In the second example, which is shown in Fig. 13.22, we take z ,  = -i/wC and z, = iwL, 
and consequently we have cosh y = 1 - 1/2w2LC. For w2 > 1/4LC, we have u = 0, cos ,!I = 1 
- 1/2w2LC, and the corresponding solution is a high-frequency passband solution. On the 
other hand when w2 < 1/4LC, we have P = nn and cosh u = 1 - 1/(2w2LC), and the solution 
is a low-frequency stop band. Figure 13.23a shows the attenuation and Fig. 13.236 shows the 
phase shift per stage of the filter as a function of frequency. 

If one is interested in a filter that passes only a band of frequencies, it is then obvious that 
a combination of low-pass and high-pass filters should be used. Such a bandpass filter is 
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shown in Fig. 13.40, in conjunction with Problem 13.25. We leave the analysis of this filter as 
an exercise. 

Example 13.8 Resonance in Other Branches of Physics 

"Resonance" equations, having the character of Eq. (13.92) occur in many branches of 
physics, as you will soon discover. This equation can be written as 

Now, we remember that L/R has the dimensions of time, and in fact is the time AT, during 
which the energy in afreely oscillating RLC circuit decays to l/e of its initial value. [See Eq. 
(13.10).] Thus 

The "lifetime" of the circuit times its "frequency width" is equal to  unity. In quantum 
physics, we learn that a frequency times the constant h (that is, hw), is interpreted as a 
quantum of energy. The above relation may then assume the form: 

This is a form of the famous Heisenberg uncertainty principle. As an example in nuclear 
physics, AE might represent the width of a "resonance" or "energy" level, and AT might 
represent its "lifetime." In fact, a famous formula used in nuclear physics is the Breit-Wigner 
formula: 

which gives the behavior o r  "wave function" $ of an unstable energy level as a function of 
energy E where Eo is the energy of the center of the level, and l- is a constant measured in 
energy units. The analog to this expression in our study of resonance is 

Near the resonance, 

Then 

v / l \  i z for ~w - wol < wo 
. . r 2 ( ~  - O,)I 

Both expressions have the same form. Interpreting frequencies as energies, i is thus like the 
wave function of a level. It  determines how the "system" acts! 

13.8 Summary 
In this chapter we have considered electric circuits that contain elements that store energy, 
such as inductors and capacitors. The analysis is based on the quasi-static equations of 
electromagnetism. Two types of excitations will be treated: sources of constant step voltages 
(dc) and sources of sinusoidal voltages (ac). In the former the response is calculated in the 
time domain, and in the latter it is calculated in tFe frequency domain. 
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For the dc case, the current in the circuit is a slow function of time, and can be determined 
by applying Kirchhoffs circuit laws. The voltage, current or charge are instantaneously 
related in the case of R, L, and C and mutual inductance M as follows: 

For an RLC circuit driven by a voltage source &(t) we have 

If C + oo, the circuit reduces to an RL circuit, where as if L = 0, the circuit reduces to an RC 
circuit. For a multiloop circuit one gets a set of coupled differential equations. The solution of 
this equation or those of other circuits has in general steady-state solution (particular so- 
lution) plus a transient solution corresponding to the solution of the equation with I ( t )  taken 
zero (homogeneous solution). The initial conditions are then used to determine the arbitrary 
constants of the homogeneous equation. The solution is oscillatory if w2 = 1/LC - R2/4LZ 
> 0 and also decays in time with R/2L decay constant. If wZ = 0 or < 0 the solution is 
nonoscillatory, corresponding to the critically damped and the overdamped cases, respec- 
tively. A measure of the rate of decay of the oscillations is the Q of the circuit, given as 
follows: 

In an ac circuit the voltage source is sinusoidal, of the form &(t) = I, cos(wt + 4). If one 
represents I, I, and q in complex form 

where 8, 1, and 4 are phasors independent of time, then the voltage, current, and charge 
relationships for the various elements become 

i V'= R ]  Vc =- V, = i w ~ i  VM = i u ~ i  (Table 13.2) 
iwC 

The quantities R, l/iwC, iwL, and iwM are referred to as the impedances of these elements: 
z , ,  z,, z ,  and z,. Impedances add just like resistors. The overall impedance z of a circuit is 
defined via the relation 

In terms of the phasors, the differential equations of the circuits transform into algebraic 
equations, which can be solved simultaneously if the circuit contains more than one loop. In 
fact, one can write these algebraic equations directly by applying Kirchhoffs mesh and nodal 
laws to the phasors themselves; that is, 

c2 = czi ci = o 
The reciprocal of an impedance, called an admittance, along with the concept of current 
sources replacing the voltage sources are at the heart of the implementation of the nodal 
method (Norton equivalent circuit). 

Of primary importance in circuit considerations is a knowledge of the electric work that 
can be done by a source of emf or the energy absorbed (work done upon) elements of a 
circuit. The instantaneous power that flows from the source to the load is given by 

Also the power absorbed by the load is given by 

P(t) = V(t)l(t) 



PROBLEMS 429 

where it is understood that all quantities used in these expressions are real. For ac circuits we 
may write V(t) = Vo cos wt and I = I, cos(wt - 4). In this case the time average value of P is 

1 
(P) = - IOVO cos 4 

2 

where cos 4 is called the power factor. For loads that have no resistance cos 4 = 0, and for 
loads that have a resistance cos 4 > 0. The quantities 1,lfi and v0fi are called the root 
mean square or the effective value of the respective quantities. In terms of complex quantities, 

1 1 
(P) = - Re(l*V) = - Re(V*I) 

2 2 
(13.77) 

Series or parallel combinations of inductance, capacitance, and resistance appear often in 
ac circuits. As a function of frequency, a series combination exhibits a resonance near 
w = w, = @, where the impedance of the circuit goes through a minimum and the 
current goes through a maximum. The sharpness of the resonance is given by the quality 
factor Q, defined above as 

where [Awl is the full width at half maximum of the response (bandwidth). A parallel circuit 
also exhibits resonance at w, = I/-, but with z being a maximum and I, being a mini- 
mum. This, however, is often called antiresonance. If the phase 4 in parallel circuits goes 
through zero at some frequency, then the circuit exhibits what is called phase resonance. At 
high quality factors both phase and antiresonance occur simultaneously. 

Resonant circuits are of practical importance because various filters are based on them. 

Problems 

13.1 Consider the RL circuit shown in Fig. 13.24. A voltage pulse V is applied to the 
circuit: V = 0 for t < 0, V = V, for 0 < t < T and V = 0 for t > T. (a) Use Kirchhoffs 
voltage law to write an equation for the current in the circuit. (b) Determine the 
current in the circuit for 0 < t < T. (c) Determine the voltage across the inductance 
for 0 < t < T. (d) Determine the voltage across the inductance for t > T. 

Figure 13.24 An RL circuit driven by a voltage 
pulse. 

13.2 Determine the response of an RL circuit driven by a voltage source V = Voe-R'lL for 
the case where the initial current in the circuit is zero, and when it is I,. (When the 
driving voltage has the same form as the natural behavior of the circuit, the pheno- 
menon called resonance appears.) 

13.3 The circuit shown in Fig. 13.25 is composed of a capacitor C, a resistor R, and an 
inductance L = 2R2C. At time t = 0, the charge of the capacitor is Q, and there is no 
current passing through the inductance. (a) Using the notations in the figure write 
down Kirchhoffs loop equations for the LC and RL loops. (b) Write down 
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Kirchhoff's nodal equation at node a. (c) Show that the charge of the capacitor at a 
later time Q = Qoe-kt(cos kt - sin kt) where k = 1/2RC. 

13.4 The RC network of Fig. 13.26 has the interesting feature that if any periodic source 
[that is, f (t + T) = f (t), where T is the period] is applied, the resulting circuit behaves 
as an analog computer for appropriate RC and steady-state conditions. Take 
R = 2 kR and C = 0.05 pF. (a) Determine Vc for one period for a source of square 
wave of angular frequency 2 x lo4 Hz. (b) Determine VR for one period for a source of 
a triangle wave of frequency 10' Hz. 

I ( t )  
Figure 13.26 

13.5 A capacitor with an initial charge qo is discharged through an inductance. If the 
current in the circuit is I = 86.6q,e-5t sin (86.6t). (a) Determine the quality factor 
of the inductance. (b) If the resistance of the inductance is 0.1 R, determine its inductance. 
(c) Determine the fractional energy loss in one cycle. 

13.6 A coil of inductance L and resistance R ,  is connected to a battery of voltage V,. A 
resistor R, is connected parallel with the coil. If L = 10 H ,  R ,  = 100 R, and 
Vo = 20 V, determine what R, should be in order to prevent the voltage across the 
coil from rising above 100 V when the battery circuit is suddenly opened. What is the 
initial rate of decrease of current in the inductance? 

13.7 Consider an inductance L and a resistor R connected in series across a voltage given 
by V = Vo sin wt. (a) Find the current in the circuit and the phase angle between it 
and the voltage source. (b) What is the phase angle between the current in the re- 
sistance and in the inductance? (c) What is the phase angle between the voltage across 
the resistor and the voltage across the inductance? 

13.8 Consider the RLC circuit shown in Fig. 13.27. A voltage V = Vo sin wt is connected 
across the circuit. (a) For what frequencies will the current be a maximum and a 

Figure 13.27 
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minimum? (b) What will be the value of the maximum current? (c) For what fre- 
quencies will the current be one-half its maximum value? 

13.9 Figure 13.28 shows a network containing resistor R, inductance L, and capacitors Cl 
and C,. If L < R2C2, show that the network acts as a pure resistance for a current of 
frequency w = (C, - L/R2)/LC2(Cl + C,). 

c 1 c2 
Figure 13.28 

13.10 (a) Find the complex impedance z  of the two-terminal network shown in Fig. 13.29. 
(b) A capacitor when empty has a capacitance C,, is filled with a dielectric of a 
complex permittivity E/E ,  = 1 - wi/[O(w + iy)] where w, and y are constants and w is 
the frequency of an external voltage source V = Vo cos at. Show that the complex 
impedance of such a capacitor is equal to the impedance of the network in part (a) 
when the parameters L, C, and R are suitably chosen. Find them. 

a 
Figure 13.29 

13.11 Consider the circuit shown in Fig. 13.30. (a) Write down the Kirchhoff nodal equa- 
tions using the notation of the figure. (b) If 9, = 2 A, f 2  = l A, Rl = l R, R2 = 2 R, 
and R, = 3 R, determine Vl and V2. (c) Determine the currents in the three resistors. 

Figure 13.30 

13.12 A real capacitor is approximated by a capacitance C that has a parallel leakage 
resistance R; it is connected in series with an ideal inductance L. (a) Determine the 
impedance z of this approximation. (b) Assuming that R is large, sketch I z l  as a 
function of w. 

13.13 Use the nodal method to solve for the voltage V2(t) in Fig. 13.31. Take R = 1 R, 
C = 1 F, L = 1 H, Vo = 10 V, and w = 1 rad/s. What is the phase of V2 relative to the 
source? 
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+ 
Figure 13.31 

13.14 Determine the average power (P) stored per unit time in the capacitor of Problem 
13.10. Find also the average heat loss (Q) per unit time and express both (P) and 
(Q) in terms of the potential difference between the plates. 

13.15 Two circuits coupled by a mutual inductance M are shown in Fig. 13.32. Show that 
the ratio of power dissipated in R ,  and R ,  is given by P 2 / P 1  = 0 2 M 2 R 2 / ( R :  
+ 0 2 L : ) R l .  Draw a rough sketch of P2/P l  as a function of R ,  and find the value of 
R ,  that maximizes the ratio. 

Figure 13.32 

13.16 A bridge such as the one shown in Fig. 13.33 is frequently used to measure 
capacitance in terms of a standard capacitor C ,  and two known adjustable resistors. 
We assume that the series resistance of the capacitors is negligible. Show that when 
the detector reads zero current (balance condition), then C ,  = R,CJR,.  

Figure 13.33 Bridge for measuring capacitance. 

13.17 Figure 13.34 shows what is called a frequency bridge, whose balance condition de- 
pends on frequency. Show that for the detector to read zero current the following 
conditions must be satisfied R,R, = R,R, ,  and wL = l/wC. If L and C are known, 
this bridge can serve as a frequency-measuring device. 
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Figure 13.34 Frequency bridge. 

13.18 The Maxwell bridge shown in Fig. 13.35 can be used to measure an inductance of low 
or moderate Q without the accurate knowledge of the generator frequency. Show that 
when the bridge is balanced, R,  = R ,  R J R ,  and L = R ,  R ,  C .  Also show that the Q of 
the inductance is wCR,.  

Figure 13.35 The Maxwell bridge for 
measuring inductance. 

13.19 Consider the two circuits shown in Fig. 13.36, which are coupled capacitively 
(Z = l /wC) .  (a) Set up a system of algebraic equations for the currents in the loops, 
and calculate the natural frequencies of the electrical oscillations. (b) Discuss the case 
when there is no coupling between the circuits (i.e., when C = 0) and when there is 
very tight coupling (C + C,) .  

Coupling . 

Figure 13.36 
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13.20 Solve the preceding problem when the coupling between the two circuits is inductive, 
z = wL. 

13.21 Consider the circuit shown in Fig. 13.37, which is driven by t = to cos wt. The 
frequency of the applied source w2 = IILC. (a) Show that the amplitude of the current 
in the diagonal resistor is 2to/[w(3L + CR2)]. (b) Determine the phase difference 
between this current and the applied electromotive force. 

Figure 13.37 

13.22 Consider a series RLC circuit (Fig. 13.6) and a parallel RLC circuit (Fig. 13.17). Each 
is driven by a constant-current source I of frequency w. (a) Determine the impedances 
and admittances of the circuits. (b) Sketch 9, and PC as a function of w for the series 
circuit. (c) Sketch PC as a function of w for the parallel circuit. (d) Which circuit 
exhibits a resonance phenomenon? 

13.23 Suppose we are given an inductor of L = H and a resistance of R = 1 R, and we 
wish to construct the circuit in Fig. 13.38 so that I ~ , / V ~ ' , I  is minimized at o0 of 

Figure 13.38 Design of a filtering circuit. 

lo4 rad/s, and maximized at w = 0.90,. (a) Determine C, if the parallel circuit be- 
tween A and B is to resonate at w0 = lo4 rad/s. (b) Determine the quality factor Q,, 
and the impedance at the resonance in (a). Is it a phase resonance or antiresonance? 
(c) Determine the impedance between A and B at w/w, = 0.9. Is it inductive or 
capacitive? (d) Determine C2 required to obtain series resonance at w/w, = 0.9. 
(e) Calculate (Vc/Vo',I at w0 and at w = 0 . 9 ~ ~ .  

13.24 Consider the circuit shown in Fig. 13.39. (a) Determine the equivalent impedance z of 
the circuit measured at the source. (b) Find the phase angle 4. (c) Find the resonance 
frequency w, of the circuit. (d) Find the average power (P) delivered by the source. 
(e) Determine the power loss in the resistance R for w = m. 
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Figure 13.39 

13.25 Consider the bandpass filter shown in Fig. 13.40. (a) Using the notations of Fig. 13.19, 
determine the effective z ,  and z,. (b) Determine the frequency range of the band that 
passes without attenuation. (Find a relation between w, L, and C.) 

I I 

Figure 13.40 Schematic diagram of a bandpass filter. 



MAXWELL'S EQUATIONS 

In the first six chapters we discussed electrostatics and found that the electric field in 
media satisfies the equations 

V . D  =p ,  and V  x  E=O 

Magnetostatics were treated in Chapters 8 to 10, where the magnetic field in media 
was found to satisfy the equations 

V . B = O  and V x H = J ,  

In addition to these equations relating the fields and the sources (charges and 
currents), we also have the mathematical expression of conservation of charge-i.e., 
the continuity equation (discussed in Chapter 7 t w h i c h  states that at any point the 
current density and the charge density are related by 

The first effect due to the time variation of the fields on these equations was 
introduced in Chapter 11 via Faraday's experimental law. It introduced a source in 
the equation for V  x E: 

which provided coupling between the fields. Thus the basic equations of electromag- 
netism as we have used them so far have the point forms: 
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These equations were supposed to be satisfied at every point in space at all times. 
They are what we called the quasi-static equations in Chapter 13, and they were 
used in the treatment of nonsteady currents in electric circuits. 

In this chapter we show that the interdependence of the field equations is still 
incomplete. Modification of these equations further in the next section will yield 
what is called Maxwell's equations, which govern the behavior of the classical 
electromagnetic jeld as we believe it today. The electromagnetic wave phenomena 
predicted by these equations will also be discussed. 

14.1 Displacement Current-Maxwell's Equations 
The question now to be posed is: Are the relations given in Eq. (14.1) true? Are they 
consistent? The answer is that they are not consistent, and so they cannot represent 
the physical truth. Something is wrong. This is made obvious by noting that 
V.(V x H) is identically zero, but the last relation in Eq. (14.1) then asserts that 

In steady-state cases, as was discussed in Chapter 7, V. Jf = 0. However, in cases 
where time variations are important, the continuity equation says that V. J, = 

-dp,/at # 0 in general. It was seen by Maxwell that the way to eliminate this 
contradiction was by the addition of another term to J, in the last relation in Eq. 
(14.1). For example, since ap,/at + V-J, = 0, one has from V . D  = p, that 

that is, 

Therefore, if instead of the term J, in Eq. (14.1), we have J, + aD/at, the original 
inconsistency is removed. With this addition, the equations of electromagnetism in 
point form in media become known as Maxwell's equations, and ought to be com- 
mitted to memory: 

V . D  = pf (14.2) 

These equations must be supplemented by the relations 

1 
D = c O E + P  H = - B - M  (14.6) 

Po 

which were previously introduced in Eqs. (4.35) and (9.29). 
Maxwell's equations [Eqs. (14.2) to (14.5)] govern the behavior of the classical 

electromagnetic field as we believe it today. The added term, aD/dt, is called the 
displacement current density. We shall see that not only does it render the equations 
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consistent, but that it is central in the theory of radiation of electromagnetic waves; 
without it, such radiation would not occur in the theory. Moreover the presence of 
the displacement current implies that changing electric fields in space create chang- 
ing magnetic fields, just as (from Faraday's law) changing B  fields create changing E 
fields. Thus E and B are intimately related and are together called the electromag- 
netic (EM) field. 

It will also be noted that the quasi-static equations will be in error due to neglect 
of the term aD/at. However, at time rates of change of E encountered for many 
applications (especially in circuit applications where the E fields are often very 
small, or contained in small, localized volumes), this term is small compared to the 
J, term. That is, in these cases the actual current sources are much more important 
than the displacement current sources. Inside conductors (ohmic) with sinusoidally 
time-varying sources of frequency o one finds that 

aE -- - ioE and J = a,E 
at 

Thus 

for a, - 3 x 106(R.m)-' which is less than 1 percent for frequencies up to about 
1014 HZ. 

We should now note that the four Maxwell equations are not all independent. 
Thus, from Eq. (14.4), we get 

implying that V . B  = O.* Similarly, from Eq. (14.5), 

Using the continuity equation, we take V .  J, = -ap,/at. Thus 

or V . D  = p,, which is Eq. (14.2). 

- 

Example 14.1 Displacement Current-Parallel-Plate Capacitor 

The inconsistency of the equation V x H = J,. is clearly seen if we try to  calculate the line 
integral 5, H.dr for a situation such as that shown in the Fig. 14.1, where the current flowing, 
I, terminates in a capacitor or capacitive element. From Ampere's law, 5, H.dr = I, where I 
is the total current through the surface S whose periphery is the closed curve C. Since S may 
or may not be chosen to intersect the wire carrying the current I, the value of the line integral 
is ambiguous. Two such surfaces S, and S ,  are shown in Fig. 14.1. Through S, a current I 
flows (in the wire), but through S, there is no current flow. 

* We assume that B was zero in a neighborhood of any point at some time in the past. 
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Figure 14.1 Testing Ampere's law in the presence of a capacitor 
using a contour C as a perimeter of two open surfaces S ,  and S ,  that 
are taken (a) to penetrate and (b)  not to penetrate the capacitor. 

The situation is clarified if one uses the integral form of Eq. (14.5), which includes the 
displacement current; that is, 

Thus, if S  is taken as S , ,  dD/dt z 0 everywhere on S ,  (assuming the fields are localized inside 
the capacitor), so we have $ H.dr = I. If S  = S , ,  J, = 0 everywhere on S , ,  but 

Again, using the fact that E is zero outside the capacitor (e.g., on the surface S' shown in Fig. 
14.lb), we get 

Therefore a consistent result is achieved. 

Example 14.2 Charge Leakage from a Sphere-Displacement Current 

As another instance where Ampere's law fails to give unambiguous results, consider the case 
of a sphere (conducting) which at time t has a charge q(t) on its surface, embedded in a 
material (ohmic, homogeneous, isotropic) of conductivity a,, as shown in Fig. 14.2. 

Highly 
/ conductive 

sphere 

. . .  

Figure 14.2 Testing of Ampere's law using an 
initially charged, highly conducting sphere em- 
bedded in a conducting material. 
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From the symmetry of the problem, J will be a function of r only (the distance from the 
center of the sphere). Applying Ampere's law to the curve C of area S as shown, we would 
find that $ H . d r  # 0, since a net current flows through C. This in turn implies that H # 0. 
But also we observe that for another curve, C', $,. H . d r  # 0, and in fact that, due to  C' 
symmetry, H appears to  be oppositely directed where the curves C and C' would touch each 
other. Therefore, what is H? 

The answer, of course, is that H = O.* With the displacement current included, we in fact 
have, from Eq. (14.5);  

We now use the symmetry inherent in the problem. Since I, = js J . d a ,  while the total current 
I flowing through all the surface of the sphere is $ J . d a ,  then I ,  = I R / 4 n  where R is the solid 
angle subtended by C with respect to the origin of the sphere. Also we can write 

Thus 

Since I = -dq /d t ,  then $, H . d r  = 0. Thus, insertion of the displacement current gives reason- 
able and consistent results. 

14.2 Maxwell's Equations in Simple Media- 
The Wave Equation 

We consider now Maxwell's equations in environments where the macroscopic rel- 
ations between B and H and between D and E are "simple"; that is, B = p H  and 
D = EE. Then p  and E are assumed to be constants independent of position and time 
variables. In fact, for completely arbitrary fields in material media, this condition is 
rarely satisfied. However, in many applications it is satisfied to sufficient accuracy to 
be worth detailed consideration. 

Under these conditions, Maxwell's equations [Eqs. (14.2) to (14.5)] may be writ- 
ten as follows: 

* I H . dr = 0 + H ,  = 0 [By symmetry and uniqueness 3 (H,, H,) = 01 
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We take the case where there are no external charge densities and currents. The 
currents present are only produced by the electric field itself via Ohm's law; that is, 

Substituting this form of Jf in Eq. (14.10) gives 

In order to solve Maxwell's equations for E we first eliminate B. Taking the curl of 
Eq. (14.9) gives: 

Substituting for V x B from Eq. (14.1 I), we get 

Using the vector relation V x (V x E) = V(V.E) - (V2)E and substituting zero for 
V. E, we get 

Similarly, with the same procedure, we find 

or combined in 

We thus obtain partial three-dimensional, second-order (in space and time) dif- 
ferential equations in E alone and B alone. These forms are standard vector wave 
equations that arise in other physical phenomena. Thus Maxwell's equations imply 
that E and B behave as wave amplitudes. Moreover, each equation has a term that 
is proportional to the time derivative of the respective field and to the conductivity 
of the medium; these are damping terms that cause losses in materials with nonzero 
conductivity. The determination of the effects caused by external sources--charges 
and currents (pf, J f W c c u p y  a fairly large part of EM theory. We will defer such 
effects to Chapter 15, and take the opportunity here to note that these effects can be 
best obtained via equations that will be derived for the vector and scalar potentials. 
If also the medium is nonconducting (a, = 0), then these equations reduce to: 

V 2 ( )  - E $ ( )  = 0 (nonconducting media) (14.17) 

which is called the undamped, three-dimensional, homogeneous wave equation. A 
similar derivation using the microscopic Maxwell's equations [Eq. (14.6), with E = E, 

and p = p,] gives Eq. (14.17) with p and E replaced by p, and E,. The vector 
notation used in the wave equations is highly compact. In cartesian coordinates Eq. 
(14.17) for E, for example, becomes 

a2 
[SEX + YE, + 2Ez]  = p - [PE, + YE, + %Ez] 

at2 
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which is equivalent to three scalar-wave equations: 

where i stands for x, y, and z. It ought to be noted, however, that such separation of 
variables is not so simply achieved in other than cartesian coordinate systems. 

14.3 Plane Waves in Nonconducting Media 
14.3.1 The Wave Phenomenon 

In this section we consider the simplest case: the homogeneous, undamped wave 
equation (J, = 0, p, = 0, and a, = 0) given in Eq. (14.17). First we show that this 
equation has as solutions any vector function that depends on the variable k . r  - ot 
(d'Abnhert's solution-see Example 14.3); that is, 

where 

which represent waves moving in the direction of k, and k is any constant unit 
vector. Consider the variable t z k . r  - ot, and take A to stand for E 0.r B. We now 
transfer the differentiation with respect to x, y, z, and t in Eq. (14.17) to differenti- 
ation with respect to 5  using the chain rule: 

Hence 

Similar expressions for y and z can be written by replacing x with y and z. Thus 

a2A 
V2A = ,- [(ic . 9)' + (ic . 3)' + (ic . 4'1 

a t  

Similarly, 

Hence 

Substituting Eqs. (14.21) and (14.22) into Eq. (14.17) shows that the form E = E(&.r 
- vt) is a solution of this equation, ??d hence it is indeed a wave equation. The 
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speed of the wave given by Eq. (14.19) can be written alternatively as: 

where c = l/,,,/T~z = 2.9979 x 10' m/s. Thus the speed of propagation of the 
wave of the electric (magnetic) field in space is given once c and the relative effective 
dielectric K and permeability K ,  are given. 

That the constant c turned out to be the speed of light in vacuum, and that v was 
the speed of light in material media of constants K and K ,  was an essential and 
marvelous discovery, showing that light and electromagnetic fields are intimately 
related. Today, we know that light is in fact completely electromagnetic in charac- 
ter. Note that 

is called the index of refraction. In most materials K, z 1, and thus n = &. Re- 
member, however, that although one may find the relation D = E,KE for materials 
in static fields, this will not guarantee a similar relation for nonstatic fields. And if 
such a relation is valid for such fields, there is no guarantee that the K will be the 
same constant as found for the static case. 

A field of the form E(z - vt) or ~ ( k . r  - vt) is called a plane wave because at any 
instant the field assumes the same value at all points in any plane perpendicular to 
the direction of propagation-i.e., in all plan5s perpendicular to the z axis in the 
former case and in all planes perpendicular to k in the latter. Note that we have not 
specified the functional form of E aside from the fact that r and t always must 
appear (aside from constant factors) in the combinations displayed. 

In general, superpositions of such fields will also satisfy the wave equation. For 
example, a solution might be of the form E = E+(z - vt) + E-(z + vt), representing 
plane waves moving in both directions along the z axis. Whether such waves exist in 
a particular situation will depend upon how the waves originate-that is, upon the 
source of the fields and the boundary conditions imposed by the problem. The 
general solution of.the wave equation may be regarded as a superposition of waves 
moving to and fro in the directions x, y, and z. 

14.3.2 Interrelationships between E, B, and k 
Thus far we have found solutions to the wave equations in simple media (Eq. 14.17) 
of the general form 

~ ( k .  r - vt) ~ ( k .  r - vt) 

but have not determined the directions of E or B relative to k, or their interrelation- 
ships. To derive such information we shall insert these wave forms into the homog- 
eneous Maxwell's equations. To utilize V . E  = 0 we write the divergence of E in 
terms of k and t = k . r  - vt. In cartesian coordinates the chain rule gives 
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Thus 

which implies that k must be perpendicular to dE/at, and consequently implies also 
that k is perpendicular to E; that is,* 

k . ~  = 0 (14.26) 

Using similar procedures one can also show that V.B = 0 implies, just as above, 

k . ~  = 0 (14.27) 

Thus E and B, when plane waves, are always transverse to the motion of the wave. 
We now determine what V x E = -aB/at implies on the interrelationship. We 

first show that V x E = k x (aE/at). In cartesian coordinates we write V x E = V 
x [BE, + QE, + LE,]. Since V x fA = Vf x A + f(V x A), then V x E becomes 

V x E = (VEX) x (I) + (VE,) x (9) + (VE,) x (2) 

The gradients of the components of the field can be written in terms of k and < 
using the chain rule: VEX = ~ ( ~ E J J s ) ,  with similar expressions for VE, and VE,. 
Therefore V x E becomes 

or, as stated above, 

We now write dB/dt in terms of 5 using the chain rule: 

Substituting these expressions for V x E and dB/at in V x E = -aB/at gives 

which implies again, for wavelike solutions, that E is perpendicular to B: 

~ X E = V B  (14.31) 

Thus, since k and E are perpendicular to B and to each other. the vectors {E, B, k) 
form a right-handed triad. 

Finally from, V x H = aD/at we find, by the procedure used above, that 

which is essentially the same as Eq. (14.31). 

* If E = k f ( t ) ,  then ( dE /d [ )  = k (d , f / d [ )  and k . k ( d f l d [ )  # 0 unless f ( [ )  = constant. But for waves, f(0 
is not constant. Therefore E can have no component along k. 
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Equations (14.31) and (14.32) also indicate that the magnitudes of E and B are not 
independent of each other. Taking the magnitude of either one of these equations 
gives. 

In conclusion, we see that E and B are (must be) transverse waves having the same 
functional dependence in (, and are mutually perpendicular to each other at any 
instant of time. (In fact, the expression E x B gives the direction of propagation of 
the wave. This is a helpful mnemonic.) But remember that these results are generally 
valid only in media in which K and K ,  are well-defined constants. 

In summary, Maxwell's differential equations [Eqs. (14.2) to (14.5)] become a set 
of algebraic equations in the case where there are no sources and the fields are plane 
waves. These relations [Eqs. (14.26), (14.27), (14.31), and (14.32)] are summarized as 
follows: 

14.4 Sinusoidal (Monochromatic) Solutions 
to Maxwell's Equations 

As a particularly important type of solution to Maxwell's equations, we shall con- 
sider (complex) solutions of the form: 

where l?, and are complex vector amplitudes independent of r and t. The hats on i? 
and B is a notation meant to signify complex vector amplitudes associated with 
sinusoids of angular frequency w. If, for example, k is parallel to the direction 2, 
then E and B lie in the x-y plane, and we can write 

where Eox and E,, are the real amplitude constants, and 4, and 4, are phase 
constants. Thus, in general, for such waves Eq. (14.38) gives the real solutions: 

E = fEox cos[wt - kz + q5,] + YEoy cos[wt - kz + by] (14.40) 

Similarly, for the B wave, 

where Box, Boy, &, and 4; are analogous to E,,, E,,, 4, and 4, defined above, 
respectively. 

The importance of solutions to Maxwell's equations such as Eqs. (14.40) and 
(14.41) transcends their mathematical simplicity. It derives from the fact that any 



wave train can be regarded as a linear superposition (for different values of w and k) 
of waves of the above forms. 

When dealing with monochromatic waves, concerns mentioned earlier in connec- 
tion with the validity of the constitutive relations D = EE, and B = pH become 
somewhat less restrictive. Media are now categorized as nondispersive or dispersive. 
If nondispersive, E and K and hence E and B, do not depend on w. In dispersive 
media E and/or 11 and hence E and B will be functions of w. In this case, since E and 
,u are not uniquely defined, Eqs. (14.14) to (14.17) become invalid. However, the 
basic Maxwell equations [Eqs. (14.2) to (14.5)] remain valid, and one can still 
consider solutions of these equations sinusoidal in time, involving a particular 
angular frequency w. One can then define values of E and p for each particular 
frequency w (these values are measurable). Then, instead of Eq. (14.17), for example, 
one finds 

from which i t  is easy to verify that expression of the form of Eq. (14.38) are solutions 
as long as k = 2x12 = w J m .  

For nondispersive media the wave velocity v = wlk = c/ JKK, is independent of 
w and is unique. Since real EM waves can be represented as superpositions of 
monochromatic waves, the real waves move through such media undistorted in 
space or time. On the other hand, in a dispersive medium the wave velocity will be a 
function of w and will not be unique, so real waves will change form as they 
propagate through the medium (their components become "dispersed"). 

Thus, our previous results hold for monochromatic waves as long as E and p are 
scalar constants (independent of position or field strength) defined at a frequency w. 
Linear, homogeneous, isotropic media generally fulfill these requirements, and will 
be called chromatically simple. Noncrystalline media (e.g., liquids and gases) are of 
this type. 

Table 14.1 Dispersion effect 

Medium K n 
(Static) (Sodium yellow light) 

- - - - - - - 

Alr 1.000294 1.000293 
Benzene 1.489 1.482 
Water 8.94 1.333 
Ethyl alcohol 5.1 1.36 

We emphasize that in such media, the values of K (or K,) to be used in the 
relation v/c = 1 / m  are to be determined at the excitation frequency w, and are 
not in general the values obtained under static (w = 0) conditions. (Table 14.1, 
where K, = 1, illustrates this fact.) Water and ethyl alcohol have widely different 
values of n(= clv) under static conditions and at w = 271 x 5.027 x 1014 rad/s 
(sodium yellow light). The overall trend of n = ,,k is that as w + co, n + 1, but the 
behavior is not monotonic. The reason for this is that the value of K reflects the 
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tendency of the molecular electric dipoles to be aligned along the oscillating EM 
field. Since it becomes increasingly more difficult for the dipoles to "follow the field" 
as the frequency of oscillation of the field increases, the polarization tends to zero 
and K tends to unity as o + co. 

The elegantly simple mathematical properties of EM monochromatic plane waves 
are seen in differentiation operations. Thus, if E = $e-i '"r-k 'r )  then aE/ax = i(k .4)E, 
with similar expressions for y and z coordinates. Thus 

Similarly, for the differentiation with respect to time, 

In general, we can summarize these properties by the equivalence operations 

The symbol * means any of the operations of V upon either a vector or a scalar 
quantity { ). Thus, differentiation becomes equivalent to multiplication for mono- 
chromatic plane waves of the type given by Eq. (14.38). 

With this equivalence, we may rewrite Maxwell's equations for monochromatic 
plane waves. Thus, for simple media (p, = 0 and J, = 0), Eqs. (14.34) to (14.37) 
become 

It is now well recognized that radio waves, microwaves, blackbody radiation, 
light waves, X rays, and 7 rays are all electromagnetic radiation. Table 14.2 gives the 
different kinds of EM radiation as characterized by wavelength (and frequency). 
What distinguishes them is their frequency or wavelength. Note that the wavelength 
is given by 

because the term ei'wr-ks) has equal values at increments of distance s, given by 2n/k:  
Thus, in free space, 

whereas in simple media (n = index of refraction), 

The quantity k  is sometimes called the wave number, as there are k/271 wavelengths 
per unit distance, and k is called the wave vector. 
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Table 14.2 List of Wavelengths Typical of 
Different Regions of the Electromagnetic Spectrum 

1 Frequency 
Type (meters) (hertz) Description 

Y rays 
X rays 
Ultraviolet 

1-MeV gamma photon 
75-kV tube for medical diagnosis 
First line of Lyman series 

(hydrogen) 
Approximate shortest visible Visible limit 

wavelength 
Hg violet line 
Hg, second line of Balmer series 

Violet 
Greenish-blue 

(hydrogen) 
Green 
Yellow 
Orange-yellow 
Red 
Red 

Hg green line 
He yellow line 
Na doublet (5890 A and 5896 A) 
He-Ne laser light (Ne transition) 
Hu first line of Balmer series 

(hydrogen) 
Approximate longest visible 

wavelength 
Visible limit 

Infrared Peak emission of blackbody at 
2000 K 

Vibration at C-H bond in CH, Infrared 
Microwave Lowest frequency in rotational 

spectrum of CO 
Inversion line of ammonia 
Radar 

Microwave 
Microwave 
Microwave Discrete spectral line in general 

galactic radiation (hyperfine 
transition in ground state of 
hydrogen) 

FM broadcast 
TV 
One of Hertz's original 

experiments 
Standard AM broadcast 

Radio 
Radio 
Radio 

Radio 

Example 14.3 D'Alembert's Solution of the Wave Equation 

The procedure we used above to arrive at a solution for the Eq. (14.18) is called d'Alembert's 
solution. In fact this procedure has two solutions: f(k. r - vt )  and g(k. r + ot), where f and g 
are arbitrary functions. To show the presence of two solutions we consider a special case of a 
scalar wave equation that depends on the variables x and y: 

Taking i = x + y and = x - y transforms the equation to 
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which in general implies 

where @(i) is a function of 2 only, and which in turn implies that 

indicating the existence of two solutions traveling in opposite directions. 

Example 14.4 Interrelationships Among E, B, and k 

This example demonstrates the interrelationships between the field amplitudes and the propa- 
gation vector. Consider an electromagnetic wave in free space whose electric field is given by 

We now utilize the properties of E, B, and k to determine all the details of the wave. The 
direction of propagation of the wave can be determined by examining the exponent of the 
exponential. Comparing - 108t - bz with - wt + k . r, we conclude that the direction of 
propagation is k = -2. This direction checks with the k . E  = 0 property. Also, this com- 
parison gives w/lkl = c = lo8//.?, thus yielding b = Ikl = i m - ' .  

The magnetic field of this wave has a form similar to that of the electric field 

with B, to be evaluated. Using the properties k . B  = 0 and k x E = vB, we find -9 to be the 
direction of the magnetic field. The magnitude of B, can be determined from the general 
relation IE1/1BI = v = c, which yields B ,  = 60/c. Thus B = (-60/c)9 exp[i(108t + i z ) ]  tesla. 

14.5 Polarization of Plane Waves 
If the electric field of a plane wave is aligned along a fixed direction in space, it is 
said to be linearly polarized. The form of a linearly polarized plane wave is 

where E is a unit vector defining the direction of the electric field (or, in other words, 
defining the polarization of the electric field) and 4 is some phase angle. The ampli- 
tude of E is given by the real number E,, and may be obtained from the relation 
E.E* = Eg. The real field is calculated by taking the real part of Eq. (14.49), or 

The associated B vector assumes an analogous form to Eq. (14.49); that is, 

where 4' as 4, is some phase angle, and fi is a unit vector defining the direction of 
the magnetic field (polarization of the magnetic field). From Eqs. (14.47), which 
summarize the properties of plane waves, we find that for every linearly polarized 
plane wave the unit vectors 2 and fi satisfy 
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and the magnitudes of E and B satisfy 

We should note that the polarization of electromagnetic waves is customarily given 
by the polarization of the electric field vector P. 

Other types of polarization can be constructed by the superposition of linearly 
polarized plane waves. Examples of these are the elliptic and circular polarizations. 
To see these effects consider the electtic vectors of two linearly polarized, plane 
waves, E, and E,, both moving in the k = 2 direction. Let E, be polarized in the 9 
direction, and E, in the 9 direction. The sum of these vectors is also a plane wave 
E = El + E,. Using the notations of E q .  (14.49), we write 

E = [sE,, - idx + YE,,  - i d y l e  - i ( o t  - k z )  = - ee - i(wt - k z )  (14.53) 

The corresponding real wave is 

E = SE,,  cos[ot - kz + b , ]  + YE,,  cos[ot - kz + $,I (14.54) 

These resultant waves, [ E q .  (14.53) and (14.54)] are said to be elliptically polarized if 
4,  # 4, .  It is to be noted that if 4, = 4,  - 4, they will be linearly polarized since E 
becomes 

where t is a constant unit vector in the x-y plane. The reason why the wave is said 
to be so polarized is that at any point of a given plane in which z = constant = z, ,  
the tip of the E vector sweeps out an ellipse in time. Consider the following 
examples, where the direction of E and its magnitude are not constant. 

Example 14.5 Elliptic Polarization 

Consider the plane wave given by Eq. (14.54). A special case of elliptic polarization is when 
4,  = 4,  and 4, = 4, f 4 2 .  Then at the plane z = z , ,  

E = %E,, cos[wt - kz ,  + 4 1  + f E o y  sin[wt - kz ,  + 61 = SEX + YEy 
hence we see that 

where 0 = wt - k z ,  + 4. This equation for the components of E is the equation of an ellipse 
with major and minor axes E,, and E,, respectively (see Fig. 14.3). The sense in which E 

Figure 14.3 Trace of the tip of the electric 
field at a given point of space as a function of 
time for the case of elliptic polarization. 
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moves, clockwise (cw) or counterclockwise (ccw), can be seen by taking successive increasing 
values of ot. Thus, for $, = $ + n/2, E moves clockwise for the (+), counterclockwise for the 
( - )  sign. The ccw case is said to have positive helicity, the cw case negative helicity. Positive 
helicity also means that E rotates in space as a right-handed screw would when advancing 
along the direction of motion, k. This special elliptic polarization can also be written in 
complex notations using Eq. (14.53): 

Example 14.6 Circular Polarization 

In the previous example, if we let E,, = Eoy = Eo while keeping the same phase condition- 
that is, $, = $ and $, = $, + n/2-then in complex notation we get 

E = [k + i f ] ~ ~ ~ - i ( ~ ' - k z + @ )  (14.57) 

and in real notation we get: 

Hence Eq. (14.55) becomes 

which is the equatlon of a circle of radius E, .  One can also directly show that in real notation 
E .  E = E2 = E i .  The magnitude of E remains constant, although its direction rotates. This is 
called circular polarization. Figure 14.4 shows the electric field in the z = 0 plane (with $ = 0) 
for wt = 0, 4 4 ,  4 2 ,  3 4 4 ,  and n, showing that it is circularly polarized. 

It is interesting that just as a circularly polarized wave may be regarded as a vector sum of 
linearly polarized waves, so can a linearly polarized wave be regarded as a sum of circularly 
polarized waves of opposite helicity. T o  see this we consider the following linearly polarized 
plane wave, which is written in the complex notation of Eq. (14.49). 

so long as Ex and Ey are in phase. The sum of circularly polarized waves of opposite helicity 
is written, using Eq. (14.57), as 

E = u[2  - i f ]  + p[k + i f ]  (14.61) 

Figure 14.4 Trace of the tip of the electric 
field in the z = 0 plane as a function of time 
for a circularly polarized wave traveling along 
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Equations (14.60) and (14.61) are identical if we choose 

14.6 Conservation of Electromagnetic Energy- 
Poynting's Theorem 

We shall at this point derive a very important and useful result that will help us 
associate energy concepts with the electromagnetic field. It will provide a way for us 
to interpret the flow of energy with the motion of plane waves in space. It will also, 
more generally than heretofore, allow us to associate each point of space where the 
EM field exists with an energy density. 

To obtain this result we shall apply the principle of conservation of energy to the 
EM field. The latter is formulated thus: 

1. Let there be an EM field in space and particularly within the volume V whose 
surface is s. 

2. Assume that there exists in association with this field an energy density u. Then 
the total EM energy in V is given by U = 1, u dv. 

3. Assume that this energy can flow such that through the surface of V there is an 
outward flow of energy. Thus assume that there exists a vector field, defined at all 
points, that gives the direction of energy flow at any point and its magnitude. Then 
the flux F of energy through s is 

where S is the aforementioned energy flux vector. 
4. Let d W / d t  be the rate of work done by the EM field inside V on the charge 

that may exist there. The work done on this charge may be manifested as an 
increase in its kinetic energy, or in the kinetic energy of the matter in which it is 
embedded, or in the "chemical energy" of this matter, or the like. In any case, this 
power expended by the EM field assumes the form [see Eq. (7.74)] 

where J is the current density of the charges of concern. 
5. Then the conservation of energy principle: [V is stationary] is expressed as: 

In words, if the EM field energy decreases in V (note the minus sign), the sum of 
the flow of EM energy out of V and the work done by E on the charges within V 
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must increase correspondingly. In particular, if J = 0, the decrease in EM energy in 
V is accompanied by a flow of EM energy out of V. Note that since 
J S . d a  = J V . S  dv, and Eq. (14.65) is assumed valid for arbitrary volumes V, we 
have 

which yields the differential form of the principle of conservation of energy. 

The differential form is also called the Poynting theorem. 
Our task is to find S and aulat. In the following, we shall assume that J is the free 

current density J,. If this is so, then the scalar product of E with Eq. (14.5) gives 

Using the vector identity V.(E x H) = (V x E).H - (V x H).E gives 

Substituting V x E = -dB/dt  gives 

From comparison of this result with Eq. (14.66) we identify 

The vector S as identified in Eq. (14.68) is called Poynting's vector. It is our energy 
flow density of the EM field. Note, however, that this choice of S is not unique; e.g., 
we could add the curl of any vector function to S without changing the basic 
relation given in Eq. (14.66) The identification of au/Jt in Eq. (14.66) is made reason- 
ably by considering that in simple media ( B  = pH, D = EE), 

and hence u ,  - (1/2p)B2, and that 

and hence u, = $&E2. Therefore u = u ,  + u,. Also one can write u as 

These are just expressions previously encountered for assembling static charge and 
current distributions [see Eqs. (6.59) and (12.23)]. [In free space, D = E ~ E  and 
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B = pOH,  and thus u, = +coE2 and u ,  = (1/2p0)B2.]  More generally in nonsimple 
media, however, we simply assume the identification (du,/at) = E . ( d D / a t ) ,  so that* 

and (du,/dt) = H . (dB/&), SO that 

The vector D is regarded here as a function of E and the time. Similarly, H is a 
function of B and time. 

We shall at this point interpret S as the energy flow for EM waves. Consider a 
linearly polarized, monochromatic, plane wave moving along k in free space or in 
simple dielectric media (o, = 0). Since k x E = vB, then E = vB. Thus 

or, in terms of p and E of the medium, 

The quantity q = has the units of ohms and is called the intrinsic impedance of 
the material. In free space + a = 377 0, which is the impedance of free 
space. Now we calculate the energy density u = u,  + u,; as follows: 

Thus, the EM energy is equally shared with the electric and magnetic fields 
u, = u, = iu .  Moreover, if we take v as a vector in the propagation direction, then 
comparing Eqs. (14.72) and (14.74) gives 

The EM energy density times the velocity of the waves is seen to be equal to the 
Poynting vector. It is as if the energy per unit volume is moving with a velocity v, so 
through any element of area da the energy flow is uv.da = S.da.  This is analogous 
to the relationship between the charge density and the current density [see Eq. 
(7.6)] ,  where 

with the assignment u + p and S + J. 
We now introduce a quantity that is useful in dealing with electromagnetic radi- 

ation. The quantity is the magnitude of the time average of the Poynting vector; it is 
called the intensity of radiation I (S)I, or simply ( S ) .  We note that, for a plane wave 
of E = EoE cos(wt - k . r), 

* We assume that u, = 0 when E = 0 and u, = 0 when B = U. 
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where q is the impedance of the medium of permittivity and permeability E and p. 
The intensity is then (S) r ,/- = E%,/q. The intensity can also be related 
to the EM energy density. Using Eq. (14.75) we get 

We note that all the terms in the Poynting theorem: energy density u, Poynting 
vector S, and J . E  utilize, as defined above, real electric and magnetic fields. In 
many cases, however, the fields are more readily calculable in complex notations, 
and thus it is useful to calculate (S) using the complex notation of E and B directly. 
We start from the definition of S using the real fields: 

(S) = (Re{E} x Re{H}) 

Using the relation Re A = &A + A*), we get 

Writing E = E(r)e-'"' and H = H(r)e-'"' and averaging over a period T = 2n/o, the 
first two terms become zero, leaving the result 

1 1 1 
(S) = - (E x H* + E* x H) = - Re(E x H*) = - Re(E* x H) (14.78) 

4 2 2 

Similarly, one can show that 

1 
( u )  = - Re[E.D* + H.B*] 

4 (14.79) 

Example 14.7 Fields of a Laser Beam 

Laser beams (He-Ne laser) of 100 W/mm2 and whose EM fields are continuous waves (CW) 
are easily available. We shall calculate the rms EM fields for these beams, and the average 
energy density in such a beam. From (14.77), we get: (u)  = (S)/c = 100/(10-6 x 3 
x 10') = 0.33 J/m3. From Eqs. (14.76) and (14.77) we get Ef,, = cq(u) = q(S) = 377 
x 10' V2/m2, or E,,, = 19.4 x lo4 V/m, and B,,, = E,,Jc = 6.5 x T (=6.5 G). 

Example 14.8 Steady Current Flow in a Wire 

Consider a segment of a wire or radius a and conductivity a, with a potential difference V 
across its length 1 and a constant current I flowing through it, as shown in Fig. 14.5. We 
would like to  discuss the flow from the point of view of the Poynting theorem. The electric 
field is directed along the wire and is equal to V/I. The magnetic field at the surface is 
tangential to the curved surface and from Ampere's law it is B = p01/27ra. 

Figure 14.5 Application of the Poynting 
theorem to current flow in a wire. 



456 MAXWELL'S EQUATIONS 

Since the fields are steady, then au/at is zero; hence the conservation of energy expressed 
by the Poynting's theorem [Eq. (14.65)] asserts that -$ S . d a  = I, E . J  do. The energy flow 
(into) through the closed surface of the segment rises from the round surface (rs) 

E B d a  EB -f s d a  = ls- = - 2na1 
Po Po 

Since from Ampere's law 2naB = po l  = pona2acE, the energy flow becomes 

We now calculate the volume integral over the segment J E .  J do. Using Ohm's law, J = acE, 
we get 

which agrees with the Poynting theorem. By using the relations E = V/l  and I = 

na2J = na2acE, the latter is seen to be equal to R12 = V I ,  where R = l /a,na2 is the 
resistance of the segment of wire. 

The interpretation of this from the view of S is that the EM energy flows from outside into 
the segment through the sides as seen in Fig. 14.5. Since the energy source (the emf) creates 
the fields that establish the charge and the currents, the EM energy thus seems to flow from 
the energy source into space. Inside the wire the energy is dissipated as heat (i.e., R l 2 ) .  But 
energy also appear to be transported along the wire with the charges. Does energy enter from 
the sides or the ends of the wire? Which interpretation is true for the flow of energy cannot 
be resolved, and in fact it matters little for such static problems. Conservation of energy must 
be maintained in either case. 

Example 14.9 Steady Current Flow in a Coaxial Cable 

As another illustration of Poynting's theorem, we consider a coaxial cable of negligible 
resistance (Fig. 14.6). If this cable is inserted between a source of constant emf and some load, 
a steady current I will flow down the cable. If the emf provides a constant potential difference 
V, it will supply power to the cable of magnitude V1.  

Let us calculate the rate at  which energy passes down the cable using Poynting's theorem. 
If we assume the space between the inner and outer conductors (or radii a and b, respectively) 
to  be vacuum, we know that the electric and magnetic fields and hence the Poynting vector 
(with end effects neglected) are given by 

Figure 14.6 Application of the Poynting theorem to current 
flow in a coaxial cable. 
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Figure 14.7 Application of Poynting theorem 
to a superposition of a static point charge and a 
magnetic dipole. 

Note that S points along the axis of the cable; thue EM energy is flowing down the cable. 
Since E = 0 everywhere except for a < p < b, we can get the total EM power flow by in- 
tegrating S over the cross-sectional area of the cable between the inner and outer conductors 

As expected, the energy provided by the emf flows down the cable without attenuation. This 
energy finally will be absorbed in the load resistance R,. 

In practice, the conductors of the cable will have a finite resistance, so that energy will also 
be dissipated as heat in them. This means that there will be a flow of energy into the 
conductors of the cable. This in turn implies that there will be a component of E parallel to 
the axis of the cable, so that S can point into the conductors and energy can flow into the 
conductors to replace the energy dissipated there. 

The interpretation of the Poynting vector as giving the flow of energy density has 
peculiar effects, especially in static problems, that cannot be resolved. See the two 
previous examples. The fact that Ponyting's theorem is true for such problems does 
not guarantee that S really is an energy flow. In the example of a magnetic dipole 
and a point charge superimposed statistically in space (see Fig. 14.7), which is a 
static problem with constant E and B fields, it seems as if S is flowing around the 
symmetry axis of the dipole*. It is hard to believe this is happening, and we cannot 
verify it experimentally. What is clear is that through any sphere containing the 
dipole, the integrated energy flow is zero. 

We have illustrated Poynting's theorem for static problems. Its main utility how- 
ever is in nonstatic problems, especially where one wishes to calculate the EM 
radiation flowing from some energy source (see Chapter 15). 

14.7 Plane Monochromatic Waves in a Conducting 
Medium 

In this section we consider Maxwell's equations in the presence of conducting 
media. In order to simplify the discussion we take the space to be charge-free and 

*See R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, (Reading, Mass.: 
Addison Wesley, 1966) p. 27-8. 
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external-current-free such that the currents existing in the material are induced only 
by the electromagnetic wave itself; that is, we take J = acE. Moreover, we take the 
medium to be simple; that is, D = EE and B = pH, where E and p are constants. The 
electromagnetic fields in such media satisfy the damped-wave equation [Eq. 
(l4.16)]: 

dE a2E 
V2E - pa, - - p~ = 0 

at at 

Since we are interested in plane monochromatic waves, we take E(r, t) + E(r)e-'"'; 
hence 

V2E + ( ~ E w ~  + i p a , ~ ) E  = 0 

or, in terms of no = J K K , ,  

This equation can alternatively be written in terms of a complex refractive index Ei 
(the hat indicating complex), as follows: 

where, using the real quantities n and k, 

We now consider plane waves traveling along the z axis; thus we take IEl inde- 
pendent of the coordinates x and y, and V2 to be d2/dz2. Thus Eq. (14.81) becomes 

In the absence of the conducting properties of the material, this equation has the 
simple solution E = EoeinO("lc)' = EoeikO', where ko = now/c = w/v is the wave num- 
ber, a real quantity. Because of the presence of the complex factor 1 + iaC/we, the 
wave number will be complex. We take in this case 

where KI is a constant complex wave number vector; it is independent of z and E,. 
Substituting this form of E(z) in Eq. (14.83) gives 

Writing K12 in complex polar form gives 

where 

ac tan 4 = - (14.87) 
E O  
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Taking the square root of Eq. (14.86) gives 

or 
114 

K^ = (1 + &) (cos $12 + i sin 412) (14.88) 
C 

To find cos(4/2) and sin(+/2) from tan 4 ,  and hence explicitly in terms of o,/oe, we 
use the relations: 

4 (1 + cos 4)'12 . 4 (1 - cos 4)'12 
COS - = * and a n  - = 

2 2 $ 
Now 

cos 4 = (1 + tan2 4)- 'I2  

Thus 

Substituting these explicit forms of sin(4/2) and cos(4/2) in Eq. (14.88) gives 

where 

Thus the electric field takes the following form: 

The quantity n is interpreted as the refractive index of the medium. It is interesting 
to note that it depends on the conductivity of the medium and the frequency of the 
wave. The quantity k is associated with the decay of the wave as it travels in the 
medium. The attenuation constant wklc also depends on a, and o. It is customary to 
refer to the distance 6 at which the field goes down to lle of its initial value as the 
skin depth, where wk6lc = 1 or 

The magnetic field corresponding to the electric field can now be calculated from 
Maxwell's equation. One interesting effect that arises in conducting media is the fact 
that the E and B fields are out of phase. This can be seen from Maxwell's curl 
equation (Eq. (14.4)). We consider a plane wave polarized along the x axis: 
E~ f e  - iwt + i ~ z  . Taking B = pH and D = EE gives: 
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Substituting for K from Eq. (14.85) gives 

This equation indicates that the magnetic field and the electric field are out of phase. 
Moreover, the ratio Eo/H, is characteristic of the medium; it is the intrinsic complex 
impedance of the medium and appears to be frequency dependent: 

The phase of r]  can be calculated by expressing it in complex polar notations: 

where 

JPIE 6, 141 = and tan 6 = - [l + ( a , / ~ o ) ~ ]  'I4 EO 

The above treatment shows that the general dependence of the propagation on 
the frequency and the properties of the medium is quite complicated. There are, 
however, some special limiting cases that are interesting to consider. 

Good Conductors. The conductivity of metals and even semiconductors is very 
large such that the ratio D,/EO is very much larger than unity even at frequencies as 
high as the optical frequencies. In this limit, one neglects 1 relative to O,/EO (and 
takes K, = 1); thus 

Substituting this result in Eq. (14.93) gives the following expression for the skin 
depth. 

which shows that in this limit S does not depend on the dielectric properties of the 
material. The fact that the skin depth is inversely proportional to the square root of 
the product, the frequency and the conductivity implies that waves of higher frequ- 
encies do not penetrate as much as those of lower frequencies. The refractive index 
of metals is enhanced by the factor ~ E O )  over what is expected from the 
dielectric properties of the material: m. This increase causes a reduction in'the 
wavelength of the radiation in the material by the same factor. 

Another feature of the propagation in conductors is the phase relationship be- 
tween the magnetic and electric fields. Equation (14.99) shows that tan 4 becomes 
very large when o , / ~ o  % 1; hence 4 -r 4 2 .  Therefore the phase difference between 
the E and the B fields in a perfect conductor is 4 4 .  
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Good Insulators. Good insulators have small conductivities such that the ratio 
a , / w ~  is much less than unity even at very low frequencies. For strictly dc fields 
(o = O), however, the conductivity has to be strictly zero. Taking this limit in Eq. 
(14.91) gives 

The phase between the E and B field in good insulators is derivable from Eq. 
(14.98). Keeping the lowest order in a,/co gives 

Thus the phase angle between the E and B fields is: 

Example 14.10 Frequency Dependence of the Optical Properties 
of Conducting Material 

In this example we examine the optical properties of conducting materials at an electromag- 
netic frequency w. Consider a material of conductivity a,, permittivity E, and permeability p. 
The refractive index n and the absorption coefficient k of this material are functions of a,, o ,  
p, and E, and are given in Eq. (14.91). Figures 14.8 and 14.9 give plots of n and k as a function 
of w. It shows that as w becomes large, and hence a,/we becomes small, the refractive index of 
the material becomes governed by the dielectric and magnetic properties (E, p): n + m. 
The absorption coefficient also becomes governed by the dielectric properties in the same 
limit; that is, it drops to zero. It is clear from the figures that the conducting nature of the 
material dominates at low frequencies, where a, /~w & 1. 

The skin depth of the material 6 = c/wk becomes independent of frequency and ap- 
proaches noca,/2e at high frequencies. At low frequencies it takes the expression JG. 

The characteristic impedance of the material 

Figure 14.8 Frequency behavior of the op- 
tical constant n of a conducting material. 
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Figure 14.9 Frequency behavior of the op- 
tical constant k of a conducting material. 

approaches 

f i  + and ,fjl + ( 5 ) - l i 2  
E E O  

at high and low frequencies, respectively. This shows that Ifil decreases in conductors. 

Example 14.11 Power Dissipation in a Conductor 

A monochromatic plane wave of frequency w, polarized in the 9 direction, travels along the z 
axis in a highly conducting medium occupying z 2 0 space (see Fig. 14.10). The medium is of 
permittivity E ,  permeability p, and conductivity a,. From Eqs. (14.92) and (14.100), the electric 
field at  a distance z in the material is given by 

E = ~~2 e - z ( l  - i ) i6 - ior  (14.105) 

where 6 = Jm is the skin depth. The current density in the medium is J = a,E; thus 

Conducting 
material 

Figure 14.10 Electromagnetic power dissi- 
pation in a conducting material. 
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The current d l  in a slab of height h, length 1 along the current, and depth along propagation 
dz is along the x axis and is given by 

Thus the total current in the medium is 

which gives 

The root mean square of I can be calculated from Eq. (14.108) as follows: 

Let us now calculate the power dissipated in the medium. T o  d o  this we need to calculate 
the resistance of the slab considered above. Since the resistance of a rectangular conductor of 
length I ,  area A, and conductivity a, is R = l/a,A, then the resistance of the slab is 

The average power dissipated in the slab is given in terms of d l  and R by 

Substituting for d l  and R from Eqs. (14.107) and (14.110) we get 
2  2 2  

E ~ a C h  1 e - 2 r l d  dP  = -- dz. 
2 a,h 

Integrating d P  gives 

An effective resistance can be associated with this power loss by writing the average power in 
the form 

P = Ref, I:,, 

Substituting for I,,, from Eq. (14.109) gives 

where A is the area of a slab of height h  and width equal to the skin depth. 

14.8 Summary 
The quasi-static equations of electromagnetism V . D = p,, V . B = 0, V x E = -dB/&, and 
V x H = J ,  are modified for the last time by modifying V x H = J ,  to  include the effect of 
the variation of D with time. The addition of the displacement current aD/at to J f  by 
Maxwell yielded what are called Maxwell's equations, which govern the behavior of the 
classical electromagnetic field as we believe it today; that is, 



464 MAXWELL'S EQUATIONS 

In a linear medium of p, 6, and a , ,  Maxwell's equations give for p, = 0, and Jf = a , E  
(currents are produced only by E itself), 

which are three-dimensional wave equations with some damping (term proportional to a , ) .  
Even in vacuum, Maxwell's equations predict wave phenomena for E and B. The speed v of 
the wave is 

where c = 1/& = 3 x 10' m/s, which is the speed of light in vacuum, and n = is 
the refractive index of the medium. 

One solution of the wave equation in media of a, = 0, is a plane wave where E and B 
depend only on one cartesian coordinate, say in the k direction, E and B will be functions of 
k . r  - of. Such waves are also called transverse waves. Maxwell's equations require the fol- 
lowing interrelationships between k, E, and B: 

That is, these three vectors are normal to each other. One form of solution is the sinusoidal 
or monochromatic solution, where E and B are given by a sine function or a cosine hinction 
of k .  r - vt. Using complex notations we write 

E = ~ , & ~ - i ( w l - k ' r + O )  B = Bobe - i(wa - k ' r + q ~ )  ( 1 4 . 4 9 ) , ( 1 4 . 5 0 )  

where k, a wave vector. specifies the direction of propagation; t? and 1 are unit vectors; o is 
the frequency of oscillation of the wave; k = w/o is the wave number, which can also be 
expressed in terms of the wavelength of the wave k = 2nll; and ($,4') and ( E , ,  B,) are 
constant phases and amplitudes. It is customary to refer to the direction of the E of the wave 
as the direction of polarization of the wave. If & stays along one direction, the wave is called a 
plane or linearly polarized wave. Combinations of linear polarization can result in elliptic or 
circular polarization. 

The rate at which energy is carried by the wave is given by the Poynting vector S as 
follows: 

If the wave strikes a region that has electric currents J, then the wave is expected to do work 
on these currents at a rate 

Just as in electrostatics and magnetostatics, the wave at any instant of time has stored 
electromagnetic energy with a density of 

In fact, one can show that energy is conserved, and express it in the form of the 
Poynting theorem at any point in space; that is, 

One can show that 
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where q = f i  is called the impedance of the space, and is a unit vector along 
the direction of propagation. For plane monochromatic waves, the time average of 
the intensity of the radiation 

1 
(S) = - Re(E* x H) 

2 
(14.78) 

and 

1 
(u) = -Re(E*.D + H*.B) 

4 
(14.79) 

In a conducting medium a plane monochromatic wave suffers damping (attenuation). The 
effect of a nonzero a, can be derived by the modification of the above solutions through the 
introduction of an effective complex permittivity and hence wave vector B and refractive 
index A ;  that is, 

where the hat is used to indicate the complex property. Taking the square root of R2 and 
writing in terms of a real and imaginary parts we get 

where 

The corresponding E field propagating along z takes the form 

E = E ,  - mkzlce - iw(t - nz /c )  

Thus n is interpreted as an effective real refractive index of the medium with additional 
dependence on a, and w (dispersive effect). The inverse of the quantity wk/c is interpreted as 
an absorption length or skin depth 6, which is frequency-dependent: 

For high conductivity and/or low frequencies such that a,/cw % 1, we find (for nonmagnetic 
materials) that 

t~.;k.;F 2c0 w and 6 - J  (14.100) 
uooc* 

Inside conducting materials, E and H are out of phase, with 

is the complex impedance of the medium. 

Problems 

14.1 An ac generator is connected to a parallel-plate capacitor. The plates are circular 
disks of area A. The charge on the plates is q = qo sin a t .  Neglect edge effects. 
(a) Calculate the conduction and displacement currents. How do they compare? 
(b) What is the direction of the magnetic field inside the capacitor? (c) Calculate the 
magnitude of the magnetic field inside the capacitor. 
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A coaxial, cylindrical capacitor has inner and outer radii of 0.5 and 0.6 cm, respec- 
tively, and a length of 50 cm. The material between the cylinders has a dielectric 
constant of 6.7. The cylinders are kept at a potential difference V = 250 sin 377t volts. 
Determine the displacement current I, and the conduction current I,. Compare the 
two currents. 

The space between two concentric spherical conducting shells of inner and outer radii 
a and b is filled with a dielectric for which K = 8.5. Given an applied voltage 
V = 150 sin 500t volts. Obtain the conduction and displacement currents and 
compare. 

Show explicitly that the fields (a) E = Acex-" and B = Aex-",  and (b) E = 
Ac In(x + c t )  and B = - A  ln(x + ct) are solutions of the one-dimensional wave 
equation given by Eq. (14.17). 

(a) In free space we have E = E,Q sin(wt - kz). Find D, B, and H. (b) In free space we 
have H = H o S e - i ( w ' f k z ) .  Determine E. 

An electromagnetic wave propagates in a ferrite material whose dielectric and magnetic 
constants are K = 10 and K ,  = 1000. Find the speed of propagation, and the wave- 
length of a wave of frequency 100 MHz. 
Consider a linearly polarized, plane electromagnetic wave E = Eofe i (kz -"r ) ,  where 
k = w/c and E ,  is real. (a) Calculate the energy density u and Poynting vector S, and 
show that u moves along with the wave. (b) Determine the time average of S when the 
averaging is done over an infinite time, and again over one period. 

If a wave is added to that of Problem 14.7 such that one now has 

where EA is real, find u, S, and (S) for the resultant wave and show that in general 
none are equal to the sum of the corresponding quantities for the separate waves. 

Assume that a wave is added to that of Problem 14.7 such that one now has 

where Eb is real. (a) Show that in this case u, S, and (S) for the resultant wave are the 
sums of the corresponding quantities of the individual waves. (b) Determine the 
polarization of the resultant electric wave. (c) How are the resultant electric and 
magnetic waves related? (d) If Eo = 2E0 and q5 = n/4, determine and plot the locus of 
the tip of E in the z = 0 plane. 

Assume that a wave is added to that of Problem 14.7 such that one now has 

(a) Determine u and S. (b) Discuss how the energy is sometimes all in the electric field, 
and sometimes all in the magnetic field. (c) Does S account for this transfer? (d) Find 
the fixed planes perpendicular to  the z axis such that no energy flows across any of 
them. 

When a linearly polarized EM wave is incident a t  45' on a reflecting mirror, the 
electric field of the waves in front of the mirror may be written as 

(a) Write E in the form E = Eoe-'"I. (b) Draw an array of ellipses (showing the 
electric field) at points whose coordinates are kx = mz/4 and k y  = n 4 4 ,  where m and 
n take on the values 0,  1, 2, 3, and 4 independently. (This array was used to explain 
with enough detail the pattern in front of the mirror in the experiment done by 
Wiener.) 

The energy flow associated with sunlight, striking the surface of the earth in a normal 
direction is 1.4 kW/m2. (a) If the corresponding electromagnetic wave is taken to be a 
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plane polarized monochromatic wave, determine the maximum values of E, H, and B. 
(b) Taking the distance from the earth to  the sun as 1.5 x 10'' m, find the total power 
radiated by the sun. 

14.13 (a) Given E = 50% cos(wt - kz) volts per meter in free space. Find the average power 
passing through a circular area of diameter 5 m in the plane where z = 5 m. (b) Given 
that in free space 

E = 2 x 10'6 sin 0 cos(wt - kr)/r (volts per meter) 

and 
H = 0.536 sin 0 cos(wt - kr)/r (amperes per meter) 

Determine the average power passing through a hemispherical shell of radius 
r = 10' m and 0 I 0 5 4 2 .  

14.14 Moist soil has a conductivity a, of lo-' ( 0 . m ) '  and a dielectric constant K of 2.5. If 
the electric field in the soil is E ,  sin wt where E, = 6 x Vlm and w = 

0.9 x lo9 rad/s, determine the displacement and conduction current density in the 
soil. 

14.15 An electromagnetic wave with a frequency of lo6 Hz "travels" along the z axis in an 
aluminum medium located at z 2 0. The conductivity of aluminum is 38.2 
x lo6 ( 0 . m ) - '  and its relative permeability K ,  = 1 .  Just inside the conductor at z = 
+0,  the electric field amplitude is E,%. (a) Write down an expression for the electric 
field inside the conductor. (b) Find the skin depth, wave velocity, and wavelength of 
the wave in aluminum. (c) Determine the corresponding magnetic field. (d) Find the 
phase difference between the electric and magnetic fields at  each fixed location in 
aluminum. 

14.16 A plane monochromatic wave of frequency lo9 Hz polarized along the $2 axis travels 
along the z axis in a partially conducting material of permittivity E = 18~ , ,  permea- 
bility p = 800p0, and conductivity a, such that a,/m = 1. Just inside the material at 
z = + O ,  the intensity of the wave is 1 W/m2. (a) Write down an expression for the 
electric field inside the conductor. (b) Determine the skin depth and the wave velocity 
(c) What is the intensity at  z = 1 mm. (d) Determine the ratio of E/H. (e) Calculate the 
amplitude of the E field at z = + O .  (f) Determine the phase between E and H. 

14.17 Calculate the intrinsic impedance and the wave velocity for a conducting medium in 
which a, = 5 x lo7 ( 0 .  m)- ' and p = p, at  a frequency w = 27c x 10' rad/s. 

14.18 An electromagnetic wave of frequency 3 x 10' Hz travels in a partially conducting 
medium of dielectric constant K = 20, magnetic constant K ,  = 1000, and conductiv- 
ity a, = 2(R.m)-'. (a) Determine the complex refractive index of the medium at  the 
frequency of the wave. (b) Determine the effective refractive index and absorption 
(attenuation) constant. (c) What is the characteristic impedance of the medium? 

14.19 In a rectangular duct having a cross section of 1 m2, the portion of space correspond- 
ing to  y > 0 is filled with a gas of conductivity a, = lo4 (0 .m)- ' .  A magnetic field of 
uniform strength is established in the vacuum space y < 0. Neglect the displacement 
current and assume that B and E inside the gas depend on y only and are along z and 
x, respectively. (a) Show that the B field for t > 0 and y > 0 satisfies the equation 

(b) Using a substitution < = Gy/,/&, find an expression for B, and then deter- 
mine it, using the boundary conditions. (c) Find the magnetic pressure at  y = 0, and 
then find the magnetic force on the portion of gas contained between y = 0 and y = 1 
at  t = 0. (d) What will be the magnitude of the magnetic force at  t = 1 s? Hint: You 
may use the error functions to express your answers. 

[erfc(z) = 1 - - e -z2  dz,] S' 0 



RADIATION 

In this chapter we discuss the generation of electromagnetic radiation by means of 
moving charges. We will find that it can be produced only if the charges undergo 
acceleration. A charge that is not moving produces a static electric field and a zero 
magnetic field in its inertial frame. A uniformly moving one, on the other hand, 
produces an electric and a magnetic field, each of which has l/r2 radial dependence. 
Thus the Poynting vector has l/r4 radial dependence, and consequently its integral 
over a closed surface vanishes at large distances, indicating that radiation is not 
generated. An accelerating charge produces additional electric and magnetic fields, 
each of which is proportional to the acceleration and has l/r radial dependence and 
hence the corresponding Poynting vector has l/r2 radial dependence, and conse- 
quently the integrated Poynting vector is finite at large distances. This indicates that 
accelerated charges produce radiation. 

There are a number of procedures for the calculation of radiation. The general 
problem will be treated by obtaining, for given time-dependent charge and current 
distributions, the scalar and vector potentials from which the fields are then ob- 
tained. A multipole expansion of the potentials will be derived; this expansion in 
turn is useful in deriving the fields associated with slowly moving accelerated 
charges and with antennas. 

In regions where the charge and the current distributions vanish, the problem 
will be treated by solving the wave equations of the electric and magnetic fields 
directly. Some of the formalism used in solving Laplace's equation in Chapter 3 will 
be used to generate a multipole expansion. Emission from time-dependent electric 
and magnetic dipoles, as well as some scattering problems, can be treated with this 
method. 

15.1 Wave Equation of the Potentials with Sources- 
Gauge Transformations 

In Chapter 14 we solved Maxwell's equation in the absence of external charge 
distributions, pf = 0, and external current distributions Jf = 0. In Section 14.8 we 
considered a case involving electric currents; however, these currents were not ex- 
ternal but were produced by the impinging wave itself as a result of the conducting 
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property of the material: J = o,E. In this section the case involving external charge 
and current sources will be studied. Consider an infinite medium of permittivity E, 
permeability p, and conductivity o, = 0, in which there exists the charge and current 
distributions p(r, t) and J(r, t) which are functions of space and time. There are two 
approaches for obtaining the fields produced by the distributions: the field or the 
potential approach. We will follow the potential approach because it involves less 
computation. In fact, we have previously seen, that the potential approach is also 
more convenient in the cases of electrostatics and magnetostatics. 

We start by utilizing two of Maxwell's equations [Eqs. (14.3) and (14.4)] in order 
to find relations between the fields E(r, t) and B(r, t) and the vector and scalar 
potentials A(r, t) and @(r, t). These relations are not expected to be identical to what 
we have known in static situations. Since V . B  = 0, then B can be written as a curl 
of the vector potential A :  

Substituting this expression in Eq. (14.4) gives 

Interchanging differentiation with respect to time and space gives 

Since the curl of the vector (E + dA/at) is zero, then it should be equal to the 
gradient of a scalar potential 0: 

Equations (15.1) and (15.4) give the sought relations between the fields and the 
potentials. The relation between B and A is identical to the magnetostatic case, 
except that A is now allowed to be a function of time. Equation (15.4), on the other 
hand, shows a departure from electrostatics; the electric field is not anymore a 
gradient of a scalar. It is the sum of the gradient of @(r, t) and the derivative of A 
with respect to time. The latter contribution removes the conservative nature of the 
electric field and it is a direct outcome of Faraday's experimental law of induction 
(see Chapter 11). 

Equations (15.1) and (15.4) can now be substituted in Maxwell's equations [Eqs. 
(14.2) and (14.5)] in order to derive the differential equations satisfied by A and cD. 
Substituting H = B/p, D = EE and Eqs. (15.1) and (15.4) into Eq. (14.5) gives 

Using V x (V x A) = V(V.A) - V2A and interchanging differentiation with respect 
to time and space in Eq. (15.5) gives 

a2A ao, 
V ~ A - ~ p - - v ( v . A ) - E ~ V - =  -PJ/. 

at2 at 
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Now we turn to Eq. (14.2). Substituting D = EE and Eq. (15.4) into it gives 

which upon interchanging differentiation with respect to time and space gives 

It is apparent from Eqs. (15.6) and (15.7) that so far we have not obtained equ- 
ations for A  and @ that are independent of each other as was the case in the field 
approach. Since E and B determine the forces acting on the charges and hence are 
more directly related to the physical world, then for given E and B, A  cannot be 
uniquely defined by just one relation (namely, V  x A  = B); thus it has some degree 
of arbitrariness. In fact, for A  to be uniquely defined, its divergence must be speci- 
fied. (In fact, not all physicists agree on the statement that E and B are more directly 
related to the physical world than the potentials A  and @.*) The act of specifying 
V .  A  is called a gauge condition. The Lorentz gauge, for example, requires 

which relates V . A  to the rate of change of the scalar potential with respect to time. 
The substitution of Lorentz gauge in Eqs. (15.6) and (15.7) removes the coupling 
terms in these equations and hence results in a wave equations for eachof A  and @: 

Another useful gauge is the so-called Coulomb or transverse gauge (see the previ- 
ous discussion of this gauge in Section 8.5); in this gauge one takes 

Substituting this into Eq. (15.7) gives a Poisson equation for @ (not a wave 
equation): 

with a solution 

The scalar potential in this gauge is just the instantaneous Coulomb potential due to 
the charge density p(r, t),  from which the name Coulomb gauge is derived. It has the 
same form as the static potential. 

* Not all physicists agree that the E and B fields are more real than the potentials A and 4. The 
Aharonov-Bohm effect, which was first introduced in 1958, states that contrary to the conclusions of 
classical mechanics, there exist effects of potentials on charged particles even in the region where all the 
fields (and therefore all the forces on the particles) vanish. See Y. Aharonov and D. Bohm, Physical 
Review, vol. 115, p. 485, 1959 and A. Tonomura et al., Physical Review Letters, vol. 51, p. 331, 1983. 
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The vector potential in this gauge satisfies the equation 

am 
Now we show that the term V  - is related to J, .  Using a p , ( r ,  t ) /ar  = - V .  J, ,  then 

at  

a@ v V .  J,(r f ,  t )  
J - -&V-  = - I -  S do' 

a t  4n Ir - r'l 

and one can show that 

J ,  = J, + J, 

where 

Thus 

Clearly V  x J ,  = 0, and V .  J ,  = 0, and therefore J, and J, are called the transverse 
and longitudinal parts of the current, which is the basis of the name transverse 
gauge. 

The Coulomb or transverse gauge is often utilized in cases where there are no 
charge or current distributions: p, = 0 and J ,  = 0. Thus in this case one takes 
@ = 0, and A satisfies the equation 

Thus the fields in this gauge are derivable from a single potential: 

a A 
B = V x A  and E = - -  (15.18)  

a t  

It is instructive to consider the gauge condition in the presence of conducting 
materials. We take p,  = 0 and J = ocE.  Using the same procedure we used above to 
arrive at Eqs. (15.6) and (15.7),  we get 

In order to decouple these equations we choose the following gauge: 

which reduces them to the damped-wave equations : 
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with the damping terms a , ~ ( a A / a t )  and o,p(a@/at) caused by the losses in the con- 
ducting medium. 

As we have seen above, the Lorentz condition is a relation between the vector 
and the scalzr potentials. It is commonly used, first, because it results in the reduc- 
tion of the coupled equations satisfied by the potentials A and CD to independent 
wave equations and puts them on equivalent footing and, second, because it fits 
naturally into the considerations of the theory of special relativity (see Chapter 17). 
In view of its importance and the great simplification achieved by imposing such a 
gauge, we should examine whether it is always possible to impose it without intro- 
ducing or causing any nonphysical effects. That is, we would like to see whether it is 
possible at all to find potentials associated with given electric and magnetic fields 
and, at the same time, satisfy the Lorentz condition. To answer this question we 
start with a given set of E, B, A, and @ such that Eqs. (15.1) and (15.4) are satisfied: 
B = V x A, and E = -aA/at  - V@.  Since the curl of a gradient of a scalar is zero, 
then the potential A given by 

gives the same physical field B where I) is any scalar function of space and time. 
However, because the eleccric field depends on the derivative of A' with respect to 
time, the scalar potential will have to be changed in order to give the same physical 
electric field. Thus we write 

Substituting Eq. (15.21) and using Eq. (15.4) we get 

which gives 

The transformation of Eq. (15.21) and (15.22) is called a gauge transformation, and 
the invariance of the fields under such transformations is called gauge invariance. 

Now that the new potentials A' and @' give the same physical fields 'E and B as 
those given by the original potentials A and @ we check if A' and @' satisfy the 
Lorentz condition: 

Substituting Eqs. (15.21) and (15.22) in the above Lorentz condition gives 

There are two cases to consider. If the original potentials A and @ satisfy the 
Lorentz condition, that is, V .  A + cp(a@/at) = 0, then the new potentials A' and W 
will satisfy the Lorentz condition provided that $ satisfies the equation 
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which is the homogeneous scalar wave equation. On the other hand, if the original 
potentials did not satisfy the Lorentz condition-that is, V-A + ep(d@/dt) # &the 
new potentials, however, can be chosen to satisfy it provided we choose t j  such that 
it satisfies the scalar wave equation with - [V- A + cp(d@/at)] taken as an inhomog- 
eneous source. In other words, r// must satisfy Eq. (15.23). As a result we conclude 
that it is always possible to impose the Lorentz condition while still maintaining the 
physical effects (namely, E, B, and hence the forces on charged particles). 

Example 15.1 The Lorentz Gauge 

This example discusses the Lorentz gauge and the gauge transformations. The given E and B 
fields are derivable from two pairs of scalar and vector potentials: (a, A) and (a,, A,). The 
potentials are related as follows: 

cos(kr - wt) 
@(r, t) = @,(r, t) + w 

r 

[ cos(k:- wt) sin(kr - wt) 
A(r, t) = A,(r, t) + k - 

r2 

First we note that the potentials can be written as 

a sin(kr - wt) 
@(r, t) = @,(r, t) - - 

at r 

Thus these potentials indicate, using the notation of Eqs. (15.21) and (15.22), that 

d sin(kr - wt) 
r t) = @ - - $ A(r, t) = A. + V$ with $ = (15.25) 

at r 

Let us substitute A and @ in the Lorentz condition, as follows: 

Using 

one can easily show that 

Hence if A, and @, satisfy the Lorentz condition, then A and @ will also satisfy the condition. 

15.2 Retarded Potentials 
Our aim in this section is to solve the wave equations given by Eqs. (15.9) and 
(15.10), which were derived using the Lorentz gauge. Because of the presence of the 
sources in these equations, the solution consists of two contributions: a solution of 
the homogeneous equation and a particular solution of the inhomogeneous equa- 
tion. The overall solution must then be made to satisfy the prescribed boundary 
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conditions. Since the homogeneous (sourceless) problem was treated in detail in 
Chapter 14, we will concentrate here on the effect of the sources. The method to be 
used has some resemblance to the method we used for the solution of Poisson's 
equation for static situations [see Section 3.6 and Eqs. (15.12) and (15.13)]. How- 
ever, because of the second time derivatives of the potentials in the present problem 
one should not get carried away. For example, it is wrong to say that the solution to 
the time-dependent problem is given by the static solution with the time dependence 
being accounted for by its insertion in the sources (instantaneous solution). This 
reasoning is faulty because of the fact that what one observes at a distance r and 
corresponding time t is not caused by the parameters of the sources at that same 
time. The electromagnetic disturbance (in vacuum) has a finite speed, c; hence, it 
takes a period of time equal to r/c to reach the observer. Therefore, what the 
observer measures at time t is correlated to the sources at what is called the retarded 
time, or t - r/c. 

Let us now solve the wave equation of the scalar potential for a given p(r, t). We 
will solve i t  first for a point charge q that is located at the origin at time t. It is to be 
cautioned now that the time dependence we are considering for the point charge 
does not arise from the motion of the charge. The charge is a fictitious mathematical 
entity; it is not in motion, but its magnitude is a function of time. The fields 
produced by the motion of charges are more complicated than what we are con- 
sidering here. Once the potential produced by the fictitious point charge is obtained 
it will be generalized by summing over all the actual charge distribution. It is 
important to note, however, that the potential of the actual charge distribution can 
be specialized to the case of a moving point charge. This will be done later in the 
chapter. 

At points away from the origin and in vacuum Eq. (15.10) becomes 

Because of the spherical symmetry of a point charge, the potential is expected to 
have only a radial spatial dependence. Using only the radial part of the Laplacian, 
Eq. (1 5.26) becomes 

The solution of this equation must have some resemblance to the solution of the 
static equation 

namely, l/r dependence. Hence we take 

where $(r, t) is a function of r and t that needs to be evaluated. Substituting Eq. 
(15.28) into Eq. (15.27) gives the following equation for $(r, t): 
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Note that the transformation shown in Eq. (15.28) got rid of the first derivative in 
the original equation, thus transforming the latter to the one-dimensional radial 
wave equation. The one-dimensional wave equation can be solved using 
d'Alembert's procedure (see Section 14.4 and Example 14.3). We define two vari- 
ables u and v in terms of r and t :  

u = r + c t  and o = r - c t  (15.30) 

Hence 

Substituting the partial derivatives in Eq. (15.29) gives 

which upon integration with respect to u gives d$/dv = h(v), where h is an arbitrary 
function that depends on v only. The function h can now be integrated with respect 
to v: 

= h(v)dv + g(u) 1: (15.33) 

where g(u) is an arbitrary function that depends on u only. The integral is taken to 
be f(v). Thus 

II/ = f ( r  - ct) + g(r + ct) (1 5.34) 

The second contribution to $ is not physical since it implies an incoming wave; it is 
propagating inward towards the point charge (origin) from infinity. The first contri- 
bution, however, is physical since it describes an outgoing wave; it is propagating 
outward from the sources (origin) to infinity. Hence we drop g and keep f ;  that is, 

$ = f (r - ct) (15.35) 

We now evaluate the function f using the information (boundary condition) given 
at r = 0; namely, at the origin the total charge is q (equivalent to the application of 
Gauss' law in electrostatics). To utilize this information a limiting process should be 
used because the potential blows up at r = 0. Thus integrating Eq. (15.10) over a 
small volume Av that contains the origin gives 

which, upon the substitution for @ from (Eq. 15.36), gives 

In the limit r becomes very small, f ( r  - ct) becomes f(-ct), which can then be 
taken outside the integral: 
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Since V 2 ( l / r )  is -4n6(r), where 6(r) is the Dirac delta function, then the integral 
gives - 4nf = - q/c0,  or .f near r = 0 is q(t)/4nc0. Therefore 

f ( r  - ct )  = 
q(t - T I C )  

4nco 

It is to be noted that, as we remarked at the beginning of this section, the potential 
observed at some time t ,  @(r, t ) ,  correlates with the magnitude or the charge at the 
earlier time t - rlc. This time 

is called the retarded time. The corresponding potential is called the retarded 
potential. 

Equation (15.41) can be easily generalized to the case of a given charge distri- 
bution p(r, t );  that is, it can be generalized to 

where 

Ir - r'l t ' = t - - - -  
C 

is the retarded time for a given element of the distribution seated at r'. 
Using a similar procedure, one can solve Eq. (15.9) for the vector potential. This 

becomes obvious when it is realized that each cartesian component of Eq. (15.9) is a 
scalar equation identical to the wave equation [see Eq. (15.10)] satisfied by the 
scalar potential. For example the z component of Eq. (15.9) in vacuum is 

The x and y components of A satisfy analogous equations. Thus, following Eqs. 
(1 5.10) and (15.43), we write 

Hence A = A,* + A,$ + A,% is easily obtained, as follows: 

where t' = t - Ir - r f l / c  is the retarded time, and A(r, t )  is the retarded vector poten- 
tial. Let us note that in the Coulomb gauge, the scalar potential is an instantaneous 
one [given in Eq. (15.13)], whereas the vector potential is a retarded one. 

Having determined the retarded scalar and vector potentials for a given charge 
distribution and a given current distribution, one can determine the magnetic and 
electric fields using Eqs. (15.1) and (15.4), respectively. For example, the electric field 
corresponding to the scalar potential given in Eq. (15.41) is 
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where q is the derivative of q with respect t o  its argument ( t  - rlc). 

Example 15.2 Retarded Potential of an Infinite, Straight, 
Filamentary Current 

A constant current I ,  is started at t  = 0 in an infinite, straight, filamentary conducting wire, 
as shown in Fig. 15.1. The scalar potential produced by the current at the observation point 

Figure 15.1 Calculation of the retarded vector potential of fila- 
mentary current that is suddenly turned on at t  = 0. 

is zero since the charge density p, = 0 everywhere in the wire. The vector potential can be 
calculated using the retarded vector potential given in Eq. (15.47). Using the filamentary 
approximation J du = I  dl and taking I(t)  = I ,  for t  2 0 and I(t)  = 0 for t  < 0, we write 

Because of the finite speed of the disturbance, the retarded current is restricted. A given 
element at distance z  from the origin will contribute only if its distance from the point of 
observation is less than ct. Thus I(t - Rlc) = 0 when lzlZ r cz tZ - r2 and I ,  when (zI2 < cZ t2  
- r2 .  Thus Eq. (15.50) becomes A = 0 when r  2 ct and 

Upon integration we get 2 ln[z + ( z2  + r2)112]  for the integral; hence 

It is interesting to note that, as t  + co, this potential reduces to the steady-state time- 
independent potential that was calculated in Example 8.9. In this limit, Jm = ct 
--+ co; thus 

Po 1  A(r, t )  = - - In r  + a very large constant (15.53) 
2a 
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Example 15.3 Retarded Scalar Potential of an Electric Dipole 

An electric dipole of moment up([), located at  the origin and with an arbitrary direction B, 
varies with time. The electric field produced is calculable using the result of Problem 15.4. 
That is, 

where @ is a scalar function that satisfies the homogeneous wave equation. The standard 
solution of this wave equation is given by Eq. (15.36), which upon substitution into Eq. 
(15.54) gives 

where a single prime means differentiation with respect to the arguments. At distances close 
to the dipole, the retarded effects become negligible and the dominant part of this field should 
be identical to the instantaneous field of the same form as the static field of a dipole of 
moment up. As r -* 0, Eq. (15.55) reduces to 

Comparing this field with the field of a static dipole along the direction: 

yields f = p/4nc0, and hence f ( t  - rlc) = p(t - r/c)/4nc0. Hence the retarded potential of an 
electric dipole associated with the electric field given by Eq. (15.54) is 

15.3 Spherical Waves and Field Wave Equations- 
Multipole Expansion for Slowly Moving Distributions 

In Chapter 14 we discussed the propagation of plane waves in regions of charge- 
and current-free space in which we assumed the waves to depend only on a rectan- 
gular coordinate (plane waves). This restriction is not unphysical; for example, the 
radiation emitted by charge and current distributions when observed at large dis- 
tances compared to their dimensions is quite adequately described by plane waves. 
In this section we again study the propagation in regions of charge- and current-free 
space but with no restriction on the distances from the sources, and hence we allow 
the radiation fields to depend on more than one coordinate. The developed theory 
will also be applicable to another physical situation where the radiation depends on 
more than coordinates: the scattering of plane waves by conducting or dielectric 
objects (e.g., conducting or refractive spheres). See Example 15.6 for this application. 

These physical situations can be best described via the wave equations of the 
electric and magnetic fields in spherical polar coordinates. Later on, in Section 15.4, 
we will use the potential equations to arrive at similar results. Let us consider the 
wave equation of the electric field away from external sources and in the absence of 
conducting materials (for vacuum): 
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We are interested in monochromatic radiation; that is, we take 
E -+ Ee-'"' (15.58) 

which upon substitution transforms the wave equation to what is known as the 
vector Helmholtz equation: 

Because of the vector nature of E, this equation is not easily solvable since it does 
not separate in spherical coordinates. However we show below that it can be trans- 
formed to a scalar equation and hence becomes separable using the transformation 

Since V x r = 0, and using the relation V x (f A) = f V x A - A x Vf; this trans- 
formation can also be written as 

E = -V x (r$) (15.61) 

Substituting this form into the Helmholtz equation gives 

The first term in this equation can now be simplified. The Laplacian of a vector is 
given in Eq. (1.67): V2E = -V x V x E + VV.E. Because E is written as a curl of 
the vector r$, then V .E  is zero (the divergence of a curl of a vector is identically 
zero). Thus Eq. (15.62) becomes 

Using V x (r$) = -r  x V$, then Eq. (15.63) becomes 

The first term in the bracket of this equation can be simplified using the identity 
V x (A x B) = (B . V)A + A(V . B) - ( A .  V)B - B(V . A). Thus 

V x (r x V$) = rV2$ - V$(V.r) + (V$.V)r - (r.V)V$ 

Using the fact that V . r = 3 and (V$. V)r = V$, we get 

The term (r . V)V$ can be transformed into the gradient of a scalar function using 
the vector identity V(A. B) = (B.V)A + B x (V x A) + (A.V)B + A x (V x B), and 
using the fact that V x r = 0. Thus 

which upon substitution into Eq. (15.65) gives 

Substituting this result into Eq. (15.64) and using the fact that the curl of a gradient 
of a scalar is identically zero, we get 

V x r  V2$+-$ = O  ( :z2 ) 
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This equation can be identically satisfied if V2+ + (02/c2)* is a function of r only or 
if it is identically zero. Thus we take 

which shows that satisfies a homogeneous scalar equation. It is called the scalar 
Helmholtz equation as opposed to the vector Helmholtz equation satisfied by the 
electric field itself. Note that, in the limit w -t 0, it reduces to Laplace's equation, 
V2$ = 0, whose solution was discussed in Chapter 3 in various dimensions using 
series expansions (multipole solution). We will use some of the formalism followed 
in that chapter to solve the scalar Helmholtz equation (multipole solution). But 
before we solve for $, we will discuss the nature of the fields. Two cases arise when 
we try to construct the electromagnetic fields. 

1. Transverse Electric (TR).  In this case, one starts with the Helmholtz equation 
for the E field. The dependence of the E field on the spatial coordinates in this case 
is 

which shows that E is perpendicular to the radial direction or tangent to the spher- 
ical surface through the point of interest and with center at the origin. The B field 
corresponding to this case is calculated from Maxwell's equation: V x E = -dB/dt. 
Taking the time dependence of E and B of the form e-'"' (monochromatic radi- 
ation), then 

Hence 

2. Transverse Magnetic (TM).  In this case, we start with the vector Helmholtz 
equation for the B field 

The use of the prime on B is to emphasize that it is not the same one given in Eq. 
15.71. The dependence of the B' field on the spatial coordinates is taken as 

which implies that the magnetic field is perpendicular to the radial direction or 
tangent to the spherical surface through the point of interest and with center at 
the origin. The E' field corresponding to this case is calculated from Maxwell's 
V x H = dD/dt. Taking the time dependence of E' and B' of the form e-'"' gives 

Hence 
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With the fields defined in terms of @, we turn our attention to obtaining solutions 
for it using some of the formalism we used in solving Laplace's equation in spherical 
coordinates. Using k = w/c and writing V 2  in spherical coordinates, we obtain 

This equation can be solved using the method of separation of variables, which was 
discussed in Chapter 3 for the solution of electrostatic boundary value problems. 
Now although the procedural steps that will be used here are identical to those 
followed in the electrostatic problems, the presence of the term k2@ in the present 
equation, which is a direct result of propagation, will make the solution more 
complicated. Although we will solve the three-dimensional equation (general case), 
the applications presented in this book will have azimuthal symmetry. Moreover, all 
the applications we will consider in this book utilize the lowest two terms in this 
expansion: (1, m) = (0,O) and (1, O), where 1 and m are separation constants. These 
terms are as follows: 

where Cg and Cy are constants. See Example 15.4 for the solution of the general 
case 

Example 15.4 General Solution of the Scalar Helmholtz Equation 

In the separation-of-variables method we take $ as a product of three functions, each of 
which depends on a single variable only: 

Substituting this product into Eq. (15.76) and dividing by $/r2 sin2 0, where r # 0 and 8 # 0, 
we get 

The third term [(d2F/d0Z)/F] depends only on 4, whereas the rest of the terms in the equa- 
tion do not depend on 4;  therefore, it should be set equal to a separation constant: -m2. 
Thus, 

where we used the subscript m to indicate the dependence of F on m. Inserting the separation 
constant -m2 into Eq. (15.79) and dividing by sin2 0, where 0 # 0, we get 

1 d dR 
-- 

1 d . dP mZ 
r2-+ k2r2 +-- sin 8 - - - 

R dr dr P sin 8 dB dB sin2 8 = O 
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Since the first two terms of this equation depend only on r, whereas the last two terms 
depend only on 8, we set the first pair equal to  a constant: l(1 + 1). Thus 

-- I([+ 1) -- P;" = O  
sin e do slnZ "' e I 

where we used the subscript I to indicate the dependence of R and P on 1 and the superscript 
m to indicate the dependence of P on m. 

We now proceed to solve Eqs. (15.81), (15.83), and (15.84). The solution of Eq. (15.81) is 

The magnitude of m has to be restricted in order to make these solutions single-valued 
functions of 4. For the solution to make sense physically, it should be the same after a 
rotation of 27[, or 

which requires m to be a positive integer o r  zero. An important property of these solutions 
that we need to draw our attention to is the fact that they are orthogonal 

where 6,,,, is the Kronecker delta function. 
Equation (15.83) depends on both of the separation constants l(1 + 1) and m2. For  the 

special case of m = 0, it reduces to  the Legendre's equation we encountered in the solution of 
electrostatic boundary value problems of azimuthal symmetry [see Eq. (3.22)]. It was found 
that this special equation has solutions that behave well for all values of 8, including 0 and n, 
only if I is a positive integer. This requirement is also necessary in the present situation where 
m is nonzero. However, for a given I, the m values are restricted to m I I. With these con- 
ditions, Eq. (15.83) is called the associated Legendre's equation. Its solutions are called the 
associated Legendre's polynomials; for a given 1 and m they can be calculated from the 
Legendre's polynomial of the same I, PI, using the generating relation 

where yl = cos 0. Table 15.1 gives the explicit dependence on 0 of a few of these polynomials. 
An important property of these polynomials is the fact that they are orthogonal to each 
other; that is, 

Table 15.1 

P: = 1 PO - - 1 ,[3 COS, e - 11 
P: = cos e P: = 3 cos e[i - C O S ~  eI1l2 
Pi = sin 0 P: = 3(1 - cos2 8) 

2 (1+m)! 
611*6mm, 

21 + l ( 1  - m)! 

where (1 + m)! means the factorial of ( I  + m)[= (I + m)(l + m - 1). . . 11. 
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With the separation constants determined, the radial eqation can now be solved for differ- 
ent values of I. Taking ( = kr, Eq. (15.84) becomes 

We use the substitution R, = X, / f i  to write this equation in the well-known form called the 
Bessel equation : 

The Bessel equation has two linearly independent solutions for each I. These solutions are 
known as the Bessel and the Neumann functions and are designated as J,+ ,/,(() and N,+ ,,,(() 
respectively. Both of these solutions are well known and have been numerically tabulated. 
They are of half-integral order and often called the cylindrical Bessel functions. The corre- 
sponding solutions for R,, however, are called the spherical Bessel and Neumann functions: 

Table 15.2 shows the explicit dependence on r of a few of these functions. It also shows that j, 
and q, involve combinations of sine and cosine functions. It is easy to show that the following 
combinations of these functions involve complex exponentials: 

Table 15.2 

sin kr 
0 - 

kr 

1 
sin kr cos kr 

(kr)2 kr 

3 cos kr [& - ;]sin - 

1 - - cos kr 
kr 

cos kr sin kr 

(kr)' kr 

3 sin kr -[& -;]coskr -F 

hjl)(kr) = j,(kr) + iq,(kr) and hj2'(kr) = j,(kr) - iq,(kr) ( 1  5.93) 

The complex functions hi1' and hi2) are called Hankelfunctions. For real kr, such as the case 
here, hi1) = hi2)*. Table 15.3 shows the explicit r dependence of few of the Hankel functions: 

Table 15.3 

eikr , - ikr 

0 - -- 
ikr ikr 

, - ikr 

- - ( I  kr -;) 
,ikr 3i 3 1  i e ; r [  

2 i -  I + - - -  I - - - -  
kr [ k (kr)' kr (kr)l  



484 RADIATION 

Because the asymptotic property of the Hankel functions is useful in radiation problems, we 
state here that as kr + co, these functions become 

The most general solution of the scalar wave equation can now be written: 

$(r, t )  = 2 e-iwr[C;"hjl)(kr) + Dphj2)(kr)]P;"(cos 0)e""b (1 5.95) 
I. m 

We are interested in disturbances produced by sources located near the origin, and hence in 
outgoing waves (propagating from small r towards infinity). Taking the limit kr + co in Eq. 
(15.95) and using Eq. (15.94) give: 

The first term represents an outgoing wave, whereas the second term represents an incoming 
wave (propagating from infinity towards the origin) produced by sources at infinity. Therefore 
the second term does not represent a physical solution. We consequently take D;" = 0 and 
retain C;". Thus 

See the corresponding considerations following Eq. (15.34). 

In Eq. (15.77) the very lowest solution, I),,, depends only on the radial distance 
and therefore does not contribute to the electromagnetic fields. This is due to the 
fact that V$,, is radial; hence r x VI),, = 0. The next solution I),,, however, con- 
tributes to the EM fields. For the TE case, Eqs. (15.60), (15.71), and (15.77) give 

- 0 ~ ( ~ f ~ ~  - + - k:r3)keikr sin B]Eo (15.98) 

E(r) = r x VI),, = -+E,  ( I f r  -+- kL2)e ikr  sin 6 

where E, is a constant. The electric field turns out to be in the 4 direction, which is 
perpendicular to the radial direction as we supposed in the TE case. The magnetic 
field, on the other hand, has one component along 6 and one component along P. 

For the TM case, Eqs. (15.73), (15.75), and (15.77), give 

B1(r)= -$Bo A ( I f r  -+- klr2)eikr sin B 

where Bo is a constant. Equations (15.99) to (15.102) show that the roles of E and B 
are interchanged in the TE and T M  cases. The fields E(r, t) and B(r, t) can now be 
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calculated by multiplying the spatial parts of the fields with e-'*' and taking the real 
parts. Thus, for the TM case, 

[cos(~;~- kr) sin(ot - kr) 
B'(r, t) = - $B, 

+ k2r2 1 sin 8 

sin(wt - kr) cos(wt - kr) 
E1(r, t) = 2cBo [ k2r2 

- 
k3r3 1 cos e P 

cos(ot - kr) sin(wt - kr) cos(ot - kr) 
B ' [  kr 

- 
+ k2r2 k3r3 1 sin 8 8 

A similar procedure can be used to calculate the E and B field for the TE case. 
The nature of the fields will now be discussed. We consider an electric dipole, 

which is placed at the origin along the z axis and whose magnitude varies sinusoid- 
ally with time: p(t) = poZ cos wt. In order to determine the EM fields produced by it, 
we examine the fields in Eqs. (15.99) to (15.102). For example, let us examine the 
fields close to the origin. Taking kr + 0, the retardation effects become unimportant. 
In the TE case the following terms dominate. 

kEO (2 cos e P + sin e h B(r) = - - (1 5.105) 
ok3r3 

In the TM case, on the other hand, the following terms dominate as kr + 0. 

cB 
K(r) = - 2 (2 cos 8 P + sin 6 8) (15.106) 

k3r3 

A B  

B'(r) = - 4i 2 sin 8 
k2r2 

(15.107) 

The electric field E' of the TM case has the spatial dependence of an electric dipole 
[see Eq. (2.46)]. On the other hand, the magnetic field B of the TE case has the 
spatial dependence of a magnetic dipole [see (Eq. 8.98)]. Therefore we conclude that 
the fields of the TE case are produced by a magnetic dipole, and the fields of the 
TM case are produced by an electric dipole. 

Comparing Eq. (15.106) with the field of a static electric dipole [Eq. (2.46)l gives 

Thus 

Similarly, one can follow the same procedure in the case of TE and show that the 
fields described by Eqs. (15.99) and (15.100) are due to a magnetic dipole, directed 
along the z axis, m = mo2 cos cot; that is, 



486 RADIATION 

The above treatment shows that the fields of an electric (magnetic) dipole are 
quite complicated. The electric field of an electric dipole for example has terms 
varying as l/r, l/r2, and l/r3, whereas the corresponding magnetic field has terms 
varying as l/r and l/r2. Full discussions of these fields will be given in Sections 
15.4.1, 15.5 and 15.6. At this point we will investigate the electromagnetic fields of 
the electric dipole at large distances compared to the wavelength of the radiation; 
that is, kr % 1. Taking kr $- 1 in Eqs. (15.109) and (15.110), multiplying by e-'"I, and 
taking the real parts, we find that 

pok3 cos(wt - kr) a B'p tl - -- 

These fields are called the radiationfields; they vary as l/r. The electric field is in the 
0 direction, whereas the magnetic field is in the 6 direction; that is, each of them is 
normal to P and to each other. Moreover, they are related by the simple expression 

The Poynting vector, S = E x H, in the region is 

The total power radiated can be calculated by integrating S over a sphere of radius 
r : 

S.fida=-- pik4 cos2(wt - kr) 
8nP0&6c 

p=- pik4 cos2(wt - kr) 

The average power radiated is obtained by averaging over time. Since averaging 
cos2(ot - kr) gives & then 

Example 13.5 Dipoles Near Conducting Planes-Method of Images 

The radiation from electric or magnetic dipoles is affected when a conducting plane is 
brought near these dipoles. This is due to the induced charges and currents in the conductor. 
In Chapters 3 and 8, these effects were studied in static and steady-state situations, using the 
method of images. In this example we consider these effects in the presence of time 
dependence. 

Consider a system of charges of density p(r, t )  and current density J(r ,  t )  near a conducting 
plane that lies in the x-y plane. The reflection of the system in the plane is governed by the 
fact that each point at r with coordinates ( x ,  y, z) transforms to r' with coordinates ( x ,  y, -z). 
Moreover, from the method of images, the reflection results in a change of sign of the charge 
density: p(r, t )  becomes - p(rl,  t). 
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The reflection law of the current density can now be deduced from the above transform- 
ations. The current is related to the density p and velocity v  of the charges by Eq. (7.6):  
J(r,  t )  = p(r, t)v. Therefore the reflection of J in the plane results in the current density J' such 
that 

The electric dipole moment of the distribution transforms in the same fashion as the current 
since it is defined in terms of the product of the charge density and r; that is, p(r, t )  = j pr do. 
Therefore 

The magnetic dipole moment, however, transforms differently because it is defined in terms of 
the cross product of the current density and r ;  that is, m = 4 j J x r  do. Thus 

If a time-dependent electric dipole is placed at a distance b from a large conducting plate 
such that b 4 A, where ?, is the wavelength of the emitted radiation, then the dipole will have 
an image dipole of magnitude given by Eq. (15.119). Because the distance between the dipole 
and its image is much smaller than ?., then one can add their dipole moments vectorially first. 
Thus 

pT = pr(t) + A t )  = 22pz = 22p cos u (15.121) 

where GI is the angle between the dipole and the normal to  the plate (z axis). Since the power 
radiated by a dipole is proportional to  the square of the dipole moment, then the power 
emitted is 

Power = 4P0 cos2 a (15.122) 

where Po is the power radiated by the dipole in the absence of the plate. Thus when the 
dipole is normal to the plate, the power emitted is 4P0; when the dipole is parallel :o the 
plate, the power is zero. In the latter, radiation from higher-order charge distributions such as 
the quadrupole radiation will dominate. 

Example 15.6 Superposition of Dipole Radiation Fields 

We treat in this example the superposition of the radiation fields of two dipoles. Consider 
two dipoles, one of which is located along the x axis and has the time dependence 
p,(t)  = po% cos o t .  The other dipole is located in the x-y plane a t  an angle 4 = 4 ,  from the x- 
axis and has the time dependence p2(t)  = po sin wt, as shown in Fig. 15.2a. We take the 
distance between them to be much smaller than the wavelength of the radiation, and hence we 
can take both of them to be located at  the origin. 

The electromagnetic radiation fields produced at  large distances by an electric dipole lying 
along the z axis are given by Eqs. (15.1 12). The fields produced by a dipole lying along the x 
axis can be obtained from these results by making a coordinate transformation that takes the 
z axis into the x axis. The result is 

[ I$ sin 4 - 6 cos 4 cos B]e-i(Y'-kr) E, (r ,  t )  = - 
4 1 1 ~ ~  kr 

p0k3 [I$ m s  4 cos e + 6 sin 4 ] r - i ( Y r - k r )  B,(r,  t )  = - - 
4xeockr 



488 RADIATION 

Figure 15.2 Superposition of dipole radiation fields. (a) Schemetic representation of two 
dipoles in the x - y planes. (b) Angular distribution of the power radiated in the x - y plane. 
(c) The same distribution in the plane normal to x - y plane and symmetric with the dipoles. 

For the second dipole, we have 

The total field produced by the dipoles is the vector sums B = B, + B2 and E = E, + E,. 
Using i = einI2 gives 

B =  -- p0k3 d[cos 4 + i cos(4 - +,)]cos 6' + ([sin # + i sin(4 - QO)])e-i(W'-kr' (15.128) 
4n&,ckr 

The time average of the Poynting vector per solid angle can be calculated by taking the cross 
product f Re(E x H*). This gives 

The angular distribution of the power radiated is a maximum in the directions that are 
perpendicular to the dipole moments: 0 = 0 and 0 = n. As an example we take the case where 
the angle between the dipoles is 4, = 45". Figure 15.26 shows the distribution in the plane of 
the dipoles (x-y plane), and Fig. 15.2~ shows the distribution in a plane normal to the x-y 
plane and defined by 4 = 22.5". 

The question of the polarization of the radiated wave and its dependence on the angles is 
interesting. We will leave these properties as an exercise (see Problem 15.1 1). 

*Example 15.7 Scattering of EM Wave by a Small Sphere 

In this example we sketch the application of the above theory (multipole expansion) to the 
problem of scattering of plane EM waves by small charge-free and current-free spheres. 



15.3 SPHERICAL WAVES A N D  FIELD WAVE EQUATIONS 489 

Figure 15.3 Scattering of an electromagnetic 
wave by a small sphere of given electric and mag- 
netic polarizabilities. 

A linearly polarized, plane, monochromatic wave is incident on a sphere, whose radius R is 
much smaller than the wavelength of the incident wave: R 4 I. Because of this the external 
EM fields in the neighborhood of the sphere may be taken as uniform; hence we may treat 
the scattering of the wave in the radiation zone from the point of view of the radiation 
emitted by the induced electric and magnetic dipole moments of the sphere. 

Let us take the electric and magnetic polarizabilities of the sphere to be Be and P,, 
respectively. The directions of propagation and polarization of the incident wave are taken 
along the z and x axes, as shown in Fig. 15.3. The electric dipole moment of the sphere is 
given by p = BeE, where the electric field is evaluated at the center of the sphere. Since R is 
much less than I, then kR 4 1 .  Thus 

p(t) = Be Eo9e - i("'-k')I,,he,e = Be Eo9e-  '"I (15.130) 

Similarly, the magnetic dipole moment, of the sphere is 

m(t) = Dm Ho fe - '"I (15.131) 

The radiation fields produced by an electric dipole moment along the x axis were given in 
Example 15.6 [see Eqs. (15.123) and (15.124)]. Thus we write: 

Be= -- BeE0k2 [h cos Q cos B + 6 sin 41e - i (w t -kr )  
4ne0 cr 

The fields produced by the magnetic dipole can also be shown to be: 

Em = - Bm H0  k 2  [-( sin 4 cos B + B cos 4 ] e - i ( u - k r )  
4ns0 cr 

9 =--  B m H 0 k 2  [h cos 4 + 6 sin 4 cos B]e- i (U-kr)  
4neOc2r 

The total fields E = Ee + Em and B = Be + B,, can be then used to calculate the scattered 
power as a function of angles. They also can be used to discuss the polarization of the 
scattered wave. We leave these and other calculations as exercises (see Problem 15.14). 
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15.4 Radiation from Antennas 
In this section we consider the radiation emitted by the so-called simple antennas, 
which are short, straight, conducting wires that carry time-dependent currents. We 
will first start with a very short antenna (differential antenna) such that its length is 
much smaller than the wavelength of the radiation emitted (dipole approximation). 
The radiation from longer ones (of length equal to one-half of the wavelength of the 
radiation), will then be constructed by summing the fields of the very short ones. 
Then we will discuss the radiation from an array of half-wave antennas in which 
interference effects similar to those encountered in optics arise. 

Since we are interested in very small antennas observed at large distances, we can 
use the method of field multipole expansion (spherical waves) directly. However, we 
elect to use the potential method of Section 15.2 and specialize it to large distances. 
After doing this, we will show that both methods give identical results. 

15.4.1 Differential Antennas-Electric Dipole Fields 

Consider a very short length of wire carrying a harmonically varying current: 
I = lo cos wt (see Fig. 15.4~). By "short" we mean that its length is much smaller 
than the wavelength of radiation emitted. For frequency of oscillation w, the wave- 
length of the emitted radiation is A = 2nclw. Thus we take 

In terms of the period of oscillations, T = 2n/w, this condition becomes 

This restriction on the length of the antenna is known as the dipole approximation. 
For example, for w = 101° rad/s, A = 19 cm, and this condition is satisfied when 1 is 
of the order of 1 mm. 

The vector potential produced by the wire will be calculated using the retarded 
potential [see Eq. (15.47)]. Using the filamentary approximation J dv = I dl we 
write 

dz' 
R ' 

where R' = r - Pz' and hence R' = r(1 - 2(z1/r)cos 6 + zf2/r2)'l2. We are interested 
in determining A at points where r b I; hence one can take R' x r in the denomi- 
nator. In the numerator, however, one cannot neglect the variation along the wire 
unless one invokes the dipole approximation in addition to the condition r b I. That 
is, the argument of the cosine must satisfy wT b (wzl/c)cos 8 or 

c T  b z'cos 6 (15.137) 

where T is the time for which appreciable change in the amplitude of oscillations 
takes place (i.e., the period). Equation (15.137) is just the dipole approximation 
assumed above, since z' cos 19 I 112. Thus 
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dipole 

Magnetic 
Electric f ield 
f ield lines lines 

( c )  

Figure 15.4 (a) Differential antenna. (b) Schematic of the equivalent os- 
cillating dipole. (c) Field lines of an oscilliting dipole. 



It is to be noted that the above procedure is not restricted to only harmonic 
variations in the current and charge distributions. For any given time dependence 
that satisfies the dipole approximation, I(t), we get 

It is sometimes useful to use the components of A in spherical coordinates. These 
are easily calculated from Eq. (15.139) as 

The scalar retarded potential can now be calculated from A using the Lorentz 
gauge: 

Substituting Eq. (15.139) into this equation gives 

To solve for @, one can carry out the differentiation with respect to z and then 
integrate over time. Here, however, we choose to do it in a slightly different way, by 
writing 

where c2p0 was replaced by I/&,. We interchange the order of differentiation and 
integration and note that the integral f I(t - r/c)dt is just the charge q(t - rlc); 
therefore 

where q(t - r / c ) /4n~~r  is the retarded scalar potential of a point charge q placed at 
the origin (see Section 15.2 for the derivation of such a potential). It is interesting to 
note that this result can also be written in the form [see Eqs. (2.45) and (2.68)]: 

This form shows that the scalar potential of a differential antenna is the differential 
of the retarded monopole potential of charge q. Because of the dependence of the 
charge on the distance of the point of observation, then the retarded scalar potential 
will depend on the current. This can be seen by realizing that 

where q = I is the derivative of q with respect to its argument. Thus 
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In the case of harmonic variations, the result gives: 

Q(r, t) = --- - - sin(ot - kr) I 
where k = o/c, qo = I,/o and q = q, cos o t .  

We would like to note that as the point of observation approaches the wire, then 
the first term in Eq. (15.145) dominates and q(t - r/c) may be taken as q(t). Thus 
Q(r, t) reduces to 

which is just the instantaneous (scalar) potential of a dipole of moment p(t) = lq(t)2, 
where the retardation effects are unimportant. Figure 15.4b shows the equivalent 
oscillating dipole schematically. 

With the vector and scalar potentials calculated, we can now calculate the corre- 
sponding electric and magnetic fields. We consider the case where the current is 
varying harmonically. Substituting Eq. (15.138) in B = V x A gives: 

1 
cos(ot - kr) + - sin(ot - kr) sin 8 

kr 1 (15.148) 

which shows that the B field is entirely along the 6 direction. The electric field 
produced by the wire can be calculated by substituting Eqs. (15.138) and (15.146) in 
E  = - aA/at - VQ. Writing V in spherical coordinates gives 

E = -  ' + - f -  A+-- (a: ) (a: ) r sin e a4 
Thus 

11002 1 
Eo = - [(A - k ) ~ ~ ~ ( o t  - kr) - - sin(ot - kr) sin 0 (15.149) 

k2r2 1 
21IOo2 sin(wt - kr) cos(ot - kr) 

E, = --- [ k3r3 
- 

4neO c3 k2r2 
Icos e 

These fields are exactly the fields of an electric dipole obtained previously using 
the spherical-wave method (field multipole expansion) for (I = 1, m = 0) if we make 
the identification 

where p, is taken as the amplitude of the dipole moment of the charge-current 
distribution as shown schematically in Fig. 15.4b. In addition to the previous dis- 
cussions of dipole fields, we now make the following comments. 

1. Equations (15.148) and (15.149) show that the fields of a differential antenna, 
the simplest of all, are quite complicated. The electric field has terms varying as llr, 
l/r2, and l/r3, and the magnetic field has terms varying as l/r and l/r2. The terms 
varying with odd powers of r-' are proportional to cos(ot - kr), whereas the terms 
varying with even powers of r-' are proportional to sin(ot - kr), which indicates a 
phase difference of 4 2  between these two sets. 
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2. The direction of the fields is also interesting. The B field is purely in the 6 
direction, or transverse magnetic (TM), whereas the E field has components in the P 
and 0 directions. Because the radiation emitted by EM fields is given by the cross 
product E x H, then the P component of the electric field does not contribute to the 
radiation. Moreover, because E, depends on sin 9, then there will be no radiation in 
the 9 = 0 and 9 = n directions (along the direction of the dipole). 

3. The radial dependence of dipole fields has three distinct regions: the static, 
induction, and radiation regions. Some aspects of these regions were discussed in 
Section 15.3. Here we discuss them in more detail. The static (instantaneous) region 
is defined by the condition kr 4 1, where the electric field is dominated by l/r3 
radial dependence. The radiation region, on the other hand, is defined by the con- 
dition kr %- 1. In this region E and B are dominated by l/r  radial dependence and 
are called radiation fields. The intermediate region, where kr is of the order of unity, 
is called the induction region and the electric field is dominated by l/r2 dependence. 
Thus we write 

1IOw2 sin(wt - kr) 
E, = --- [2 cos %P + sin 961 kr z 1 (15.151) 

4n&,c3 k2r2 

llowz cos(wt - kr) 
Es = - k3,.3 [2 cos 9P + sin 001 kr < 1 

where the subscripts R, I, and S stand for radiation, induction, and static regions, 
respectively. Figure 1 5 . 4 ~  gives the E and B field lines of an oscillating dipole. 

These regions are of practical importance in communication. Radio transmission 
utilizes the radiation field. Some specialized military applications, for example, uti- 
lize the static region (see Example 15.8). 

With the fields produced by a differential antenna (an electric dipole) calculated, 
the power radiated by it can be calculated. In Section 15.3 the power radiated by an 
electric dipole of moment p02 cos wt [see Eq. (15.116)] was fcund to be 
(P) = p;k4c/12m0. Using the identification between po and the current in the 
antenna [Eq. (15.150)], po = llo/w, then we can immediately write for the antenna 

where 

is an effective radiation resistance of the antenna. This resistance can also be written 
in terms of the ratio l/A: 

15.4.2 Radiation from a Half-Wave Antenna 

We now consider the radiation from a realistic antenna. The one we considered in 
Section 15.4.1 was so short that its length was much less than the wavelength of the 
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Figure 15.5 Half-wave antenna. 

emitted radiation. At this point we consider one whose length is comparable to the 
wavelength (Fig. 15.5). In the very short case the magnitude of the current was taken 
not to vary along it. In the case of the long one the current must vary along its 
length if we hope to satisfy the required null at its ends. We will assume the current 
to vary harmonically with the distance along the wire. Although this is a good 
approximation, however, it is not exact because the losses due to the radiation will 
tend to cause some departure from the harmonic dependence. 

We take the current in the antenna to be of the form 

I(z', t )  = I, cos o t  cos kz' (1 5.155) 

The time dependence is exactly the dependence we took in the short antenna. The 
spatial dependence cos kz' vanishes at z' = f n/2k = f 114; thus with the antenna 
length taken as 112 and its center taken at the origin, this current distribution 
satisfies the null condition at its ends. Moreover, it is a standing wave since the time 
and spatial variations enter via the product of their harmonic dependences. 

We will use the following procedure for obtaining the fields produced by the 
antenna. It will be subdivided into many very short sections. The fields of each are 
just those of a differential one. Note that one cannot calculate an effective dipole 
moment of this antenna by adding the dipole moments of all of its differential 
elements because some of them are separated by distances of order 1. A summation 
(integration) of the differential fields must be performed. Because the resulting fields 
are very complicated, we will only concern ourselves here with the contributions of 
the fields that give rise to the radiation-the fields that vary as llr. Thus the 
radiation field of an element of length dz' located at z' and which is at a distance 
R = r - Pz' from the observation point (see Fig. 15.6) is obtained from Eqs. (15.148), 
(15.149), and (15.155): 

zoo2  1 
dE, = ---- - cos(ot - kR)sin 8' cos kz' dz' 

4n&,c3 kR 

'lo'' o2 [cos(wt - kR)]sin @sin kz'dz' dB, = -- 
4rckR c2 

The total fields are determined by integrating these differential ones over z'. Let 
us consider the electric field first: 

Z o o 2  {COS(W;~- kR) E, = --- cos kz' sin 8' dz' 
4 n ~ ,  c3  

Because R and 8' depend on z', the above integral is quite complicated. However, 
because we are interested in the case where r s 1 = z' (that is, the distance of the 
point of observation is much larger than the dimension of the antenna), then the 
angle 8' can be approximated by 8 for all the elements and the denominator kR can 
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Figure 15.6 Calculation of the radiation 
fields of a half-wave antenna. 

be taken as kr. The latter approximation, however, cannot be used in the argument 
of cos(wt - kR); it is because kR changes by amounts -n/2 which although much 
smaller that kR, they change the phase of the cosine term drastically. Some approx- 
imation, however, can still be made by neglecting terms of the order zfZ: 

kR x k(r - z' cos 9) 
Thus E, becomes 

loo2 sin 9 
E, = S cos[wt - kr + kz' cos O]cos kz' dz' 

4m0c3kr 

In order to separate the dependence of r from z' we expand the cosine term; thus 

low2 sin 9 
E,  = cos(kzl cos 9)cos kz' dkz' 

4n&,c3kZr 

- sin(ot - kr) sin(kz' cos 9)cos kz' dkz' KZ I (1 5.159) 

where the integration is taken over kz'. The second integral vanishes because the 
integrand is an odd function of kz'. The first integral gives (see a table of integrals): 

10 cos[(n/2)cos 91 E, = - cos(wt - kr) 
2nc0 rc sin 9 

Similarly, the integration of Eq. (1 5.157) gives 

cos[(n/2)cos 91 
B - a cos(ot - kr) " 2nr sin 9 

The Poynting vector S is E x B/po = E,B,P/po; thus 

1; cosz[(n/2)cos 91 S = cos2(ot - kr) 
4 n 2 ~ o ~ r 2  sin2 8 

Integrating S over a sphere of radius r gives the power radiated: 

1; P(t) = - 
1: cosz[(rr/2)cos 91 

cos2(ot - kr) sin 8 dB 
27rt0 c sinZ 8 

(15.163) 
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Figure 15.7 Angular dependence of the radiation field of 
a half-wave antenna. 

The integral over 8 does not have a closed form. A numerical integration yields 0.82. 
Thus 

1; P(t) = 0.82 - cos2(wt - kr) (15.164) 
2 7 1 ~ ~ ~  

To get the average power, we average the cos2 term over time. Since the average of 
a cos2 term is +, then 

I 1 
(P) = 0.82 ----- = - RI;  

4nsoc 2 
(15.165) 

where R = 73.1 Cl is an effective radiation resistance. 
It is interesting to discuss the polarization and the angular dependence of the 

radiation. Equation (15.160) shows that the electric field is in the 8 direction; thus 
the polarization is always in the plane containing the dipole. This property is called 
the vertical polarization. Equation (15.162) shows that the radiation is independent 
of 4, with the angular dependence shown in Fig. 15.7 and given by F(8) = 

cos2[(n cos 8)/2]/sin2 8. This angular function is zero at 8 = 0 and 8 = n, and unity 
at 8 = 4 2 .  For the other values of 8, the distribution is a smooth function of 8. 

Example 15.8 Communication from an Aircraft Carrier 

In this example we discuss the importance of the various components of the dipole field by 
considering the communication with a carrier. The static field (l/r3 dependence) is suitable for 
high-security communication because of its short-range nature as compared with the l/r  
radiation field. Let us take the desired working signal of the electric field to be 1 pV/cm 
(1 pV = V) and the minimum detectable signal to  be pV/cm. If the communication 
is desired to be from a distance r ,  = 2 km, then the distance r, a t  which the field becomes 
undetectable is E,/E, = (r,/r,)' = 100. Thus r, = (800)'13 - 9.8 km. For a radiation field, 
however, the distance at  which the field becomes undetectable is 200 km, which shows the 
attractiveness of the static field. In order to  minimize the security risk radiation field, the 
frequency of radiation can be chosen such that kr, = 2nr,/l is much less than one. Since the 
ratio of the static field to the radiation field goes as (kr)-,, this makes the field predominantly 
static. 
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Example 15.9 Antenna Array 

The radiation from a half-wave antenna was found to be uniform in horizontal directions (4 
direction) and a continuous function of 8. In many applications, it is desirable to  concentrate 
a certain amount of power into some specified directions in order to enhance the reception, 
improve the resolution and minimize interference effects with other activities. These desired 
properties can be achieved by use of an array of half wave dipoles. 

Consider Fig. 15.8, where we show a linear array of N half-wave dipoles, which are equally 
spaced and normal to the x-y plane, with the separation equal to  half the wavelength of the 
radiation. The currents in all the dipoles are equal and in phase. The electric field produced 
by the array at a point P in the radiation zone is the vector sum of the individual fields 
produced by each of the dipoles. Because the various dipoles are at different distances from P, 
then the corresponding fields at P have different amplitudes and phases. For  a given configur- 
ation there are definite relationships among the amplitudes and among the phases. We note 
that since the changes in the distances are quite small, the variation in the amplitudes of the 
various fields can be neglected. The corresponding variations in the phases however, is very 
important and can cause complete destruction of the radiation. From Fig. 15.8 we see that 
the distance of the mth dipole from the point of observation, is larger than the corresponding 
distance of the first dipole by (m - 1)6 = (m - 1)d sin 4. The corresponding phase difference 
is 2n(m - 1)6/1. Thus the electric field Em of the mth dipole in terms of the field of the first 
one, E,, is 

Summing Em over m gives the total field 

where a = 2n6/1. Using 6 = d sin 4 = 41 sin 4, gives 

Figure 15.8 Array of half-wave antennas with sep- 
aration equal to  112. 
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This result shows that the field depends on 4, thus resulting in concentration of the power in 
certain directions. We leave the details of the pattern of the radiation as an exercise (see 
Problem 15.18). 

Example 15.10 Vertical Quarter-Wave Antenna Near a Grounded Plate 

When the length of a half-wave antenna is inconveniently long, a combination of a quarter- 
wave antenna and the ground can be used. Such a combination is used in low-frequency 
applications where the wavelength of the radiation is large. Consider Fig. 15.9, in which a 114 
antenna is placed vertically at a small distance compared to 1 above the ground. The radi- 
ation pattern due to the antenna is going to be due to the direct radiation produced by the 
various elements of the antenna and the reflected waves. The reflected waves, appear to 
originate from a E.14 image antenna just below the ground. The antenna and the image form a 
half-wave antenna: hence the pattern of the power radiated is given by Eqs. (15.162) to 
(15.165). 

u 
7/////////////////{y/////////////A 
Ground I l  h 

1 '  4 I I 
\) 

Figure 15.9 Quarter-wave antenna erected 
vertically and close to  the ground. 

15.5 Multipole Expansion of the Retarded Potentials- 
Radiation from Slowly Moving Charges-Electric Dipole 

The potentials produced by charge and current distributions are given by the re- 
tarded potentials in Eqs. (15.43) and (15.47). For general distributions, the integrals 
are generally very complicated where closed forms may not exist. Some analytical 
progress using some approximations, however, may be achieved in certain distri- 
butions. These distributions are defined by two properties: (1) We take the largest 
dimension of the distribution to be much smaller than the dominant wavelength of 
the radiation (dipole approximation), and (2) the distributions are bounded in a 
volume whose largest dimension is much smaller than the distance of the distri- 
bution from the point of observation. Because we are considering charges in motion, 
condition 2 implies that the speeds of the charges have to be small compared to the 
speed of light, so that in the time it takes the radiation to reach the point of 
observation, the distribution continues to have a dimension much smaller than the 
distance to the point of observation. 

We start by expanding the scalar potential: 

dv' (15.169) 

where t' = t - Ir - rll/c, r is the distance of the point of observation with respect to 
the origin, and r' is the distance of a charge element in a volume dv' with respect to 
the origin. Since r'lr e 1, we expand Ir - r'l and l/lr - rfl in powers of r'lr and keep 
the lowest terms; that is, 
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and 

Substituting these expansions in O(r, t) gives 

We now expand p(rl, t - r/c + r' -r/cr) in the neighborhood of the argument (r', 
t - r/c) using the Taylor series expansion: 

The physical basis for this kind of approximate expansion is that we take the 
distribution to be located at the origin when the retardation effects are to be cal- 
culated. That is, all elements of the distribution regardless of their position r' will 
have the same retarded time t' = t - r/c. Substituting Eq. (15.173) into Eq. (15.172) 
and keeping terms up to order rl/r, we get 

where 

is the total charge of the distribution, which is a constant quantity independent of 
time, and 

is the retarded electric dipole moment of the distribution, and #t - r/c) = dpldt. 
Equation (15.174) represents the first three expansion terms. Higher-order terms 
such as the quadrupole terms and so on depend on high moments of the distri- 
bution (higher powers of rl/r), thus making their contribution negligible compared 
to the terms we already calculated. However, the next higher-order term will domi- 
nate if the calculated terms vanish due to some symmetry. 

A similar procedure can now be used to expand A(r, t) in powers of rl/r. Because 
the current density is defined through the relation J = pv = p(drl/dt), then the zero 
order of the expansion of J is of first order in r'lr; hence to make the expansion 
consistent with the above expansion of q r ,  t), we should retain the zero order only. 
In the vector potential expression, 

J(rl, t - 1 r - r11/c) 
A(r, t) = - dv' 

4~ S Ir - rfl 

we retain the lowest order of l/lr - r'l, or llr, and the lowest order of the expansion 
of J(rl, t - r/c + r . rl/c) near the argument (r', t - r/c), J(rl, t - r/c). Therefore A 
becomes 
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which shows that, in this approximation, A depends on just the volume integral of 
the current density. In order to make the result more convenient for the calculations 
of the EM fields, we rewrite A in terms of the dipole moment of the charge distri- 
bution. One can show that (see Example 15.1 1 )  

and hence 

Example 15.1 1 

Consider the divergence of the product of the coordinate x and the current density J  (that is, 
xJ). Using Eq. (1.57), we can write as V.(xJ) = (f .J) + xV.J. Integrating V.(xJ) over a 
volume V and using the divergence theorem gives 

where S is the surface bounding the volume K Multiplying Eq. (15.181) by 2, writing similar 
expressions for the products yJ and z J ,  and summing, we obtain 

Far away from the distribution, the surface integral vanishes; hence J dv  = -l rV.J  dv .  
Using the continuity relation, we write V. J = - a p / a t ;  thus 

J d v =  r - d v = -  r p d v  j j: 
Using the fact that p = l r p  dv,  we get Eqs. (15.179) and (15.180). Note that in the steady-state 
case we have J  d u  = 0 as was given in Eq. (8.99). 

- - - --- - 

We should note that the vector and the scalar potentials calculated above satisfy 
the Lorentz condition. Therefore, one could have calculated @(r, t) from A and the 
Lorentz condition (see Problem 15.17). 

With the potentials obtained, E and B can now be calculated from B = V x A 
and E = - VO - aA/at. We take the case Q = 0. Taking the curl of Eq. (1 5.180) 
gives 

Since p is not a function of 6 or 6, then V x p = P x ap/ar = -(PIC) x p; thus 

To calculate E, we evaluate -aA/at and -V@. The first one is easy to calculate; 
that is, 



The calculation of -V@, however, is more complicated because cD involves the 
scalar product of two vectors. Using the vector relations given in Eq. (1.59) and the 
property V x r = 0, we get 

Noting that p and p are functions of t - r/c, then the V operation on them can be 
replaced by ?(d/dr). Thus E becomes 

E = E, + E, + Es 

where 

The ER field is called the radiation jield. It has l/r dependence; hence it contributes 
to the radiation. Moreover, it depends on the second derivative of the dipole mo- 
ment (and thus depends on the acceleration of the charge distribution). The EI field 
is called the intermediate (induction) field; it has l/r2 dependence and it depends on 
the first derivative of the dipole moment (and thus it depends on the velocity of the 
distribution). Finally E,  is called the static jield; it has l/r3 dependence and it 
depends on the dipole moment itself hence on the position of the distribution. In 
fact, if we take p = po2 cos wt, then the above fields give exactly the fields of Eq. 
(15.151), which are produced by a differential dipole antenna with sinusoidal current 
excitation or by a sinusoidally varying electric dipole (TM) [see Eq. (15.103)]. 

The magnetic field given in Eq. (15.185) can be written as the sum of the fields BR 
and B, (that is, B = BR + BI), where 

The contribution BR is a radiation field; it depends on p and has l l r  radial de- 
pendence. The contribution BI is an induction jield; it depends on p and has l/r2 
radial dependence. In fact, the B field can be shown to be related to the EI + ER 
through a simple cross product with 3: 

1 
B = - P  x (EI + ER) (15.194) 

C 

Although we calculated the power radiation by an electric dipole in the case of 
sinusoidal time variations, it is instructive to determine the power in the general 
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nonsinusoidal case where p = p(t). First we note that the radiation fields E, and BR 
can be related via a simple cross product: 

The Poynting vector S = E x H is then 

Substituting Eq. (15.192) in this equation gives 

Let us consider the case where p is along the z axis. In this case S becomes 

Figure 15.10 is a schematic diagram of the radiation fields, showing the Poynting 
vector for this dipole for three points of observation-one along the z axis, one in 
the x-y plane, and one at arbitrary (8, 4). The total power radiated is calculated by 
integrating S over a sphere with a radius r and center at the origin. The result is 

This result shows that the power radiated is proportional to the square of the 
second derivative of the dipole moment of the distribution; hence the distribution 
can radiate only if it is accelerated. 

Figure 15.10 Schematic diagram of the radi- 
ation fields of a time-dependent electric dipole 
whose second derivative is along z, at three se- 
lected orientations. 
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Equation (15.199) can be specialized to the case of a single charge undergoing an 
accelerated motion. The speed of the charge is required to be much smaller than the 
speed of light since Eq. (15.199) was derived under this condition. Consider a charge 
q  whose position is given by r', which is measured with respect to an arbitrary 
origin. The dipole moment of the charge is p = qr'; hence p = q r  = q l ,  which upon 
substitution in Eq. (15.199) gives 

The power radiated from a fast-moving accelerated charge will be treated in the 
following section. 

15.6 The Lienard-Weichert Potential-Fast-Moving 
Point Charges 

The retarded potentials describe the potentials of arbitrary charge and current dis- 
tributions p(r, t') and J(rl, t'). In the case where the charge and the current distri- 
butions are bounded (the speeds of the various elements of the distribution are 
much smaller than the speed of light) and the dominant wavelength of radiation is 
much larger than the actual size of the distribution (dipole approximation), the 
multipole expansion is quite adequate, as was seen in the previous section. In this 
section we remove these restrictions and consider fast-moving charge and current 
distributions without invoking the dipole approximation. 

For simplicity we consider the case of a point charge q  in arbitrary motion, whose 
trajectory is completely described by the radius vector r'(tf). We will calculate the 
retarded scalar potential of the charge using Eq. (15.43): 

Since we are dealing with a point charge, then there is no direct variation of p with 
r', and hence the charge density can be replaced by a Dirac delta function. However, 
because of the appreciable motion of the charge, it will essentially look like an 
extended charge distribution as a function of time. Two effects need to be consid- 
ered: The distance between the charge and the point of observation R(tl) = r - rl(t') 
varies with time, and the argument of the delta function describing the position of 
the charge depends on time because of the retardation effect. Thus we write 

where 

The evaluation of the potential @(r, t) then requires an integration with respect to 
the retarded time t' over the entire volume that contains the charge; namely, from 
- co to co. Thus 
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The integration can be easily done if we recall an important property of the Dirac 
delta function: 

Thus 

Since t  is constant as far as t' is concerned, then 

dt" - 1 d 
= 1 - - - R(tl)  

dt' c dt' 

But d ( r  - r1(t')l = V'lr  - r1(t')l . dr' = - V l r  - rf(t')l . dr'. Thus 

dt" 1 dr ' 
- = 1 + - V l r  - rf(t')1.- 
dt' c dt' 

Taking V J r  - rl(t')l = - R(t1)/R(t') and calling (1/c)dr'/dtf = Kt') the velocity of the 
charge normalized to the speed of light, we obtain 

dt" R(t') - B(tf) .  R(t1) - - - 
dt' R(t') 

But the condition t" = 0 implies that t' = t  - Ir - r'(tt)l/c (the retarded time). Thus 

The vector potential of a moving charge can be calculated using the retarded 
vector potential 

Since the current density is equal to the product of the charge density and the 
velocity of the charge element, then an analogous derivation to that of the scalar 
potential can be used to determine A. The result is 

4 A(rf, t )  = -- 
Kt') 

4ne0c R(t1) - Kt ' ) .  R( t l )  

which is just the product of $/c and the scalar potential; that is, 

The potentials @ and A given by Eqs. 15.209-15.21 1 are called the Lienard- Weichert 
potentials in memory of the two scientists who developed this treatment. The corre- 
sponding electric and magnetic fields can be calculated from B  = V x A, and E  = 

- V @  - aA/at .  The actual calculation is quite complicated, and therefore we will 
give only the result here: 

E = E , + E ,  B = B , + B ,  (15.212) 
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where 

and 

The acceleration a of the charge is given by 

and all the quantities are evaluated at the retarded time t' = t - I T  - rtl/c. It is to be 
noted that the above fields satisfy the following relations: 

ii(tl) fi(tl) 
B, = - x E, and B, = --- x E, 

C C 

where fi(tl) = R(t')/R(tl). 
The fields E, and B,, are called velocity fields; they fall off as R P 2  and move 

together with the charge. The E, and B, fields are called acceleration fields; they fall 
off as R-' ,  and the total power associated with them is independent of R. This 
implies that the radiation fields are not rigidly attached to the charge producing 
them. In the wave zone (that is, at large distances from the charge) the power 
associated with the velocity fields is negligible compared to the radiation from the 
acceleration fields (radiation fields). 

We would like to note that since the time relevant to the motion of the charge is 
t' whereas t = t' + Ir - r1(t')l/c is relevant to the observer, then we expect the power 
radiated in a given solid angle to differ from the two points of view. The difference 
comes about because although the total energy radiated is the same, the factor dtldt' 
is not unity. 

The energy radiated in a solid angle dR and measured by the observer in an 
interval dt at time t is -d W = S .  iiR2 dR dt. Because this energy was radiated by 
the charge at the retarded time t' = t - R(tl)/c, then the power radiated per unit 
solid angle is 

dW dP dt 
= S . f i ~ ~ ~  

dt' dR - dR dt 

Differentiating t' = t - R(tl)/c with respect to t' gives 

dt 1 dR(tl) I=- - - -  
dt' c dt' 
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Using Eqs. ( 1  5.206) a n d  (1 5.207) we find tha t  

1 d 
- -- 

PO') . R R(t l )  = - - 
c dt' R 

Hence 

where O is the angle between $ a n d  R. 
F o r  slowly moving charges o r  distributions (bounded distributions) such a s  all the  

cases considered prior t o  the  present section, o n e  takes I.' @ r, and hence t = t' + rlc, 
o r  titldr' = 1 .  Consequently the  power distributions become identical. F o r  fast- 
moving distributions (unbounded),  the power distributions a r e  expected t o  be  differ- 
en t  (see Example 15.13). 

Example 15.12 Radiation Damping 

It is now clear that the motion of a charged particle is influenced by the presence of electro- 
magnetic fields via the Coulomb and Lorentz forces. At the same time a charged particle that 
undergoes acceleration generates electromagnetic radiation. In this example we consider the 
effect of the radiated fields on the motion of the accelerated charge producing them. This 
phenomenon is called radiation damping or radiation reaction. 

We consider a charge q moving in an external field with a velocity o < c and acceleration 
a = C. The force due to the external field is taken to be a restoring force: F, = - kr, where r is 
the position of the charge with respect to the origin and k is a positive quantity. 

The power radiated by the charge is given by Eq. (15.200), as follows: 

Corresponding to the radiation losses, there exists an effective reaction force F, such that 

which when integrated over a cycle gives 

Integrating the right-hand side of this equation by parts gives 

The quantity 6 . v  evaluated over a cycle gives zero, and therefore 

Thus over a cycle one can take, for the radiation reaction force, 
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The motion of the charge of mass m under the influence of the external and the reaction 
forces is therefore governed by the following equation of motion 

Example 15.13 Stoppage of a Fast Charge 

In this example we calculate the energy radiated during the stoppage of a fast-moving charge. 
The deceleration is taken to be uniform and along the direction of the initial motion. The 
electric field in the radiation zone is given by Eq. (15.213), or 

E, = 4 [ ( R  . a)R - R2a - R(R . a)fl + R(R . fl)a] 
4nc, c2  K 

When f l  and a are in the same direction, the last two terms cancel each other, and E, becomes 

'4 E = -- [ ( R  . a)R - R2a] 
" 4nc0c2K3 

Using B, = A(tf) x E,/c in the expression for the Poynting vector gives 

Squaring Eq. ( 1  5.224) gives 

Taking the angle between a and R to be 0 and substituting Eq. (15.226) in Eq. (15.225) gives 

Substituting Eqs. (15.227) and (15.219) in Eq. 15.217 and noting that K = R(l - b cos 0 )  gives 

This equation gives the angular distribution of the radiation of the charge. We will leave 
further studies of the pattern as an exercise (see Problem 15.24). The evaluation of the total 
power and energy radiated also will be left as exercises (see Problems 15.22 and 15.23). 

Example 15.14 Slowly Moving Accelerated Charge 

Consider a charge q moving with a small velocity Ivl c and a small acceleration dvldt such 
that it stays bounded in a region whose largest dimension is R,.  Let the point of observation 
be at a large distance from the origin r & R,.  The retarded time t' = t - Ir - r1(t')/cl can be 
approximated by t' = t - r/c since r' < Ro < r. The distance of the charge from the point of 
observation, R(tl)  = r( t f )  - r'(tf), can also be taken equal to  r(t') for all times. The quantity 
l / K n  = l / (R( t l )  - R( t l ) .  B(tl))", where n is an integer, can be approximated by l / K n  = 

( 1  + np.P)/r", in which we kept the lowest-order term in f l  = v/c.  Substituting these approxi- 
mate expressions in Eqs. (15.213) gives the following: 

Po 4v x ' B =-- 9 dv B,=-- X f' 
" 4n r3 4acoc3r dt' 

with the expressions evaluated at  the retarded time t' = t - r/c.  
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We will now discuss the nature of the various fields. The first term of E,, qP/4ne0r2, is just 
the Coulomb field of q taken at the origin. In fact the first two terms are radial and can be 
looked at as a Coulomb field of an effective velocity dependent charge Q = q( l  + 3P. v/c). The 
last contribution to E, is in the direction of the velocity itself. The field B, in this approxi- 
mation, on the other hand, is just the Biot-Savart field. 

The acceleration fields, E, and B, are proportional to l l r ,  and thus they dominate at large 
distances. One can estimate the distance r ,  beyond which this happens. Since vlc 6 1 ,  then at 
r = r ,  we can take 

4 
0 -  (I- 

q dv E E E  E-=-- 

47TEOr; ~ K E ~ c ~ ~ ~  dt' 

Taking v2 E 2(dv/dt1)R0, then one can write 

We now discuss the radiation emitted by the charge. If one makes the identification 
q(dv/dt) = p, where p = qr' is the dipole moment of the charge, then one can easily show that 
the Poynting vector and the total power radiated by the charge are the same as those given 
by Eqs. (15.198) and (15.200). 

Example 15.15 Pulsed Emission 

If a fast-moving charge of velocity v = v,Z stops (vf = 0 )  in a time interval r under the 
influence of a constant deceleration a = -a,Z, then an observer located at distance r and 
angle 6' will detect radiation from the charge during a time interval that is not necessarily 
equal to r .  From Eq. (15.219) we find that 

Taking v(t l)  = v ,  - a,t' and integrating gives 

U 1 
t = t' - 2 t' cos 6' + - a ,  t" cos 6' 

C 2c 

If at t' = r ,  v(t l)  = V ,  = 0 ,  then a,r = v,; hence 

This result indicates that the measured radiation pulse at the observation point depends on 
the angle 0, with the two equal ( t  = T )  at 6' = 4 2 .  

Example 15.16 Self-Force of a Slow Accelerated Charge 

In this example we consider a particle which has a spherically symmetric charge and under- 
going an accelerated motion. If the motion is translational-that is, if the acceleration is 
along the velocity and if the motion is bounded (vlc l t t h e n  we can use the results of 
Example 15.14 to determine the force exerted by an element dq ,  on another element dq,  of 
the particie. We will consider only the effect of the part of the electric field that depends on 
the acceleration, and write 
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where r. is the distance between the two elements and ? = rjr, and t' = t - rlc is the retarded 
time. The total force can be calculated by integrating dF(t) over all the elements, but because 
I)([') and t' depend on r as a result of the retardation effects, this operation is not straightfor- 
ward in general. Let us here consider the effect of retardation to the lowest order in t' - t ;  
that is. when expanding dv(t'),dr' we write 

dv(tf) dv(t) r d2v(t) - + ..  
dt' dt c dt 

Substituting the expansion in Eq. (15.231) and integrating, we solve for F = F ,  + F,, as 
follows: 

3 c2 dt 

with 

the electrostatic energy of the charge, and 

In both integrals we took dvldt and d2v/dt2 to be along the z axis, and wrote ? = sin 0 cos &J I 
+ sin 0 sin q5 j + cos 0 2, and ?.dv/dt = cos 0 dvldt. The integration over angles then gives 
nonvanishing contributions (4;3) along i only. Thus 

The factor 4Uo/3c2 has the units of mass and if we call it mb, an effective "electromagnetic 
mass of the particle" (see Example &I), then F ,  has the nature of inertial forces. The force F,, 
on the other hand, is that of radiation damping, which was discussed in Example 15.12. It is 
independent of the structure of the charge and hence remains constant as the size of the 
charge vanishes. Higher-order correction to Eq. ( 1  5.232) can be shown to vanish, however, in 
the point charge limit. In the same limit, mb becomes infinite inasmuch as it depends roughly 
on I/r. 

15.7 Summary 

Radiation from a moving charge distribution can be calculated by two methods. In one 
method the potentials and then the fields (and hence the radiation) are calculated. In the 
second method, the fields are calculated directly without a need for the potentials. Using 
V . B  = 0 and V  x E  = -SBj2t ,  we arrive at 

a A  
B = V x A  and E = - V Q - -  (15.1),(15.4) 

at 

Using V .  E  = p j ~  and V x H = aD/Jt + J,, as well as the above relations between the fields 
and the potentials, we find that one can arrive at  independent differential equations for A  and 
@ if some extra conditions called gauges are used. In the Lorentz gauge, one requires 

The potentials in this gauge satisfy the following inhomogeneous wave equations 



15.7 SUMMARY 511 

In the Coulomb gauge (transverse gauge) we require 

V . A = O  

resulting in the following equations for the potentials: 

where 

is the transverse component of J, having the property V x J, = 0. Note that J, = J, - J, is 
longitudinal where V .  J, = 0 .  

The fields E and B  derived from given A  and @ can still be the same (gauge invariance) 
under gauge transformations of the form 

a* A f = A + V $  and W = @ - -  (15.21),(15.22) 
at 

where $ is a scalar function. For A' and W to satisfy the Lorentz condition, $ must satisfy the 
equation 

which reduces to the homogeneous wave equation if A and @ already satisfy the Lorentz 
condition: 

a2* V21C/ - ~ p - -  = 0  (15.24) 
at2 

Thus it is always possible to satisfy the Lorentz gauge. 
The solution of the wave equations in the Lorentz gauge gives the retarded scalar and 

vector potentials (in vacuum); that is, 

where t' is the retarded time, given by 

Thus it is seen that apart from the introduction of the retarded time, the potentials are 
identical in form to what we encountered in the absence of propagation. 

In the Coulomb gauge, @ satisfies exactly Poisson's equation of electrostatics except that 
p, is now a function of time. The solution for @ is therefore the instantaneous Coulomb 
expression 

The vector potential in the Coulomb gauge, however, is the retarded vector potential with J, 
replaced by the transverse component J,. The fields are then calculated from A  and @ using 
B =  V  x A, and E = - V @ - a A / a t .  
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In regions where p, = 0 and J, = 0, one can directly solve the wave equations of either E 
(or B) and use Maxwell's equations to calculate B (or E). Thus in vacuum and for mono- 
chromatic radiation (E -, Ee-'"'), we get 

This vector equation is called the Helmholtz vector equation. We should note that it is hard 
to solve directly. The following relation, however, transforms it to the Helmholtz scalar 
equation: 

E = r x VJ/ V2J/ + k2J /  = 0 (TE) (15.60),(15.69) 

where J/ is a scalar function. The electric field is fixed to be perpendicular to r, and as such it 
is called the transverse electric (TE) case. The B field in this case takes the form 

i 
B = - - V x ( r x V J / )  (TE) (15.71) 

W 

If the roles of E and B are interchanged in this procedure, then we get the transverse 
magnetic (TM) case; that is, 

r x VI(/ ic B'=- E' = - V x (r x VJ/) (TM) (15.73),(15.75) 
C W 

with J/ satisfying the above Helmholtz scalar equation. 
A multipole expansion of J/ using the method of separation of variables gives in principle 

an infinite series solution. The lowest order terms are 

eikr eikr 

J/,,=CO- and J / , o = - C - ( l + ~ ) c o s ~  (15.77) 
O ikr kr  

where C: and Cy are constants. The function J/,, is spherically symmetric; hence it produces 
no fields, whereas JI,, has azimuthal symmetry, and the fields produced by it in the TE and 
TM cases correspond to those of a magnetic dipole and an electric dipole along the z axis 
respectively. Such fields are complicated since they involve retardation effects. 

Applications of either the potential technique or the field technique include oscillatory 
dipoles in vacuum and in the presence of conducting planes. Scattering of electromagnetic 
waves by small conducting spheres, differential and quarter-wave antennas, slowly moving 
bounded charge distributions, and fast-moving charges. 

The potentials, and hence the fields, produced by a differential antenna of length 1 carrying 
a periodic current 1(t) of period T are those of an electric dipole when the point of observ- 
ation at distances r + I ,  and if 1 e cT = 1 (dipole approximation). The effective dipole mo- 
ment is p = l l , / ~ ,  where w = 2n/T and 1, is the amplitude of the current. The total average 
power radiated by the antenna is 

where R = 789(1/1)2 ohms is an effective radiation resistance. The fields of a longer antenna 
can be determined by integrating the fields of a differential antenna. For a half-wave antenna 
the effective radiation resistance is 73.1 R. 

For slowly moving bounded charge distributions (that is, v 4 c and r' e r) the leading 
terms of the potentials are 
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where Q is the total charge, p = p(t - r /c)  = 5 r1p(r', t - r/c)dol is the retarded dipole moment, 
and p is the derivative of p with respect to  its argument. Thus the electric and magnetic fields 
of such a distribution are those of a point charge, and of an electric dipole to lowest order. 
The radiation fields, and hence S, are 

Po B R = - - P x p  and E , = - c P x B R  (15.192),(15.195) 
4acr 

Integrating over an entire sphere gives the total power radiated: 

For a slowly moving point charge, p = qir, 

For an unlocalized point charge q moving at a speed o z c, the multipole expansion cannot 
be used. The retarded potential, however, can be integrated for this charge exactly. The result 
is 

where Kt')  = v(t l) /c,  t' is the retarded time, and R(tl)  = Ir - r'l. The fields of the charge are 
quite complicated. They are related to  each other by 

where A([') = R(t1)/R(t'). The power radiated in a solid angle dl2 as measured by the observer 
is not the same power that was radiated by the charge since t # t'. They are related by the 
factor 

where 0 is the angle between $ and R. 

Problems 

15.1 Show by direct substitution that @ = f ( t  - r /c) / r  is a solution of the scalar wave 
equation. 

15.2 (a) Determine the vector potential a t  point (0,O) of the current loop shown in Fig. 15.1 1 ,  
which carries a current I( [ ) .  (b) Evaluate A and E if I( t )  = at. 

0 

Figure 15.11 
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In a medium an electromagnetic field is described in terms of the vector and scalar 
potentials A = i ( i ) (x2 + y2)sin at  + VY and @ = -aY/St, where Y is an arbitrary 
function and a is a constant. (a) Find E and B. (b) Show that if one puts Y - 0, the 
Lorentz condition is satisfied and A and @ will satisfy the wave equation [Eqs. (15.9) 
and (15.10)]. (c) Find the force on the medium due to the field as a function of 
position and time. 

Show that there is a possible solution of Maxwell's equation in free space of the form 
(a)  E = V x V x (K@), B = (I/cZ)V x (B d@/dt) or (b) B = V x v(K@), E = -V 
x (K i @ ' i / ) ,  where K is a unit constant vector and @ satisfies the scalar wave equa- 
tion. (See Example 15.4.) 

An electric charge Q is distributed in a continuous spherically symmetric distribution 
in a bounded region of space. The distribution undergoes radial oscillations. Show 
that 

and B = 0. 

A current I flows in a wire described by the following parametric equations 

where t is just a parameter. Show that the retarded potential at the origin is equal to 
that at an infinite distance from the wire. 

Determine the vector potential of two infinitely long, parallel wires, 1 and 2, at 
distances p ,  and p,  from an observation point P in the plane of the wires. The 
distance between the wires is rl. The current I, in wire I is switched on at t = 0 and 
the current I, in wire 2 is switched on at t = to. Derive an equation for the time at 
which the vector potentials of the wires at P will be equal. Plot the time dependence 
of the vector potential of wire 1. 

Determine the equation of the line of force produced by a time-dependent electric 
dipole ip(r) (discussed in Example 15.3) in a plane containing the origin and the z axis. 
Compare the result with the lines of force of a static electric dipole. 

An electric dipole p(r) = p02 cos wt is placed at  the origin. (a) Determine the fields and 
the radiation along the dipole. (b) Repeat part (a) for the direction norlnal to the 
dipole. (c) Give a sketch of the radiation as a function of 0. (d) Plot the total power 
radiated as a function of the frequency of oscillations, w. 

A time-dependent magnetic dipole m = m, cos wt is placed at a distance b from a 
large conducting plate such that h < I, where i is the wavelength of the emitted 
radiation. Determine the power radiated when the dipole is (a) parallel and (b) normal 
to the plate. How do they compare to the power emitted in the absence of the plate? 

Consider two electric dipoles placed at the origin in the x-y plane. One of the dipoles 
is p,  = p,2 cos wt and the other is p, = p,(cos 4,2 + sin 4,g)sin wt (see Example 
15.6). Determine the polarization of the radiation in the following cases: (a) 0 = 90", 
(b) 0 = 0, n and 4, = 7712, (c) 0 = 0, n, and 4, # n/2. 

Derive Eqs. (15.123) to (15.126). 

Derive Eq. (1 5.133). 

An electromagnetic wave polarized along the x axis and propagating along the z axis 
is scattered by a very small sphere. Calculate the power radiated along the x axis (see 
Example 15.7). 

A conducting wire placed at the origin along the z axis carries a current I, sin wt, 
where w = 5 x 101° rad/s, and I, = 1 A. (a) Give a length for the wire such that the 
dipole approximation holds. (b) Determine the dipole moment of the wire. (c) Deter- 
mine the effective radiation resistance of the antenna. 
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A linear antenna of length 1 carries a standing current distribution of amplitude 1, 
and frequency to. The antenna has n current half-waves and the ends of the antenna 
are nodes (see Section 15.4.2 for a half-wave antenna). (a) Write an expression for the 
current in the antenna. (b) Determine the electric dipole moment per unit length. 
(c) Determine the magnetic field produced by the antenna in the radiation zone. 
(d) Determine the power radiated by the antenna. 

Derive Eq. (1 5.1 74) from the vector potential given by Eq. (15.178) and the Lorentz 
condition. 

Plot the radiation pattern of four half-wave dipoles arranged in the same way the 
antenna array of Example 15.9 is arranged. 

A half-wave antenna is placed near ground at  distance small compared to E. at an 
anglc 60 with the normal to ground. Determine the pattern of the emitted radiation. 

Consider an electric dipole of charges q and - q  placed at a distance I from each 
other. The magnitude of each of the charges varies sinusoidally with time at a fre- 
quency to. (a) Determine the dipole moment of the charges. (b) Determine the current 
flowing between them. (c) Determine the radiation fields of the charges using Eqs. 
( 1  5.189) and ( 1  5.197). What are these fields along the line joining the charges? 

A charged particle of charge q and acceleration a2 is initially moving at low velocities 
c,,?, where I ) ,  << c. and a is a constant. (a) Determine the angular distribution of the 
radiation; how does it depend on v,? (b) Determine the total power and energy radiated. 
A charged particle of charge q and acceleration a2 is initially moving with velocity 
r,,i. (a)  Write down the angular dependence of the power radiated. (b) Determine 
the total power radiated. 

A charged particle of charge q and initial velocity v,2 is uniformly decelerated along 
its velocity. Using the result of Problem 15.22, determine the total energy radiated. 

Show that the maximum radiation emitted by the charge of Problem 15.23 is 
observed at an angle O , ,  (with respect to  v) which is given by costl, = 

(1,/4/I)[(1 + 24B2)' ' - I]. where 11 = v,/c. Discuss the limits 8 + 0 and 8 + 1. 

An electric dipole, located at the origin, is rotating in the x-y plane with an angular 
frequency to. (a) Decompose the dipole into two oscillating dipoles along the x and y 
axes. (b) What is the phase diff'erence between the two components of the dipole'? 
(c) Use the result of Example 15.6 to find the angular distribution of thz power 
radiated by the dipole. (d) Use Eq. (15.197) to  determine the quantity in part (c). 



ELECTROMAGNETIC 
BOUNDARY VALUE 

PROBLEMS 

We have already studied Maxwell's equation in two important cases. In one case, 
which was treated in Chapter 14, we studied the propagation of plane waves in an 
infinite space of one type ofmaterial with prescribed properties (E ,  p, and a,), free of 
external charge and current distributions. In the second case, which was treated in 
Chapter 15, we had again an infinite space of one type of material with prescribed 
properties (E,  p, and a, = -that is, nonconducting), and charge and current 
sources. The radiation in the form of nonplane waves from these distributions was 
derived. In this chapter we study another class of problems, an extension of the first 
case, wherein we deal with the propagation of plane waves in a space free of external 
charge and current distributions but filled with several types of materials of different 
dielectric, magnetic, and conducting properties. Although the treatment of the field 
equations in each of the materials individually is exactly the same as the procedures 
we followed in Chapter 14, it is necessary to have some prescribed boundary con- 
ditions at the interface to allow matching of the solutions. Applications of this class 
of problems involve reflection and refraction from dielectric or conducting bound- 
aries, transmission through thin films, propagation in waveguides, and resonant 
cavities. 

16.1 Boundary Conditions on the Fields 
The behavior of the static electric and magnetic fields across boundaries were previ- 
ously derived. It was found that the equation V.B = 0 implies that the component 
of B normal to the boundary is continuous (B , ,  = B,,). Also it was found that 
the equation V . D = pf implies that the component of D normal to the boundary is 
discontinuous, with the discontinuity given by D,, - Dl,  = a. The curl equations 
V x E = 0 and V x H = Jf on the other hand gave us conditions on the tangential 
components of the E and H vectors. It was found that the component of E tangent 
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Figure 16.1 Obtaining the boundary conditions on the field vectors and cur- 
rent density as governed by Maxwell's equations at the interface between two 
media (dielectric or conducting) (a) A pillbox-shaped surface at the interface is 
used to obtain conditions on the normal components of B, D, and J. (b)  and (c) 
Rectangular paths shown at the interface are used to obtain conditions on the 
tangential components of H and E. 

to the boundary is continuous (El, = E,,) and the component of H tangent to the 
boundary is discontinuous (H,, - HI,  = K, x a). Finally, in the presence of conduc- 
tors it was found that the continuity equation under steady-state conditions, 
V . J  = 0, implies that the component of the current normal to the boundary is 
continuous (J = J,,,). 

The boundary conditions on the electromagnetic fields governed by Maxwell's 
equation can be deduced from these equations. Maxwell's divergence equations 

V . B(t) = 0 and V . D(t) = p,-(t) 

are exactly of the same form as two of the equations of magnetostatics and 
electrostatics, except that B, D, and p ,  have time dependence. Therefore we deduce, 
using Fig. 16.la, that 

On the other hand, Maxwell's curl equations, 

are quite different from the static curl equations: V x E = 0 and V x H = J,; it will, 
however, turn out that the conditions are exactly the condition of the static case 
with the time dependence retained in the fields and the current: 

To  prove these conditions on the tangential components of E(t) and H(t) we follow 
the same procedure followed in the static case utilizing Fig. 16.lh and 16.1~. For 
example, in the case of H we integrate V x H = J, + aD/at over a surface area, AS, 
bounded by the rectangular curve C shown In Fig. 16.1~ .  The rectangle, which has a 
length 1 and width h is partially immersed in medium 2. Thus 



518 ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS 

By means of Stokes' theorem, the left-hand side of this equation can be transformed 
to a line integral over the curve C. Thus 

To determine the change in H in passing through the interface we take the width of 
the rectangle to be very small. When this is done, the contribution to the line 
integral from the sides normal to the boundary vanishes. Moreover, if ?Dl& is 
bounded, then its integral over AS vanishes in this limit. Thus 

(H, - H , ) .  l = lim J, . AS = (K, x A ) .  l 
h - 0  

where K,,. is the surfice current density. Thus, 

A similar integrhtion of V x E = -?B/dt over the'rectangle shown in Fig. 16.lb 
yields the condition in Eq. (16.4) provided dBldt is bounded. Finally, integrating the 
continuity condition V .  J = -2pldt over the column of the pillbox shown in Fig. 
16.1~ .  using the divergence theorem and taking the limit h + 0 gives [see Eq. (7.4)] 

Because J = ocE for ohmic materials and D = E E ,  for linear materials, Eqs. (16.2) 
and (16.7) give two conditions for the normal component of the electric field at  the 
interface. If the fields in the media are to be physical, they have to sstisfy both 
conditions simultaneously. Moreover, if only monochromatic radiation is consid- 
ered, the surface charge density will vary as e-'"', then ao,/at = -iwa,. Thus Eqs. 
(16.2) and (16.7) become 

16.1.1 Special Cases: Normal Component 

Partially Conducting Materials. For an arbitrary nonzero of ,  Eqs. (1 6.8) and (1 6.9) 
can be combined by eliminating of .  Thus 
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This result indicates that not only does the magnitude of the normal components of 
E and D change across the boundary but so do  their phases. Also we can say that 
the normal component of D, in general, will not be continuous because free charge 
will ncccssarily build up at the interface. 

Dit~lectric-Dielectric Intt~rface. When both materials have zero conductivity, then 
Eq. (16.9) ir~dicatcs that a,. = 0; hence Eq. (16.8) becomes 

Conductor-Dielectric Interface. If medium I is highly conducting (that is, a,, is 
very large). then E,,, has to be zero so that a,,E,, in Eq. (16.9) may stay finite. Thus 

E , , = O  and D, ,=a,  (16.12) 

Pnrtiul!~ Conducting htedia with &,a,, = E,c,,. If the'dielectric and conducting 
properties of the media satisfy the special condition 

then the interface will not support any surface charges (aJ. = 0) regardless of the 
magnitude of the electric field or the current, and in this special case D, will be 
continuous. 

16.1.2 Special Cases: Tangential Component 

Dielectric-Dielectric Interface. If the materials are nonconducting, then a,, = 

uc2 = 0; hence there will be no induced currents, and consequently Eq. (16.5) or 
(16.6) gives 

Partially Conducting Media. When both materials are partially conducting, then 
currents are induced in the materials. However, they will produce no surface current 
density because the conductivities are finite. Consequently Eq. (16.5) again gives, in 
the absence of external surface currents, 

Conductor-Diclectric Interface. When one of the media is highly conducting, then 
surface currents can be supported (see Example 14.1 I), and hence the H field will be 
discontinuous across the interface. To  determine the correct boundary condition in 
this case we use the boundary condition on the curresponding electric field in 
addition to Maxwell's equations. The fields in region 1 are related to each other by 

Taking D l  = e,E,e-'"" and J,, = a,,E, in this equation gives 

On the other hand in the same region V x E, = -aB,/dt. Taking B, = 

p,H,e-iw' gives 

V x El  
H,  =- 

imp, 
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Table 16.1 Summary of the Boundary Conditions* 

Interface El D, Ht Bn 

Dielectric-dielectric El, = E2, Dln  = D2, H I ,  = H21 B1, = B2, 
Dielectric-highly El, = 0 Dl,  = 0 H,, = 0 El, = 0 

conducting a,, + cu E2, = 0 D,, = a H,, = K x A B2, = 0 

* We assume that there is no external surface charges or surface currents at  the interface. 

Equation (16.14) implies that in a highly conducting medium (ocl is very large), and 
if H, is differentiable and bounded, the electric field El  is zero. This means that 
both the tangential and norma.1 components are zero; that is, 

El,  = 0 and Dl, = t1Eln = 0 (acl + a) (16.16) 

When the electric field in a highly conducting medium is zero, the H field in turn 
will be zero according to Eq. (16.15). This means that both tangential and normal 
components of H are zero; that is, 

H1, = 0 and Bln = p,Hl, = 0 (acl + co) (16.17) 

Substituting this result in Eq. (16.5) gives 

In Table 16.1 we summarize the boundary conditions discussed in this section for 
the case where there is no external free surface charge or surface current at the 
interface. 

16.2 Propagation Across a Plane Interface of 
Nonconducting (Dielectric) Materials 

The boundary conditions derived above in Section 16.1 can now be used to study 
the propagation of plane electromagnetic waves across a plane interface between 
two nonpermeable, nonconducting materials. We will first treat normal incidence, 
then oblique incidence. 

16.2.1 Normal Incidence 

Consider an electromagnetic wave of frequency o and amplitude El polarized along 
the x axis and propagating (along the z axis) normal to the plane interface of two 
simple (linear) dielectric materials of refractive indices n, and n,, as shown in Fig. 
16.2. At the interface, the wave will be partially reflected and the rest is transmitted 
if there are no losses in medium 2. The reflection phenomenon is a well-known one 
and indeed necessary if the boundary conditions are to be satisfied. Hence we 
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Figure 16.2 Transmission and reflection from a dielectric interface at normal 
incidence. 

assume the presence of three waves. The frequency of the reflected and transmitted 
waves will be taken equal to the incident frequency. Such a case will turn out to be 
a must if the materials are linear (simple) and if the boundary conditions are to be 
satisfied at all times. Thus we write 

Incident wave: El 8ei(k1z-"') ~ ~ f ~ i ( k ~ ~ - " l )  

Reflected wave: - E ; f  e-i(k"+"'' B; j e - i ( k ~ ~ + o t )  

Transmitted wave: E2 8ei(k2z-"') B~ fe i (k z z  - cot) 

where the amplitude of the B field is related to the amplitude of the E field by 
B = E/v  = nE/c and k = n o / c .  We now apply the boundary conditions. 

1. The continuity of the tangential component of the electric field at z = 0 gives 

This condition reaffirms the requirement that the frequencies have to be equal if the 
boundary condition is to be satisfied at all times. 

2. The continuity of the tangential components of H = B/p, at z = 0 gives: 

or, using B = nE/c, 

n l ( E l  + E;) = n2 E2 (16.21) 

Solving Eqs. (16.19) and (16.21) simultaneously for E; and E2 gives 

where r 1 2 ,  is the Fresnel reflection coejficient and t 1 2 ,  is the Fresnel transmission 
coejficient. In terms of the intensities of the reflected and transmitted waves we now 
define the quantities reflectance and transmittance, R and T, as follows: 
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where ( S , ) ,  ( S l )  and ( S 2 )  are the time averages of the intensities of the incident, 
reflected and transmitted waves. Since, (S) = n ( E 2 ) l y c ,  then Eqs. (16.22) and 
( 1  6.23) give 

Since in the above treatment the interface was taken to be lossless, we expect the 
energy to be conserved. Indeed, if we use the explicit expressions for r 1 2 ,  and t12,, 
we will find that T + R = 1. 

Let us now consider a more general polarization of the incident wave (elliptical 
polarization): 

E = [E1,2 + E l y 9 ] e i ( k 1 z ~ w t )  

We note that the dane  of incidence (plane defined by the normal to the interface, 
and the wave vector of the incident wave) is not unique in the normal incidence 
case. In the oblique incidence case, however, it is unique. We call the component of 
the wave polarized in the plane of incidence p polarization and the component 
polarized normal to the plane of incidence, s polarization and use them to label the 
Fresnel coefficients. Since in the case of normal incidence both the s and the p 
polarizations are tangent to the plane of the interface, then there is no distinction 
between their respective transmission coefficients. As will be shown below we have 

16.2.2 Oblique Incidencephase Matching 

The normal incidence is a special case of the phenomenon of reflection and trans- 
mission at an interface. In this subsection we consider the more general case of 
oblique incidence, in which we will find, contrary to the normal incidence case, that 
the Fresnel coefficients for s and p polarizations are different. Such a difference is 
very useful in practical applications, such as producing polarized waves. 

p Polarization. We will first analyze the propagation of p polarization. Consider 
Fig. 16.3, which shows this case schematically, with an incident, a reflected, and a 
transmitted wave. The reflected and transmitted waves are taken to propagate in the 

Figure 16.3 Reflection and refraction at oblique in- 
cidence at a dielectric interface with the incident 
electric field in the plane of incidence (p  polarization), 
the plane of the page (x - z plane). 
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plane of incidence which is the plane of k,  and the normal to the interface (the plane of 
the page). Moreover, as we did in the normal-incidence case, we take the frequencies of 
the three to be identical.* Thus for the electric and magnetic fields we write 

k l  ~ ~ ~ i ( k ~ . r - W  Incident wave: Elc.i(k"ru") n1  A ( 1  6.26) 
C 

k2 ~ ~ ~ i ( k 2 . r  Transmitted wave: E,ei(k2'r-w" n2 A (16.28) 
C 

where k , ,  k',, and k, are the propagation vectors of the waves with corresponding 
unit vectors k , ,  k;, and k, and corresponding angles Q, ,  4, and 0, with respect to 
the normal to the interface. 

We now apply the boundary conditions. ( 1 )  At the interface ( 2  = O), the tangential 
component of the electric field is continuous. Thus 

where p is the radius vector in the plane of the interface. (2) At the interface ( z  = O), 
the tangential component of the H field is continuous. Thus 

We note that these two conditions on the tangential components are sufficient to 
determine the fields everywhere; the conditions on the normal components will give 
redundant information (show this). Note how these equations differ from the normal 
incidence case by observing the phase factors eik'O. For these two conditions to be 
satisfied at any point on the interface, the phase factors have to be first matched and 
then the amplitudes have to be related appropriately. Thus phase matching requires 

and the amplitudes are related as follows: 

El cos dl - E; cos 6; = E2 cos 6, nl(E, + E;) = n2E2 (16.32) 

where dl,  8; and 8, are the angles of incidence, reflection, and refraction respectively. 
Let us first discuss the consequences of phase matching. Since p = -a x (A x p), 
where fi (2  in this case) is a unit vector normal to the interface and away from material 
1, then 

k . p =  -k.[fi x (fi x p)] = -(k x fi).(fi x p) 

Hence Eq. (1  6.3 1) becomes 

The vector nature of this result reaffirms our assumptions that k,,  k;, and k2 are 
coplanar; its magnitude, on the other hand, gives 

k, sin 6,  = k; sin 8; = k2 sin 8, (16.34) 

* This is only valid in the case of linear (simple) materials. ':ihen the materials have dielectric constants 
that are functions of the field (such as what are called nonlinear crystals), harmonics of the frequency of 
the incident wave may be generated. 
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Because both incident and reflected waves travel in the same medium, their propa- 
gation vectors must have the same magnitudes; that is, k1 = k;. Hence the equality 
k, sin 8, = k; sin 8; gives 8, = 8;. This relation is the law of rejection: The angle of 
incidence equals the angle of reflection. Since k = o / u  = nolc, the other equality of 
(Eq. 16.34). k, sin 8, = k2 sin 8,, gives 

nl sin 8, = n, sin 82 (16.35) 
which is the law of refraction, or Snell's law. 

The Fresnel reflection and transmission coefficients can now be determined by 
solving Eq. (16.32) simultaneously for &/El and E,/E,; that is, 

n, cos 8, - n, cos 8, 2n1 cos 8, 
'-1 2 p  = t12p = (16.36) n, cos 0, + n, cos 8, n, cos 8,  + n, cos 82 

Using Snell's law one can eliminate the refractive indices from the expressions 

tan(8, - 8,) 2 cos 81 sin 8, 
' - 12~  = t12P = sin(8, + B2)cos(8, - 82) 

(16.37) 
tan(8, + 8,) 

s Polarization. In the s polarization case, the electric field of the incident wave is 
normal to the plane of incidence, and therefore the magnetic field is in the plane of 
incidence, as shown in Fig. 16.4. Note that in this case the polarization of the 
magnetic field changes upon reflection and transmission instead of that of the 
electric field, as is the case in the p polarization. As in the p polarization case, 
however, the frequencies of the three waves are taken the same, and the propaga- 
tion vectors are taken coplanar (in the plane of incidence). The continuity of the 
tangential components of E and H gives 

~ ~ ~ i ( k 1 . p )  + ~ ; ~ i ( k i ' ~ )  = E e i ( k 2 ' ~ )  
2 (16.38) 

n, El cos 81ei(k~'P) - n E' cos B;e'(ki'P) = n E cos e2ei(k2'P)  
1 1  2 z (16.39) 

We first invoke phase matching: k, . p  = k; . p  = k2.p.  This is the same equality we 
encountered in the case of p polarization. Hence the law of reflection and Snell's law 
apply here too. Moreover, this equality reaffirms the assumption that k,, k;, and k, 
are coplanar. Phase matching reduces Eqs. (16.38) and (16.39) to 

Figure 16.4 Reflection and refraction at oblique in- 
cidence at a dielectric interface with the incident 
electric field perpendicular to the plane of incidence 
(s polarization), the plane of the page (x - z plane). 
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and 

n,E, cos 6, - n,E; cos 6, = n,E, cos 6, (16.41) 

The Fresnel reflection and transmission coefficients are determined by solving 
these equations simultaneously for E;/E, and E2/El, respectively; that is, 

n, cos 6, - n, cos 6, 2n1 cos 6, 
r12s = t12s = . (16.42) n, cos 6, + n, cos 6, n, cos 8, + n, cos 6, 

Using Snell's law, the refractive indices can be eliminated from the expressions for 
r12s and t,,,; as follows: 

sin(6, - 6,) 2 cos 6, sin 6, 
r12s = sin(6, + 6,) t12s = sin(8, + 6,) 

We will now examine some limiting cases of the above results. 

Normal Incidence. At normal incidence (that is, 6, = 8, = 0), Eqs. (16.36) and 
(16.42) give: 

This result is what we stated previously in Eq. (16.25). The reflection and the trans- 
mission coefficients for both s and p are the same since they depend on the square of 
r,, and t,,, respectively. As we noted before, the plane of incidence in the normal 
incidence case is not defined and thus the two reflection coefficients should be the 
same. 

Grazing-Angle Incidence. In the grazing-angle incidence, the incoming wave strikes 
the interface at an angle 6, z 4 2 ;  thus Eqs. (16.36) and (16.42) give 

r12, = r12, = - 1 t12, = tlZs = 0 

Hence 

indicating total reflection for both polarizations. 
Now if medium 1 is air (n, = 1) and medium 2 is ordinary glass (n, = 1.5), then 

R, = R, = 0.04 at normal incidence. Thus the reflectivity of a dielectric surface 
increases considerably as the incidence varies from normal to grazing. 

Critical Incidence-Total Internal Reflection. What is called critical-angle incidence 
occurs when the wave is incident on the interface from the region of higher refrac- 
tive index and when the refraction angle 6, is 4 2 .  Consider Eqs. (16.36) and (16.42). 
Taking n, > n,, and taking 6, to be equal to the largest possible value (that, is 7~/2), 
we obtain 

r12, = 1 and rlZs = 1 (16.47) 

This indicates that the intensity of the reflected wave is the same as the intensity of 
the incident wave or in other words the wave has suffered a total internal rejection. 
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The incidence angle at which total internal reflection takes place is called the 
critical angle 0, and it can be determined from Snell's law. Taking 8,  = 4 2  in Eq. 
(16.35) gives 

Beyond the Critical-Angle Incidence. Because /sin 81 5 1, Snell's law puts restric- 
tions on the possible angles of incidence where straightforward refraction takes 
place. For example, at incident angles greater than the critical angle, we find that 
n ,  sin 8, = n ,  sin 0, implies that 

sin 0,  
sin 0 ,  = - = x > l  

sin 0, 

This condition cannot be satisfied if tl, is a real angle. In fact if sin 8,  > 1,  then 
cos 0, is pure imaginary; that is, 

cos H, = JI - sin2 0, = ill (16.51) 

where p is a real quantity. Substituting Eq. (16.51) into Eqs. (16.36) and (16.42) gives 

A 
n, cos 0 ,  - inlB n ,  cos 0 ,  - in2P 

' - 1 2 ,  = - 

' - 12s  = -. . . -. - - -. . - 

n ,  cos H ,  + in lB n ,  cos 8 ,  + in2P 

where the hats on top of P I , ,  and F,, ,  are used to indicate that both of these 
quantities are complex. Complex Fresnel coefficients also arise in the reflection from 
conducting media (see the upcoming section). Since the reflectance R,  is defined by 
( S ; ) / ( S , )  = IE\* x H; I/IET x H I  1 ,  then it is as follows: 

R = F l p F 2 p  = r z p 2  and Rs = F 1 2 s F 7 2 s  = ~ r 1 2 s ~ 2  (16.53) 

Therefore, Eqs. (1 6.52) and (1 6.53) indicate (show it) that regardless of the value of f l ,  
and hence for any H I  > H,, the reflectance for both p and s polarizations reaches 
unity; that is, 

Thus total internal reflection takes place for all angles greater or equal to the critical 
angle. Figure 16.5 shows the reflectance for s and p polarization with incidence on 
the dense; of the two transparent media. Figure 16.6, on the other hand, shows the 
reflectances with incidence on the lighter of the two media, which exhibits the 
phenomenon of critical incidence. 

The concept of total internal reflection has very useful applications. The total 
reflection prism and the light pipe, shown in Fig. 16.7, are among these applications. 
When the incidence on face AB of the prism is normal, then the angle of incidence 
on the hypotenuse face is 45". Since the critical angle of the crown glass and air 
interface is 41°, then there is total internal reflection at the hypotenuse. In the 
second example, the light may propagate in solid dielectric cylinders, as shown if it 
enters at a large angle appropriate for total internal reflections. When a well- 
collimated beam of light enters a cylinder made of plastic, the beam may make it 
through the pipe (see Problem 16.7). 

16.2.3 Polarization by Reflection and Refraction-Brewster Angle 

The electromagnetic waves emitted by most of the ordinary sources (such as gas 
discharges, arcs, and incandescent lamps) are unpolarized; that is, the direction of 
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01 

Incident angle 

Figure 16.5 The reflectence from a higher re- 
fractive index matcrial making a plane interface 
for both s and p polarizations. showing the 
phenomenon of Brewster angle. 

01 

Figure 16.6 The reflectence from a lower re- 
fractive index material forming a plane inter- 
face for both s and p polarizations, showing 
the phenomena of Brewster angle and the crit- 
ical angle. 

Figure 16.7 Schematic of total internal reflection prisms and light pipes. 
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polarization is symmetric around the direction of propagation. The light is thus said 
to be natural. In this subsection we show that unpolarized waves can be polarized 
by treating them in several ways: suitable reflections and/or refractions at certain 
interfaces between transparent materials. The polarization effect by reflection can be 
seen by examining the reflection coefficients for p and s waves: 

For 8 ,  + 8 ,  = 4 2 ,  tan(8, + 8, )  = co; hence r , , ,  vanishes. According to Snell's law, 
n ,  sin 8 ,  = n, sin 8 , ,  then the incident angle 8 ,  at which r , , ,  vanishes is given by 

n ,  sin 8 ,  = n, sin - - 8 ,  = n, cos 8 ,  (1 ) 
" 2  tan 8 ,  = - (16.55) 
" 1  

The angle 8 ,  is called the Brewster angle, after the discoverer of this phenomenon. It 
is to be noted that while r , , ,  vanishes at this angle, the reflection coefficient of the s 
waves does not ( r , , ,  = cos 28, # 0). Hence the reflected waves will be purely polar- 
ized normal to the plane of incidence. The Brewster angle effect is widely used in the 
construction of lasers (see Example 16.2), and in various applications, which include 
the study of structure of atoms and properties of surfaces, among others. 

An unpolarized wave can also be polarized by passing through transparent 
materials. Consider the ratio of t , , ,  and t , , , .  From Eqs. (16.37) and (16.43) we find 

The magnitude of the ratio is equal to 1 for normal incidence ( 8 ,  = 82 = Oj, de- 
creases by increasing the angle of incidence; however, it never vanishes. Repeating 
this transmission N times gives the ratio ~ o s ~ ~ ( f ? ,  - 8,)  which can be made very 
small by taking N large. Thus unpolarized waves can be polarized to a certain 
degree by appropriately choosing N. This method is of particular importance in the 
infrared part of the electromagnetic spectrum, and in cases where the incident inten- 
sity is very high, such as in intense laser beams. 

Example 16.1 Boundary Conditions--Current Sheet 

The boundary conditions discussed in Section 16.2 can be used to determine the magnetic 
field when passing across a discontinuity (see Fig. 16.8). Consider, for example, a current sheet 
of surface density K = - 109 amperes per meter, located in the plane z = 0. The permea- 
bilities of the materials filling the z < 0 and z > 0 spaces are 5po and 2p0, respectively. The 
magnetic field in the region z > 0 is H, = 159 + 82 A/m. The B field in region 2 is 
B, = SpoH, = (751 + 402)po teslas. The fields in region 1 can now be determined using the 
boundary conditions given by Eqs. (16.1) and (16.5). From B,, = B,,, we find B,, = 40p0z^ T 
and hence HI, = 20% A/m. From (Hz - HI), = K x A, where A is a unit vector normal-to the 
interface and points away from material 1, we find 
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Figure 16.8 Utilization of the boundary con- 
ditions to determine the fields across a current 
sheet. 

Thus HI, = Hz, = 0 and HI,  = Hz, + 10 = 25. Therefore 

H, = H,f + HI,% = 202 + 25% A/m 

and 

B, = ~ ~ ( 4 0 2  + 50%) T 

Example 16.2 Design of a He-Ne Plasma Tube--Polarization Effects 

The Brewster angle concept is widely used in the construction of lasers for the purpose of 
producing an output of a single linear polarization. Figure 16.9 shows a schematic diagram of 
a He-Ne laser. A He-Ne discharge tube is placed between two highly reflecting parallel 
mirrors (99.9 percent reflectivity). Consider a beam of light bouncing between the mirrors. In 
every round trip, the beam suffers losses due to reflections at the windows of the discharge 
tube and due to other effects, and gains more intensity as it passes through the atomic 

Discharge 
tube 

Figure 16.9 Schematic diagram of a He-Ne laser utilizing 
the Brewster angle phenomenon in order to produce polar- 
ized laser beams. 

concentration in the discharge. For the laser to work, the gain must exceed the losses. By 
constructing the windows of the discharge tube at  Brewster's angle, as shown, virtually all 
reflection from the p polarization of the laser light at the surface of the window can be 
eliminated. The other linear polarization (s polarization), however, suffers high reflection at 
the windows and therefore gets attenuated below the intensity required for laser oscillation to 
occur. As a result, only the p polarization bounces between the mirrors many times, with each 
one resulting in further gain; hence the output of the laser becomes p polarized. 

Example 16.3 Rotation of Polarization by Refraction 

A light wave falls obliquely at  an angle 8,  on a plane interface between two dielectric media 
of refractive indices n, and n, as shown in Fig. 16.10a. The wave is linearly polarized with the 
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Plane of 
incidence 

( b \  
Figure 16.10 Showing the concept of rota- 
tion of polarization after refraction (a) The 
plane of incidence is the plane of the page, (b) 
the plane of the page is the plane normal to 
the plane of incidence and contains the E field. 

direction of polarization being at 45" to the plane of incidence (see Fig. 16.10b). In Fig. 
16.10h, the plane of the paper is taken as the interface plane; and the plane of incidence is 
normal to the plane of the paper, with Ox being their intersection. The amplitudes of the 
incident p and s polarizations are equal and given by El, = ~,/,,h and El, = E, / J~ .  After 
passing the interface we find, from Eqs. (16.37) and (16.43), 

2 cos 0, sin 8, El  
E2P = f l2PElP = sin(@, + 0,)c0r(0~ - 0,) 3 

2 cos 0, sin 0, El  
Ezs = fl2SEIS = 

sin(0, + 0,) 7 
Thus the angle O' that the polarization of the transmitted wave makes with the plane of 
incidence is given by 

E2s 
- = cos(0, - 0,) = tan 0' or 0' = tan-l[cos(0, - 02)] 
E2P 

Therefore, the polarization has undergone a rotation 60 = 8' - 4 4 .  
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Example 16.4 Polarization After Total Reflection 

In this example we discuss the state of polarization of a wave after it suffers a total internal 
reflection from a surface of a dielectric. Consider a linearly polarized wave incident from a 
region of refractive index n, onto a material of refractive index n2 < n,. We use the notation 
of Figs. 16.3 and 16.4. Multiplying the numerator and denominator of Eq. (16.52) by the 
complex conjugate of the denominator gives 

E', - (n, cos 0, - in,/7)2 
r l Z p  = - - 

El  n: cos2 + n:P2 

The phase of E', with respect to El ,  4,, is defined as follows: 

Comparing the second form of Eq. (16.58) with Eq. (16.57), we find that 

4 n1B tan 2 = - - 
2 n2 cos 0, 

Using Eq. (16.51) and Snell's law gives /3 in terms of 0,. Hence 

4 (sin2 0, - n;/n:)'i2 
tan - = 

2 (n:/n:)cos 0, 

A similar procedure yields 

4 (sin2 0, - n</n:)1'2 
tan - = 

2 cos 0, 

Since 4, is in general different from 4,, then the reflected wave is in general elliptically 
polarized. 

We should note that the concept of total internal reflection has an important practical 
application in optics. When it is incorporated with nonsimple dielectric materials, one can 
construct polarizing prisms; they are called total internal reflection polarizers. 

Example 16.5 Transport of Energy in Total Reflection 

In this example we investigate the transmitted power in the case of total internal reflection. 
From the first glance we conclude that the transmittance should be zero since the reflectance 
is 1 [see (Eq. 16.54)]. However, when we examine t̂,, for this case we find that it is not zero; 
that is, 

2n, cos 0, 2n, cos 0, 
~ I Z ~  = # 0 and t*,,, = 

n2 cos 8,  + inl/7 n, cos 0, + in2B 
Z 0 

This apparent contradiction can be resolved if we examine the propagation in medium 2. The 
electric field in this region has the form given in Eq. (16.28); that is, E2 exp[i(k,.r - at)]. 
According to the discussion following Eq. (16.51), a t  an incident angle beyond the critical 
angle (0, > O,), the refraction angle 4, is complex, with its cosine purely imaginary. Expand- 
ing the scalar product k 2 . r  and using cos 4, = iP gives the following expression for the 
electric field. 

where a = sin 0,lsin 0, = (1 + /72)1'2. Thus, for 0, > O,, the wave is propagating along the x 
axis (interface between tne two materials), and is attenuated in the z direction in the conduct- 
ing medium. The corresponding magnetic field will also propagate along the surface and be 
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attenuated in the medium. The degree of penetration of the fields is governed by the attenu- 
ation constant Dk,. In spite of the fact that the fields seem to penetrate the second medium, 
the average Yoynting vector normal to the interface vanishes, indicating that there is no 
power transmitted in the medium (see Problem 16.2). 

Example 16.6 Waves Incident on a Slab of a Dielectric or a Layered 
Interface-Antireflection Coatings and Dielectric Mirrors 

A dielectric slab of refractive index n,,  thickness d, and with plane parallel faces, lies between 
two nonpermeable media of refractive indices n ,  and n, as shown in Fig. 16.11. A linearly 

Figure 16.11 Reflection and transmission 
from a dielectric slab at normal incidence that 
may be used to explain the phenomena of 
antireflection coatings and dielectric mirrors. 

polarized wave is normal!y incident on the layered interface. As the wave strikes the z = 0 
interface, a fraction of the intensity will be reflected due to the discontinuity in the refractive 
index. Thus, in the z < 0 region, two counterpropagating waves exist. The transmitted wave 
in the region 0 < z < d suffers also some reflection at z = d interface; hence two counter- 
propagating waves exist in this region. In the z > d region, however, only a wave propagating 
along z exists. Thus we write the following expressions for the fields in the three regions: 

where the amplitude of the B field is related to the amplitude of the E field by Bi = niEJc, 
and ki = niw/c.  

We now apply the continuity of the tangential components of the E field and the tangen- 
tial components of the H field at z = 0 and z = d. Because of the nonpermeable nature of the 
materials, the continuity of the tangential component of H is equivalent to the continuity of 
the tangential component of B. These conditions give 

El - E; = E,  - E; n , (E ,  + E;) = n,(E, + E;) 
~ ~ ~ i e 2  - c e - i e 2  = ~ ~ ~ ' 0 3  n2(E2eie2 + l$e-'02) = n ,  E3eie3 

where 8 ,  = n,wd/c and 83 = n,wd/c.  These equations can be solved simultaneously. For 
example, one can show that 

1 + 2 cos 8 ,  - i - + - sin 8 ,  eie3 "='[( E3 2 ) : : )  ] 
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The transmitted intensity, therefore, is given by 

(See Problem 16.5 for further details of this result.) 
This layered interface has an important application in optics. For example, if the medium 

n, is part of an optical system (e.g., a lens) and medium n, is air (n, = l), then one can choose 
n2 and d such that the reflected wave is minimal for a given wavelength 1,. The optical 
coating (medium n,) is called antirejection coating. The reflectivity of a glass surface 
(n, = 1.5) can be decreased by depositing on it a thin, transparent film of cryolite (n, = 1.36) 
or of magnesium fluoride (n, = 1.35) of thickness d such that n2d = 1,/4. 

If in general one takes n, < n, < n,, one can show that in normal incidence the reflectivity 
is minimal for n2d = (2m + 1)1,/4, where m is an integer or zero,and is given by 

Also, one can show that for n,d = m1,/2, the reflectivity is maximal and is given by 

Now the reflectivity of a medium of refractive index n, with respect to a medium of index 
n, can be enhanced by introducing between them a thin layer of index n, > n3. For example 
if an appropriate layer of stibnite (n z 3) or zinc sulfide (n z 2.3) is deposited on glass, the 
reflectivity of glass can be increased. A series of films can produce extremely high reflectivities 
(dielectric mirrors), which far exceed the best reflectivities of metallic mirrors (to be discussed 
in the following section) at optical wavelengths. This property of dielectric mirrors enables 
them to withstand very high power densities (from high-power lasers) at which metallic 
mirrors fail (get damaged because of residual absorption). (See Problem 16.6.) 

16.3 Propagation Across a Plane Interface of a Conductor and a 
Dielectric-Complex Fresnel Coefficients 

So far we have considered reflection and transmission at a plane interface between 
two dielectric media. In this section we consider the case where one of the media is 
conducting. Reflection from metallic interfaces is of considerable practical use; mir- 
rors at optical frequencies and microwave frequencies are based on this principle, 
with the conductivity of the material used taken very large. For simplicity we will 
first treat the case of normal incidence, then treat the case of oblique incidence. 

16.3.1 Normal Incidence 

In Chapter 14 we discussed the propagation of electromagnetic waves inside con- 
ducting media. We found that the propagation is described through use of a com- 
plex refractive index and a complex propagation vector, both of which are 
frequency-dependent [Eq. (14.82)]. 

0 
= n + i k  and k = - A  (14.82) 

C 

where the hat indicates a complex quantity. The real part of A, n, accounts for the 
refractive nature of the medium while the imaginary part, k, accounts for the ab- 
sorption in the media. We will find in this section that the reflection coefficient from 
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this interface approaches unity as the absorption becomes very weak, and hence 
provides the concept of high-rejectivity mirrors. 

Consider an electromagnetic wave of frequency w and amplitude E l  polarized 
along the x axis and propagating along the z axis normal to the plane interface of 
one dielectric material of permittivity c1 (refractive index n,) and a conducting 
material of permittivity 8,  and conductivity a,, (complex refractive index ri,). The 
propagation can be described schematically by Fig. 16.2 (used previously to describe 
propagation across a dielectric interface), with ri, replacing n, and 6, = A,w/c re- 
placing k, . 

The treatment of this problem is very similar to that of nonconducting media 
(Section 16.2.1). This statement is based on the fact that the boundary conditions 
satisfied by the fields are the same in both cases: the tangential components of the E 
and H are continuous [see Eqs. (16.4) and (16.13)]. In fact, the previous results of 
Eqs. (16.22) apply to the present problem with n, replaced by ri,; that is, 

where the hats over i12 and E l ,  indicate complex quantities. Other convenient forms 
of these equations can be written by substituting for li, in terms of its real and 
imaginary parts: tiz = n, + ik,. Thus 

Because of the complex nature of PI ,  and f 1 2 ,  the reflected and transmitted waves 
are expected to have phase shifts relative to the incoming wave. In order to deter- 
mine the shifts, we write the Fresnel coefficients in spherical polar form: 

where 

tan 4, = 
2n1k2 k2 tan 4, = - - 

n: - nf + k: n2 + 71 
It is clear from these results that the reflected and transmitted electric fields are 
phase shifted relative to the incident electric field. These shifts are just 4, for the 
reflected field and 4, for the transmitted wave. 

Once the Fresnel coefficients are calculated, then the reflection and transmission 
coefficients .can be calculated. Because of the complex nature of the coefficients we 
should be careful when calculating T. Using the definitions given by Eqs. (16.23) and 
(16.64) we get 

and 

Since the transmitted wave will eventually be absorped in the conducting medium, it 
is customary to cali T the absorption, A;  hence we write A = 1 - R. Explicitly in 
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terms of the properties of the material, Eqs. (16.67) and (16.64) give for R, and hence 
for A,  

A =  4nin2 R = l -  4nin2 (16.69) 
(n ,  + n,) ,  + k: (n ,  + n,) ,  + k: 

It is interesting to discuss the case of highly conducting materials such as metals 
(a,/~w $ 1). In this case we have n, z ,/= B 1 [see Eq. (14.100)]. Equation 
16.69 shows that in this limit, A approaches zero and R approaches unity as follows: 

This relation is called the Hagen-Rubens formula. For the materials classified as 
conductors, this relation is valid at frequencies as high as 10'' Hz (optical and 
infrared frequencies). For moderately good conductors, this relation is accurate at 
frequencies below the microwave frequencies. Let us use it to determine the reflectiv- 
ity of aluminum. Taking 38.2 x lo6 (i2.m)-' for the conductivity and lo9 rad/s for 
w, we find that R = 0.99976 and A  = 2.4 x However at o = 10' rad/s, 
A = 0.24, thus showing that aluminum is not highly reflecting at optical frequencies. 

16.3.2 Oblique Incidence 

The oblique incidence case is much more complicated than the corresponding case 
of a dielectric-dielectric interface. This complication is due to the fact that both the 
propagation vector and the angle of the refraction are complex. Although presenting 
a drawing of the schematic of the propagation is not possible with complex angles, 
its mathematical analysis should be identical to the dielectric-dielectric case with n, 
and 8,  replaced by the corresponding complex quantities A, and 8,. Hence Snell's 
law becomes 

A, sin 8, = n ,  sin 8 ,  (16.72) 

and the Fresnel coefficients become 

A, cos 8 ,  - n ,  cos 8, A 2n1 cos 8 ,  
f 1 2 ~  = 7 (16.73) n , c o s ~ , + n , c o s B  A, cos 8 ,  + n ,  cos 8 

n ,  cos 8 ,  - A, cos 8,  2n,  cos 8 ,  
f 1 2 s  = t12s = (16.74) n ,  cos 8, + A, cos 8 n ,  cos 8 ,  + A, cos 8, 

The reflectance and the transmittance are calculated easily from these coefficients 
using Eqs. (16.67) and (16.68). 

Equations ( 1  6.72) to (16.74) are compact and therefore convenient for the calcu- 
lation of the transmitted or reflected powers; however, it is not convenient to use 
them as such for the determination of directions of propagation since they involve 
complex angles and products of complex quantities. It would be very desirable to 
describe the propagation with real rules, which involve real angles. If this is accom- 
plished, then it will be possible to define a real angle of refraction in the conducting 
medium and hence make it possible to draw a real diagram of the propagation. 
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In order to do this, we examine phase matching at the boundary. Replacing k, by 
k, in Eqs. (16.31) and (16.33) gives 

and 

where 2 = B is a unit vector normal to the interface. Writing k, in terms of its real 
and imaginary parts K, and Ki, k, = K, + iKi, equating the real parts, and equating 
the imaginary parts of Eq. (16.76), we get 

These equations give conditions on both the directions and magnitudes of the real 
and imaginary parts of k,. 

1. Both K, and Ki are in the plane of incidence. 
2. The second relation implies that Ki is along B or normal to the interface: 

3. The magnitude of the first relation, on the other hand, implies that 

k, sin 0, = K, sin 4 (16.79) 

where 4 is the real angle between K, and the normal to the interface. 

Figure 16.12~ illustrates the propagation, and shows the planes of constant ampli- 
tude and the planes of constant phase. Because the planes of constant phase and 
constant amplitude are normal to K, and Ki, respectively, they make an angle 4 
with each other. However, at normal incidence these planes are coincident as shown 
in Fig. 16.12b. 

In order to determine 4 and the magnitudes of K, and Ki, we need to determine 
more relations among them and the parameters of the propagation: k,, e l ,  and the 
properties of the conducting material. Since k, makes an angle 8 with the z axis and 
at the same time its real component makes an angle 4 with the z axis, whereas its 
imaginary part is along the z axis, then 

(K, sin 4)f + (K, cos 4 + iKi)2 = (k, sin 4 , ) ~  + (l ,  cos 8 , ) ~  
Equating the x and z components on both sides and using Eq. (16.72), we get 

K ,  sin 4 = k, sin 8, = k, sin 8, (16.80) 

K, cos 4 + iKi = g, cos 8, (16.81) 

These equations (which include Snell's law), can now be solved for K,, Ki and 4. 
The real and imaginary parts of Eq. (16.81) give 

K, cos 4 = ~ e ( l ,  cos 8,) (16.82) 

K~ = I ~ ( R ,  cos 8,) (16.83) 

We now evaluate the real and imaginary parts of t, cos 8,. Writing cos 8, in terms 
of sin 8,: 

R, cos 8, = (R: - fz sin2 82)1/2 

using 

6: = j~,&,o~ + ip0o,o and l, sin 8, = k, sin el,  
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then 

l2 cos 8 2  = [ ( p O ~ 2  - p0&, sin2 O1)m2 + ipoa,w] '12 

or, in ierms of a modified dielectric property of the conducting material, L2, 

i2 cos 8 2  = [ p o ~ 2 ~ 2  + i pocc~]1 '2  (1 6.84) 

where 

L2 = e2 - E ,  sin2 8, 

Thus we can write 

W 
I;, cos 8, = - [n + ikl 

C 
(16.86) 

where and k are calculated from the optical constants of the material given by Eq. 
(14.82) with E, replaced by E2. Thus 

W 
K, cos 4 + iKi = - (ti + ik) (16.87) 

C 

which upon equating its real parts on both sides and its imaginary parts on both 
sides gives 

W W - 
K,cos 4 = - n and K, = - k  (16.88) 

C C 

The first of these equations can now be solved with Eq. (16.79) for K,. Squaring 
these equations and adding them gives 

Thus one can define a real effective refractive index of the conducting medium 

~ ( 8 , )  = Jii2 + n: sin2 8, (16.90) 

In terms of N(8,), Eqs. (16.79) and (16.88) become 

and 

N(8,)sin 4 = n, sin 8, 

N(8,)cos 4 = n 

Equation (16.91) is the analog of Snell's law of dielectric materials and is drawn 
schematically in Fig. 16.12a; it can be used to determine the angle of refraction 4 
once the effective refractive index N(8,) is calculated. However, it is a complicated 
relationship because N(8,) has a complicated dependence on the properties of the 
conducting material and the incidence angle. In addition, Eq. (16.92) can also be 
used to determine the angle of refraction. Because of the complicated nature of these 
equations, it is not useful to discuss them any further; however, some special cases 
(highly conducting materials) that are of great practical importance will be discussed 
in a number of examples. 

Now that we determined real rules for the propagation of EM waves across a 
conducting interface, it is interesting to express the fields of the transmitted wave 
(in the conducting material) in terms of real quantities. Thus we write 

E 2 e i ( t Z . r - ~ 1 )  = E e i ( K r . r - ~ l )  - K i z  
2 (16.93) 

where K, makes the angle with the z axis. The skin depth is 6 = l/Ki = co/k. 
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X 

Planes of constant 

Planes o f  constant 

z 

C. Planes o f  constant 
amplitude and phase 

Planes of constant 
amplitude and phase 

( b )  

Figure 16.12 Schematic representation of reflection and refraction from a 
conducting interface showing the plane of constant amplitude and constant 
phase. (a) Contrary to the dielectric interface, at oblique incidence these 
planes are at an angle I$ with respect to  each other (angle of refrac- 
tion) ( h )  At normal incidence these planes are coincident. 

Example 16.7 Optical Constants of a Metal at Oblique Incidence 

Consider an electromagnetic wave of frequency w = 27c GHz. It is incident from a dielectric 
medium of E ,  = IOE,, on a conducting interface of conductivity o, = 0.5 (C2.m)-', dielectric 
constant c, = 1 1 . 5 ~ ~ ,  with the angle of incidence 30". From Eq. (16.85), the effective permittiv- 
ity of the conducting material is E2 = E, - E,  sin2 0, = 9c0. The optical constants of the 
material ti and k are calculated from Eq. (14.82) with E taken to be equal to  E,. This gives 
ti = 3.3 and k = 1.38. The effective refractive index of the material N(0,) is calculated from 
Eq. (16.90), and the result is N ( 0 , )  = 3.66. Substituting for N(0,), 0, in N(0,)sin 4 = n, sin 0, 
gives 25.6" for the angle of refraction. Note that N(0,)cos 4 = ti would give the same result. 

Let us calculate the angle of refraction in the limit a, = 0. In this limit, the material is 
nonconducting; hence Snell's law: n, sin 0, = n, sin 0, gives 0, = 27.8". This shows that 4 
< O , ,  indicating that the conducting property of the material causes a reduction in the degree 
of refraction. 
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Example 16.8 Fresnel Coefficients for a Highly Conducting Interface- 
Metallic Mirrors 

Simplified expressions for the propagation across a plane interface between a dielectric and a 
highly conducting material can be determined from the results of Section 16.3.2. In order to 
deduce the results, we need to note that in this case a,/~w $ 1, and consequently the complex 
refractive index lfil is much larger than unity. If I A J  $ 1, then the complex form of Snell's law 
(Eq. 16.72)--that is, n, sin 0, = A, sin 8,-requires that 8, z 0 in order for A, sin (1, to stay 
finite. Moreover, there are two limiting regimes that need to be treated separately: near- 
normal incidence, n/2 - 0 ,  + l/lA,J, and near-grazing-angle incidence. 4 2  - 0, < l/lA,l. 

( i )  Nror-Nor~nul lncidcncr. Taking 6, z 0 we find that Eqs. (16.73) and (16.74) reduce to 

A, cos 0,  - n, n, cos 0, - A, 
= F,,, = 

A, cos 0,  + n, n, cos 0, + A, 
( 1  6.94) 

217, cos 0, 2n, cos 0, 
t12p = t 1 2s = ----- 

fi2cos0, + n, n, cos 8, + A, 

It is useful to write these results in terms of the real and imaginary parts of A,. Using Eq. 
(14.82) we write A, = n, + ik,; thus 

(n, - n,/cos 0,)  + ik, (n, cos 0, - n,) - ik, 
F12p = F I Z S  = -- 

(n, + n, ~ C O S  0 , )  + ik, (n, cos 0,  + n,) + ik, 

For a highly conducting material, the relations given in Eq. (16.93) can be reduced further by 
taking A, 9 n, cos 0, and A, cos 0, $ n , ;  then 

2n, cos 0, 
r .  -. = - I 

A2 
I L P  - L LJ A, cos 0, 

2n, cos 0, 
112, = 

fi 2 

(ii) Near-Grazing-Angle Incidence. For near-grazing-angle incidence, where 4, = n/2 
- 0, I l l  A, 1 (that is, cos 0, z 4,), one can show that (see Problem 16.9) the Fr~sne l  coeffi- 
cients for p polarization take on the expressions 

For s polarization we have 

2n, cos 0 ,  2 n I c o s 0 ,  
F I 2 ,  = - 1 t , , ,  = 

fi 2 f i2  

which are identical to the expressions for near-normal incidence given above in Eqs. (16.95). 
Finally, in the limit of very high conductivity (perfect or ideal conductor, A, -+ a), then 
PI,, -+ - 1. and PI,, -+ 1 regardless of the variation in the angle of incidence. 

Example 16.9 Reflection Coefficient of a Highly Conducting Surface- 
Metallic Mirrors 

In the previous example the Fresnel coefficients for propagation across a highly conducting 
plane interface were calculated. Using these coefficients, we can now examine the reflectivity 
from the interface as a function of the angle of incidence. Substituting from Eqs. (16.95) or 
(16.77) in R, = f,,,F~,, and keeping the lowest order in fi;' gives: 

R ,  - 1 - 4n,q, c x  0,  (16.98) 
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where 4, = q, + iq; = ri;'. This result indicates that the reflectivity of electromagnetic waves 
of s polarization is nearly equal to unity for all angles of incidence, and it reaches its mini- 
mum at normal incidence (@, = 0). 

The reflectivity of the p polarization for near-normal and grazing angle incidence take on 
different expressions and can be calculated using R, = P12,P:,, and Eqs. (16.95) and (16.96), 
respectively. The results (see Problem 16.10) are as follows: 

4n1~2  R , =  1 -- 
cos 9, 

(near- normal incidence) 

This shows that the reflectivity of metal changes very little as the incidence is varied 
from normal to grazing and is always very high. Figure 16.13 shows the reflectances at air- 

Figure 16.13 Reflectence from a conducting 
interface for both s and p polarizations, for 
silver and nickel, showing the analog of the 
Brewster angle occurring at dielectric 
interfaces. 

metal interface for s and p polarization as a function of the angle of incidence, as governed by 
Eqs. (16.73) and (16.74), at an optical frequency such that A, = 0.05 + 3i for silver and A, = 

2 + 3i for nickel. In both cases, R, continues to rise monotonically as the angle of incidence 
increases from zero to 1112. On the other hand, R, goes through a minimum in both cases. 
This effect is analogous to the Brewster angle at a dielectric interface, and it is examined 
analytically in the following example. 

Example 16.10 Reflection from Metals-The Analog of the Brewster Angle 

When an electromagnetic wave is incident on the boundary of two dielectrics at the Brewster 
angle, the reflectivity of the p waves vanishes. In this example, we consider the analog of this 
effect in the case of the reflection from a metal (see Fig. 16.13). The angle 4, at which R, goes 
through a minimum can be determined by invoking the condition aRla4, = 0. This effect in 
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fact occurs at large incidence angles that is at grazing incidence. The determination of 4 ,  can 
be achieved by using Eq. (16.99) for R,,  however, it is easier to use the form R ,  = f , , , F ~ , ,  
along with Eq. (16.96): 

where again ij2 = 1 / R 2 .  The condition aR/ado  = 0 then gives 

di(4: + 6 2 )  - n:19zl2(4: + 9 2 )  = 0 
Thus 

The reflectivity of the interface at this incidence angle can be easily shown to take on the 
following minimum value (see Problem 16.1 1 ) :  

Let us compare these results with the data given in Fig. 16.13 for nickel. Since R ,  = 2 + 3i, 
then IR21 = 3.6, = 0.2778, t], = Re 0 ,  = 0.1538, which upon substitution in Eqs. (16.100) 
and (16.101) give 4,  = 15.8" or 9 ,  = 74.2" and R, = 0.278. From the figure we read 
9 ,  = 74.1" and R, = 0.287. 

Example 16.11 Polarization by Reflection at a Metallic Interface 

We consider in this example some polarization effects caused by reflection at a metallic 
interface. These effects will be examined at the angle of incidence that minimizes the 
reflectivities-that is, the angle anaiogous to the Brewster angle, given by Eq. (16.100). The 
reflected s wave has a phase shift 6 ,  with respect to the incoming s wave given by 
P , , ,  = IF1,,leids. Writing 1 / R ,  = 4 ,  = t], + it];, then, from (Eq. 16.95), 

2 ~ ;  cos el 
tan 6 ,  = (16.102) 

- 1 + 2q2 cos 9 ,  

The reflected p wave has a shift 6, with respect to the incoming p wave given by 
P , , ,  = I P l , , le id~.  Taking J F , , , I  = Rji2 ,  where R, is given by Eq. (16.101), and using Eq. 
(16.96), we get 

tan 6 ,  = - 2dmnlv; 
4: - n;li212 

Thus 6 ,  = 4 2 .  The polarization of the reflected wave can now be determined; however, we 
will leave further discussions of the polarization as an exercise (see Problem 16.12). 

Example 16.12 Transmission of a Metal Foil 

In this example we examine the transmission of electromagnetic waves through the metallic 
foil shown in Fig. 16.14. An electromagnetic wave of amplitude EoS and frequency o is 
incident normally on a silver foil of conductivity a, and thickness d, which is large enough 
that multiple reflections can be neglected. We take the amplitudes of the electric fields inside 
the foil just at the front surface to be E l f  and just at the back.surface to be E , f .  The 
transmitted field amplitude is taken to be E,B. These amplitudes can be determined in terms 
of the incident amplitude by using the boundary conditions. To do s'o we need to determine 
the complex refractive index of silver at normal incidence. Using Eq. (14.82) we find, for 
a , / ~ , w  % 1 ,and K m  = 1, that 
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Figure 16.14 Reflection and transmission 
from a metallic foil, thick enough such that 
multiple reflections can be neglected. 

Thus Eq. (16.22) gives 

As the wave travels in silver it suffers exponential attenuation governed by its skin depth 
-- 

6 = J / ; c ,  ci, <,I : 

The transmitted field can now be calculated using Eq. (16.22) as follows: 

For to = 4 0 0 ~  x lo6 rad/s, 0, = 61.7 x lo6 (R .m)- '  and d = l o 5  m, we find JG = 

7.45 x lo3, and 6 = 4.5 x 1 V 6  m. Hence 

Thus we find that the transmitted field and the field in the foil are 45" out of phase relative to 
the incident field. The neglect of multiple reflections for a given d can now be justified since 
the skin depth and the refractive index of the foil are calculated. This will, however, be left as 
an exercise. 

16.4 Waveguides and Cavity Resonators 
In the previous sections we consider the propagation of electromagnetic waves 
across single-plane interfaces of dielectric and conducting materials. (Examples 16.6 
and 16.12, however, dealt with multiple boundary problems.) In this section we 
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consider the propagation in the presence of more than one boundary (multiple 
boundaries). A section of space bounded on all sides by metal walls is one example; 
it is called a cavity resonator. A section of space bounded by a conducting material 
in the form of a long open pipe is another example; it is called a waveguide. 

Here we will consider only waveguides made of hollow metal cylinders and cav- 
ities made of hollow metal boxes, with fields only inside the hollow. Other guiding 
structures, however, are possible, including parallel-wire transmission lines and 
dielectric cylinders of high dielectric constants. Moreover, we will assume that the 
material is highly conducting (perfect or ideal conductors), such that the reflectivity 
of s and p waves is unity for all incident angles. In this limit the skin depth is taken 
zero, with no fields existing inside the material and hence no power 1oss.occurring. 
For a discussion of power loss in real conducting guides and cavities, see J. D. 
Jackson, Classical Electrodynamics, 2nd Ed. (New York: Wiley, 1975), Chapter 8. 

Waveguides and cavity resonators confine all electromagnetic radiation within 
their walls; hence they eliminate the effect of inductive and capacitive couplings, and 
also prevent the power loss due to radiation. As a result they are used to transport 
electric energy by injecting electromagnetic waves at one end and picking them up 
at the other end (using antennas). 

We have seen that the propagation across a single boundary is governed by 
Snell's law and the Fresnel coefficients. In situations involving more than one 
boundary, i t  is solved for by superimposing the individual solutions at single bound- 
aries. Because of the superposition of various solutions, interference effects play an 
important role in waveguides. 

16.4.1 Propagation Between Two Conducting Plates (Metallic Mirrors) 

For the purpose of simplifying the discussion of waveguides, we will first treat a 
simpler boundary value problem-namely. the propagation of electromagnetic 
waves in a region in space that is bounded only at two sides by two parallel, highly 
conducting plates (perfect conductors). Take the plates at y = 0 and y = a as shown 
in Fig. 16.15, with the material in between of permittivity and permeability equal to 

This point moves in the z 
direction with velocity 
up = chin 8 > c 

0 
y = a  

* Y 

Wavefronts 

Figure 16.15 Schematic diagram of the propagation between 
two large, parallel, highly conducting plates, showing the wave- 
fronts and the phase velocity along r. 
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those of vacuum, E,  and p,, respectively, and free of charges and currents. Let a 
wave of frequency w (free-space wavelength I ,  = c/2nw = 2n/k), wave vector k (in 
the y-z plane), and polarized along x be incident on the y = a plate with an angle of 
incidence 8. Since the wave is polarized along the x axis (s polarization), the electric 
field is tangent to the plate. This case is called transverse electric (TE). If the polariz- 

. ation of the electric field were in the y-z plane and that of the H field along the 
x (p polarization), the case would have been called transverse magnetic (TM); see 
Problems 16.16 and 16.17. Although we have chosen at this stage an arbitrary 
direction for the wave vector, we will find out below that for the waves to exist 
between the plates, the angle 8 will have to be restricted to a set of discrete values. 
We should note that in the absence of one of the plates, however, the angle of 
incidence is not restricted to discrete values. 

The electric field of the wave between the plates is the sum of the fields of the 
incident and reflected waves. Because the plates are highly conducting (perfect con- 
ductors), the Fresnel coefficient PI,, is - 1 (see Example 16.8), meaning that the 
relected wave has the same amplitude as the incident wave but with a phase dif- 
ference n: 

E = ~ $ ~ i ( k ~ '  r - mi) - ~ ! g ~ i ( k ~ '  r -  mi) (16.104) 

U s i n g r = g z + f y ,  k, = k c o s e f + k s i n 8 2 , a n d  k; = - k c o s 8 f + k s i n 8 P , t h e E  
field becomes 

or 

E = Eo f sin(k cos 8 y)ei(k"nez (16.105) 

where E ,  = 2iE'. The electric field as given above is not yet completely determined 
because the correct boundary conditions are not yet satisfied (imposed) despite the 
fact that the amplitude E,, frequency w, and the magnitude of the wave vector k are 
externally controlled. The direction of the wave vector and hence the angle 8 are left 
undetermined at this stage, so we may choose them appropriately to satisfy the 
boundary conditions. At a highly conducting surface, the tangential electric field 
vanishes [Eq. (16.16)]. This condition is already satisfied at the y = 0 plate; it is 
equivalent to the use of the Fresnel coefficient PI,, = - 1 in writing down Eq. 
(16.104). The same boundary condition at y = a however gives us the condition 
sin(ka cos 8) = 0, which implies 

nz 
ka cos 8 = nn or cos 8 = - (16.106) 

ka 

where n is a positive integer. Thus, for given k and a, there are a number of discrete 
directions (modes) possible for the propagation between the plates and the corre- 
sponding wave is labeled TE,. Note that only the boundary conditions on E were 
utilized to determine a unique solution since the boundary conditions on H give 
redundant information (see Example 16.17 for the conditions on H). 

With the solution uniquely determined between the plates, we can now discuss 
some features of the propagation. We will determine effective wavelengths for the y 
and z directions, and discuss the phase and group velocities for each mode of the 
wave. We start by writing Eq. (16.105) in the form 
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where 

kg = k sin 8 and kc = k cos 8 (16.108) 

Noting that one can write kg and kc in terms of effective wavelengths as follows 

2n k =- 
2n 

and kc = - 
1, L C  

and using I ,  = 2nlk = c/2no, the free-space wavelength, give the following ex- 
pressions for the wavelengths. 

10 I., = - A0 I ,  = - 
cos 8 sin 8 

The wavelengths and the wave numbers can also be written in terms of the integer n 
by using Eq.  (16.106); that is, 

Also one can write the following two relations. 

The physical importance of I ,  and A, is derived from the fact that for a given n 
and a, there is an upper-limit cutoff condition on A,, the wavelength of the waves in 
free space, that can propagate between the plates. This can be seen using Eq. 
( 1  6.1 1 1 )  or (16.1 12). When (2n/AJ2 - (2n/AC)' < 0, A, becomes imaginary. Conse- 
quently the exponent ik,z becomes negative for z > 0 ,  thus causing the wave to 
decay exponentially. Thus if the wave is to propagate between the plates without 
attenuation, we should have A,  < A, = 2aln. The names cutoff wavelength and 
waveguide wavelength are therefore coined for A, and A, respectively. Moreover, since 
sin 8 I 1 ,  then I ,  is larger than the vacuum wavelength A,.  

We now discuss the phase and group velocities of the wave. We start out by 
noting that, in free space, the phase velocity with which planes of constant phase 
move and the group velocity with which energy in the wave move are both equal to 
c. When the waves are confined as in the present case, these velocities become no 
longer equal to c. The phase velocity can be calculated from the definition 
v, = dzldt using the planes of constant phase 2nz/Ig - o t  = constant. Thus (see Fig. 
16.15) 

04 - C 0 =--- " 2n sin 8 

Since sin 8 I 1 ,  v, 2 c. In fact at 8 = 0 (that is, exactly at cutoff), I, + I , ,  and v ,  
becomes infinite. This result may seem to contradict the theory of relativity, which 
states that energy cannot be propagated with velocities larger than the speed of 
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light. This apparent contradiction can be cleared when we realize that the electro- 
magnetic energy between the plates does not propagate with the phase velocity but 
rather with the group velocity, which we will show below to be smaller than c, thus 
remaining in complete harmony with the theory of relativity. 

The group velocity can be calculated from the definition uv, = S [Eq. (14.75)], or 
from its average form, v,(u) = (S), where u is the energy density stored in the 
electromagnetic field and S is the Poynting vector. Substituting Eq. (16.107) in 
V x E = -dB/& and taking the time dependence of B to be e-'"I, we find that 

Eo B = - [kg9 sin(kc y )  + ik, L cos(k, y)]ei[kgz-"'] 
0 

From Eqs. (14.68) to (14.71) we write u = KE.D + B.H), and S = E x H. The time 
average of S and u can be calculated using Eqs. (14.78) and (14.79). Thus 

1 and .  (S)=--Re[E*xB] 
Po 2 ~ 0  

Substituting for E and B from Eqs. (16.107) and (16.114) gives 

The average energy density and Poynting vector per unit length across the space 
between the plates can be calculated by integrating (u) and (S) over y  and dividing 
by a Noting that 

then 

Thus the group velocity v, is 

or 

v, = c sin 0 2 

Note that the group velocity is smaller than the speed of light in vacuum, as we 
stated above. Moreover, it is interesting to note that v,v, = c2. The detailed de- 
pendence of the energy, intensity, and group and phase velocities of the modes is the 
subject matter of Problem 16.18. 

Finally, we should note that in the so-called transverse electromagnetic (TEM) 
case waves with both E, and HZ = 0 can propagate between the plates. In this case 
there is no restriction on o nor on 9 (see Problem 16.19). 

16.4.2 Waveguides 

In the previous subsection we considered the propagation of electromagnetic waves 
between two large, parallel, metallic plates. Here we consider the propagation inside 



16.4 WAVEGUIDES AND CAVITY RESONATORS 547 

Figure 16.16 A rectangular waveguide with 
propagation along the z axis. 

a nletallic pipe. For the sake of simplicity, we will analyze rectangular waveguides 
only. Consider a rectangular waveguide of a cross section of dimensions a and b and 
axis along the z, axis as shown in Fig. 16.16. In order to facilitate the analysis, we 
assume a wavelength i., associated with the propagation along z in analogy with the 
wavelength 2, we encountered in the propagation between two parallel plates. Thus 
we take the z dependence of the fields of the form eGkaZ). 

We will consider the TE case; that is, we take E = PE, + YE,.  The three compo- 
nents of the H field will, however, be nonzero; that is, H = PH,  + 9 H y  + 2 H z .  (See 
Example 16.14 for the TM case.) In the absence of charge and current distributions 
inside the waveguide, the electric and magnetic field satisfy the homogeneous un- 
damped vector wave equation 

In cartesian coordinates this equation separates into five scalar wave equations. It 
will be sufficient to solve the equation for one of the components, followed by the 
use of Maxwell's equations directly for the determination of the rest of them. Thus 
we consider 

Taking the time dependence and the z dependence of H z  of the form ei(kgz-ot)  , and 
expanding V2 in cartesian coordinates, this equation can be transformed to 

Before we solve this equation we turn to Maxwell's curl equations to write H, ,  H, ,  
E x ,  and E, in terms of H z .  Taking the z dependence and the time dependence of all 
the field components of the form ei(kgz-"') we find that V x E + dB/dt = 0 gives, 
among other relations, 

POW Ex = - H ,  and Ey = -= 
kg kg 

Hx 

and that V x H - dD/dt = 0 gives, among other relations, 

d H d H 
~ E ~ O E ,  + 2 - i k g H ,  = 0 and i ~ , o E ,  + ik ,Hx - 2 = 0 (16.119) 

dy ax 
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Combining these equations gives, among others, the following relations between H ,  
and Hz  and between H ,  and H z .  

Thus Eqs. (16.1 18) and (16.120) give Ex ,  E,, H,, and H ,  in terms of Hz .  
We now solve Eq. (16.117) for H z .  We use the method of separation of variables. 

Substituting Hz(x ,  y) = h,(x)h,(y), and dividing by H z ,  we get 

(quating both sides to the separation constant k: gives 

d2h,  d2h2 
-+k;h ,=O and -+ky2h2=0 
dx2  dy2 

where 

Equation (16.121), together with the boundary conditions, specifies what is called an 
eigenvalue problem, and Eq. (16.122) is called the eigenvalue condition. The equation 
for h ,  has the solutions sin k,x and cos k,x, and the equation for h,  has the solution 
sin k,y and cos k,y. Thus the most general solution for H,(x, y, z )  is 

Hz(x ,  y, z )  = [ A ,  sin k,x sin k y y  + A ,  sin k,x cos k y y  

+ A ,  cos k x x  sin k, y + A ,  cos k,x cos kyy]eikgz 

where A,  are constants to be evaluated from the boundary condition. Using Eqs. 
(16.1 18) to (16.120), we obtain 

Ex = [ A ,  sin k,x cos k,y - A ,  sin k ,  x sin k,y 

+ A ,  cos k ,  x cos k,y - A,  cos k,x sin kyy]eikgz (16.123) 

Ey = - [ A ,  cos k,x sin k,y + A ,  cos k,x cos k,y 

- A ,  sin k,x sin k y y  - A ,  sin k,x cos kyy]eikgz 

We now apply the boundary conditions and note that one can use those of the 
electric field or of the magnetic field since either set is sufficient to determine a 
unique solution. We elect to use those of E, but for a discussion of those of H see 
Example 16.17. At the surface of the conductors, the tangential electric field van- 
ishes. Taking E, = 0 at x = 0 and x = a gives A ,  = A ,  = 0, and k, = mnla, where m 
is a positive integer. On the other hand, taking Ex = 0 at y = 0 and y = b gives 
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A, = A, = 0 and k, = nzlb, where n is a positive integer. That is, only A, is non- 
zero. Substituting these values in the above equations gives all the field components 
inside the guide. For example, the most general expression of Hz is 

H,(x, y, z) = 1 A,, cos - x cos - y e(2ni1'g)2 
n, m (T ) (": ) 

where A,, are constants. Each term of the infinite sum is called a mode, labeled by 
two integers m and n. Each of these terms is called a TE,, mode, where TE stands 
for transverse electric, as was mentioned above. 

A relation between I, for each mode of the guide and the free-space wavelength of 
the radiation, analogous to the one determined for the two parallel plates 
(Eq. 16.1 12), can now be determined by substituting for kx and k, in Eq. (16.122). 
Thus 

where 

defines the cutoff wavelength 1,. 
In the above discussion we determined only the fields of TE or TM (see Exam 

16.14) propagation in rectangular waveguides. However, one can show in general 
that these, and linear combinations, are all the cases that can propagate in such 
guides and in pipes. For example, one can show that this is true for TEM modes 
wherein both E, and Hz = 0 for all x, y, and z.  (See Problem 16.22.) 

16.4.3 Cavity Resonators 

In this subsection we consider electromagnetic oscillations in a section of space 
bounded on all sides by metal walls-i.e., a cavity resonator. The cavity will be 
taken in the form of a parallelepiped of dimensions a, b, and c. Because the space is 
bounded on all sides, the cavity will not support any propagating waves; the so- 
lutions will be standing waves in the three'orthogonal directions. 

For monochromatic waves-that is, waves that have e-'"' time dependence, the 
electric field satisfies the equations V2E + (02/c2)E = 0 and V .  E = 0. In cartesian 
coordinates, each component of E satisfies the scalar wave equation. We consider 
the equation for Ex first: 

Using the method of separation of variables, one can show that in general Ex has 
the solution 

Ex = (A, sin kxx + A, cos kxx)(B, sin k,y + B2 cos k,y)(C, sin kzz + C2 cos kzz) 

(16.128) 

where 



550 ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS 

and A,, A, ,  B , ,  B, ,  C , ,  and C ,  are constants to be evaluated from the boundary 
conditions, and k,, k,, and k, are the separation constants that also are to be found 
from the boundary conditions (e.g., those of E) and from V.E  = 0. Since at the 
surface of a highly conducting material the tangential electric field vanishes, we 
subject the solution of Eq. (16.128) to the condition Ex = 0 at z = 0, z = c, y = 0, 
and y = b, which requires C ,  = B,  = 0, k, = nnlc and k, = mnlb, where m and n are 
positive integers or zeros. Thus 

where 

F,(x) = A ,  sin kxx + A, cos kxx (16.131) 

A similar procedure for the solution of the scalar wave equation for E, subject to 
the appropriate boundary conditions (E, = 0 at z = 0, c, and at x = 0, a) gives 

where I is a positive integer or zero and we used the same n as in Ex, and 

F,(y) = A; sin kb y + A; cos &y (1 6.133) 

where kk is a constant to be evaluated. Finally, the same procedure is used to solve 
for E, subject to the boundary conditions E, = 0 at x = 0, x = a, y = 0, and y = b, 
with the result 

E, = E,, F,(z)sin - x sln - y (': ) .  (7 ) 
where we used the same I and m as in Ex and E,, and 

F,(z) = A; sin kiz + A; cos k:'z (16.135) 

where k2 is a constant to be evaluated. 
The rest of the unknowns-that is, F , ,  F,, and F3-and a relation between the 

amplitudes of the fields in the three directions are now to be determined from 
Maxwell's divergence equation: V.E = 0. Substituting Eqs. (16.130), (16.132), and 
(16.134) in V . E = 0 gives 

For this equation to be identically zero for all values of x, y, and z, requires that 
A ,  = A; = A; = 0, A, = A; = A$ = 1, k, = Inla, 4 = mnlb, and k: = nn/c; hence 

Moreover, for Eq. (16.136) to be satisfied, the following relation should be satisfied. 
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The electric fields allowed in the cavity are therefore given by Eqs. (16.130), (16.132), 
(16.134), (16.137), and (16.138). 

The frequency of the oscillations that can be supported in the cavity [see Eq. 
( 1  6.129)] becomes 

Equation (16.138) shows that two of the constants E,,, E,,, and E,, are indepen- 
dent, and hence the allowed oscillations for I, m, n # 0 are in general doubly degen- 
erate. This degeneracy means that for each allowed frequency there corresponds two 
allowed oscillations that have different configurations of the electromagnetic fields. 
However, if one of the integers is zero, then the degeneracy is removed (see Problem 
16.24). 

The corresponding magnetic field in the cavity can be calculated from Maxwell's 
equation V x E = - p ,  i)H/at. Taking the time dependence of H of the form e-'"' 
gives V x E = i p , o H .  Thus 

nn ) . 1 mny nnz 
E,, - - EOy sln - cos ---- cos - 

c b c 

- i  (P 
lnx mny . nnz 

H ,  = - - EOy - - EOx cos - cos -- sln - 
mn b ) a b c 

(16.140) 
POW 

Note that the equations V . B  = 0 and V x H = dD/dt do not give any new infor- 
mation on the fields. 

We should note that in the above discussion we calculated the most general 
allowed transverse electric fields in a rectangular cavity TE,,,. If one takes m = 0, 
then E x ,  E Z ,  and H ,  vanish, leaving E,, H , ,  and H z  nonzero. However if any two of 
I ,  m, and n vanish, then all the components of E and H vanish. Hence the lowest 
mode has only one of them zero. For example, we find that if n = 0, all components 
of the electromagnetic field vanish identically; thus n = 1 is the lowest mode. Now if 
I = m = 0, then again all components vanish. 

One can now easily make this general solution specific to various types of propa- 
gation. Thinking of z as the old waveguide axis of propagation, we then consider 
two types: TM modes where H z  r 0 and TE modes where E ,  = 0 for all possible 
values of m, n, and I .  Note that these special modes are decided relative to the rather 
arbitrary (in this case) z axis. Thus for the TE mode we take F,, = 0 by definition. 
Consequently Eq. (1 6.138) becomes 

In mn 
- E,, + - Eo, = 0 (TE) b 

(16.141) 
a 

On the other hand, we take H,,  = 0 by definition for TM modes. In this case we 
require that (from Eq. (16.140)) 

171 mn 
- E,, - Eo, = 0 (TM) 
a 

The above results show that the E and H fields in the cavity are always n/2 out of 
phase at any point. Therefore, the standing waves in the cavity transmit no energy 
(see Problem 16.26). Finally we reiterate that in the above derivative ?he walls of the 
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cavity were taken to be infinitely conducting; therefore, the tangential E field and 
the currents on the walls are zero. As a result, there are no power losses. In any real 
cavity, however, the walls have a finite conductivity which results in establishing 
currents in the wall, hence causing power dissipation as a result of the 12R term and 
consequently causing a net flow of energy out of the cavity as the currents are 
attenuated. This loss will dampen and broaden each sharp resonant response into a 
broad curve similar to the response of a series RLC resonant circuit. Moreover, the 
concept of the Q factor used to describe the quality (sharpness) of resonances in 
circuit theory can be applied to cavities. [See J. D. Jackson, Classical Electrody- 
namics, 2nd ed. (New York: Wiley, 1975) p. 356.1 

Example 16.13 Phase and Group Velocity of Radiation Between 
Parallel Plates 

We have previously shown that the phase and group velocities of radiation between two 
parallel metallic plates are clsin 9 and c sin 9, respectively [Eqs. (16.1 13) and (16.1 IS)]. In 
general these velocities are given by the relations: 

w dw 
v, = - and v = - 

kg dk, 

The first relation can be easily checked by substituting Eq. (16.108) in v, = w/kg, giving 

w - C 
up = - -- 

k sin 9 sin 9 

The second relation can be checked using Eq. (16.112): k; = kZ - kf = w2/c2 - kf, or 
w = c(k: + kf)'I2. Thus 

Replacing (k: + kf)-"' by c/w, and kg by k sin 9 gives ug = c sin 9. 

Example 16.14 TM Waves in a Rectangular Waveguide 

We have previously determined the 'TE fields inside ii rectangular guide by taking E, = 0. The 
magnetic field is then allowed to have a longitudinal component, Hz. In this example we 
discuss the transverse magnetic case. We take H z  = 0 and allow the electric field to have a 
longitudinal component. Thus, in analogy with the TE case, we solve the equation 

subject to the boundary condition that on the surface of a highly conducting material the 
tangential electric field vanishes. Thus 

mnx nny 
E,(x, y, z )  = A sin - sin -- eZniz1'g 

a b 

This result shows that the lowest nonvanishing mode of TM waves in a wave guide is TM,  ,, 
since TM,, vanishes identically, whereas the lowest nonvanishing TE mode is the TE,, . The 
rest of the components of E and H and their properties can now be determined from 
Maxwell's equations. We leave this as an exercise. 
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Example 16.15 Field Patterns Between Two Conducting Plates 

We discuss in this example the possible field patterns between two parallel, highly conducting 
plates. Equation (16.107) gives such a field for the case of TE waves. Consider the lowest 
possible mode of Eqs. (16.107) and (16.1 14), where n = 1; that is, 

The electric field is entirely in the x direction; Figs. 16.17a and 16.17b show its dependence on y 
and z. Figure 16.17a also gives the end view of the plots showing higher density of E field lines in 
the middle compared to the sides. 

Figure 16.17 Field patterns between two large, highly conducting plates. (a) An end view 
showing the dependence of JEl on the direction normal to the plates (y direction). (b) The 
dependence of [El on the direction of propagation. (c) The dependence of IBI on the direction 
of propagation and on the direction normal to the plates (z and y). 

The B field has components along y and z. Moreover, the z dependence of both compo- 
nents is 1112 out of phase, thus making the determination of the pattern more difficult than 
that of the E field. The B field is expected to have closed lines. Near the surfaces of the plates 
(y = 0 and a), sin ny/a vanishes, and the field becomes entirely tangential. Near y = a/2, 
cos ny/a vanishes and the field becomes entirely normal to the plates (y direction). Figure 
16.14~ gives a few B field lines. 

Example 16.16 Density of Allowed Modes in a Cavity Resonator 

The density of allowed electromagnetic oscillations per frequency interval dw in a cavity 
resonator discussed in Section 16.4.3 can be calculated from the wave numbers in the three 
orthogonal directions: kx = lala, k, = mn/b, and k, = nn/c. In a frequency interval dw, hence 
in wave number intervals dk,, dk,, and dk,, the number of oscillations is dN = dl dmdn = 
(abc/a3)dkx dk, dk,. In spherical coordinates we can write dk, dk, dk, = k2 dk d cos O d4, 
where O and 4 specify the direction of k ;  thus dN = (V/lr3)k2 dk dcos O d  where 



554 ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS 

V is the volume of the cavity. Integrating over angles gives dN = (4V/nz)k2 dk, writing 
k = tulc, then k' dk = (w2/c3)dw; hence 

which indicates that for a given dw, the density is larger at higher frequencies. For example 
the density grows by a factor of approximately when the frequency is changed from a 
n~icrowave frequency to an optical frequency. This effect played a key role in design consider- 
ations in the extension of masers (operating on microwave frequencies) to lasers (operating on 
optical frequencies).* 

Example 16.17 Boundary Conditions on H in a Waveguide 

In the above discussions we determined the fields inside waveguides and cavity resonators by 
imposing boundary conditions on the electric field. In this example, we derive an equivalent 
set of boundary conditions on the magnetic field that can alternatively be used to derive the 
fields. We consider the wave guide discussed in Section 16.4.2. From Eq. 16.17, the normal 
component of the magnetic field vanishes on the surface of a highly conducting material, 
H ,  = 0. This condition means that H ,  = 0 at  x = 0 and x = a, and H ,  = 0 at y = 0 and 
J = h. When these conditions are combined with Eqs. 16.120 we get: aH, /ax  = 0 at x = 0 and 
s = u and i iHzl iy  = 0 at y = 0 and y = h. Note that the last two conditions require that the x 
and 1. dependence of N, consist entirely of cosine functions (see Eq. 16.140). 

16.5 Summary 
Consider a linearly polarized electromagnetic wave of frequency w and amplitude El incident 
from a region of refractive index n ,  onto a plane interface with a material of refractive index 
n,, and with 0, the angle of incidence. If the polarization of the wave is in the plane of 
incidence (p polarization), then the angles of reflection and refraction 0; and 6, are related to 
0 ,  by the laws of reflection and refraction (Snell's law) as follows (see Figs. 16.2-16.3): 

The amplitude of the reflected and refracted waves normalized to E l ,  &/El = r,,, and 
E2/E, = t,,, are 

tan(0, - 0,) 2 cos 6, sin 6, 
r12p = tan(0, + 0,) = . 

(16.37) 
sin(0, + O2)cos(0, - 6,) 

The coefficients r,,, and r,,, are called Fresnel coefficients. If the polarization of the wave is 
normal to the plane of incidence ( s  polarization), we have the same laws of reflection and 
refraction, but the Fresnel coefficients become 

sin(0, - 6,) 2 cos 0, sin 6, 
r12s = . sln(6, + 6,) t12S = sin(@, + 6,) 

If 6, = 0, the incidence is called normal incidence. In this case 6, = 8; = 0, = 0, and 

The reflectance and transmittance, R and T, are defined in terms of the Poynting vectors and 
in terms of Fresnel coefficients as follows: 

*A. L. Schawlow and C. H. Townes, Physical Review, vol. 112, p. 1940, 1958. 
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with the conservation of power expressed as R + T = I. Similar expressions hold for s 
polarization. 

I f  0 ,  P n/?. the incidence is called grazing angle incidence. In this case r,,, = r,,, = - I  
and t,,, = r I 2 , ,  = 0: hence R, = R, = 1 and T, = T, = 0, indicating total reflection in both 
cases. 

If 1 1 ,  > 1 1 ~ .  and 

the incidence is called critical angle incidence. At 0, = 0,. 0 ,  reaches its maximum value of 
n:2, and R, = R, = I(tota1 internal reflection). For 0, > O,., the angle 0, becomes complex, 
where cos 0, = il) = ;(sin2 0,/sin2 0, - I)'", a pure imaginary quantity. Hence the Fresnel 
coefficients also become complex; that is, 

,I,  cos 0, - in, /I n, cos 0, - in,/I 
PI  2, = n, cos 0,  + i n , P  Fl,s = n, cos 0, + in28 

with the reflectance defined as 

2 0 ,  = 0 ,  = tan- '  - (16.55) 
"1 

then 0 ,  + 0, = ni2, and the incidence is called Brewster angle incidence. In this case r , , ,  
vanishes. and 

This effect can be used to polarize electromagnetic waves. 
In the case of a conducting interface, n, and 0, become complex; hence we use a hat on 

both of them to indicate so: i t ,  fi,. The mathematical formalism and all results are identical to 
the case of dielectric-dielectric interface when ti, and 6 ,  are used. However the physical 
implications in terms of real quantities differ drastically from the nonconducting case. Snell's 
law becomes 

N(0,)sin 4 = n, sin 0, o r  N(0,)cos 4 = ri  (16.91),(16.92) 

where 4 is the angle of refraction, 

and ti is the optical constant of the conducting material with the effective permittivity being 

The amount of absorption depends on the distance of penetration along the normal to the 
interface. The absorption length (skin depth) of the material along the normal to the interface 
is the inverse of wkic where again k is the optical constant of the medium with the above 
effective permittivity of the medium. Thus the planes of constant phase make an angle 4 with 
the planes of constant amplitudes. 

As in the dielectric case, there is an analog of the Brewster angle, except that it is not as 
drastic. Also, at high conductivities and/or low frequencies, the differences between s and p 
coefficients become negligible. In the ideal case o,/ew -+ s, we find f , , ,  = 1 and PI,, = - 1 
(ideal conductor), which indicates that R, = R, = 1. In general we have at a conducting 
interface 

R = P,,F:, = I P , , ( 2  and A = T = 1 - R (16.67),(16.68) 

where A is the absorption. 
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When electromagnetic waves are restricted to regions of space bounded by highly conduct- 
ing materials-two parallel plates or a pipe-there are certain conditions to be satisfied if 
propagation of these waves is to occur. For two parallel plates separated by a distance a, and 
where n is an integer, there exists a cutoff wavelength I, = 2aln at which waves of vacuum 
wavelength 1, > 1, cannot propagate. The effective wavelength of the propagating wave, 
called I,, becomes longer than the vacuum wavelength and is given by 

Because 1, has a set of discrete values, then I, will also have a corresponding set of discrete 
values. The phase and group velocities of the propagating wave are 

C 1 0  
v = ~  v ,=cs in@ s i n e = -  (16.1 13),(16.115) 

sln 0 2, 
Therefore 

For a rectangular pipe of dimensions a and b, we have for the cutoff wavelength for TE,, 
modes 

where n and m are integers. 
The frequency of oscillations that can be supported in a rectangular cavity of dimensions a, 

b, and c is 

Problems 

16.1 The regions z < 0 and z > 0 are filled with materials of permeabilities 1.5p0 and 5p0 
respectively. The magnetic fields in the regions, in teslas, are B, = 2.48 + 102 and 
B, = 252 - 17.59 + 102. Determine the current distribution at z = 0. 

16.2 Consider a linearly polarized electromagnetic wave of frequency w incident from a 
region of refractive index n, onto a plane interface with a material of refractive index 
n, < n,. The angle of incidence 9 ,  is larger than the critical angle 0,. (a) Determine the 
direction of propagation and the phase velocity of the E field in the n, medium. (b) 
Determine the direction and coefficient of attenuation of this wave. (c) Show that the 
average transmitted Poynting vector vanishes. 

16.3 Consider the propagation examined in Problem 16.2. Take the direction of the 
polarization of the wave to be at 45' to the plane of incidence. The phases of the p 
and s polarization, 95, and 4,, were calculated in Example 16.4. (a) Determine the 
angles of incidence for which 4, = 95,. (b) Determine the maximum phase difference. 
(c) Can 4, - 4, = 4 2  and hence the reflected wave become circularly polarized? 

16.4 The region 0 I z I zo is filled with a dielectric material of permittivity E = 4c0 and 
permeability p = p,. A linearly polarized wave of amplitude Eo8 and angular fre- 
quency w is incident normally on the interface at z = 0, from the region z c 0. Show 
that the ratio of the reflected intensity to the incident intensity in the z < 0 region is 

16.5 Consider the layered interface analyzed in Example 16.6. Calculate the transmitted 
Poynting's vector and sketch its frequency dependence for the cases n, = 1, n, = 2, 
n 3 = 3 ; n , = 2 , n 2 = 4 , n 3 = 1 ; a n d n 1 = 3 , n 2 = 2 , n 3 = 1 .  
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Consider the layered interface analyzed in Example 16.6 where n, < n, < n,. Deter- 
mine the reflected Poynting's vector and determine dn, such that it is (a) minimal and 
(b) maximal for w = w,. 

Consider an optical fiber such as the one shown in Fig. 16.5. The refractive indices of 
the fiber and the surrounding material are 1.55 and 1. Calculate the largest angle 
between the fiber axis and the direction of a light ray that would allow the propag- 
ation along the fiber. Cladding materials are also used to surround the fiber; calculate 
the change in the angle when the cladding material has a refractive index equal to 1.52 
and 1.50. 

A material of conductivity a, and permittivity E fills the region z 2 0. A plane mono- 
chromatic wave of frequency w is normally incident on the conducting inter- 
face. Show that the ratio of the reflected amplitude to the incident amplitude is 
(A, - l)/(A, + I), where A = n, + ik, = &(I + i ~ ~ / ~ w ) ~ / ~ .  

A p polarization wave is incident from a material of refractive index n, onto a highly 
conducting, plane interface. The angle of incidence 0, is such that the incidence is near 
the grazing-angle incidence (n/2 - 0, = 4, 4 1). Show that the Fresnel coefficients are 
given by Eqs. (16.96). 

Derive both parts of Eq. (16.99). 

Derive Eq. (16.101). 

An electromagnetic wave is incident on a highly conducting, plane interface with an 
angle of incidence n/2 - q5,, which minimizes the reflectivity of the p waves (see 
Example 16.10). (a) Show that the p wave suffers a phase change of 4 2  upon reflec- 
tion. (b) Show that the s wave suffers a phase change of n upon reflection. (c) What 
should be the ratio of the incident amplitudes of p and s polarization in order for the 
reflected wave to be (1) circularly polarized and (2) linearly polarized? 

An electromagnetic wave of amplitude HOP = 3% (A/m) and frequency w = 4 0 0 ~  
x lo6 rad per sec is incident normally on a foil of silver of thickness 15 pm and 
conductivity a, = 62 x lo6 (t2.m)- '. Determine the field amplitudes just after it enters 
the foil, just after it exists the foil, and just before it exists the foil. 

Two infinite copper parallel plates are 8 cm apart. A TE wave of frequency 
3 x lo9 Hz propagates in the y-z plane, where y is normal to the plates. (a) Deter- 
mine the cutoff wavelength for TE, mode. (b) Determine the waveguide wavelength 
for the TE, mode. 

An electromagnetic wave of-angular frequency w and wave number k is propagating 
unattenuated in the z direction between two perfectly conducting plates located at 
y = 0 and y = a. (a) Using V.E = 0, show that the amplitude of the electric field is 
independent of x. (b) Derive a differential equation for the amplitude of the electric 
field as a function of y ,  and determine the electric field as a function of space and time. 
(c) Find the smallest value for w such that the wave can propagate without attenu- - 
ation. 

Two perfectly conducting plates are located at y = 0 and y = a. Consider a TM wave 
propagating between the plates with H ,  = H ,  cos(ky cos /?)cos(kz sin /? - wt), and 
H ,  = H z  = 0 where p, H,, and k are constants. (a) Determine an expression for E 
between the plates. (b) Determine the relation between /?, a, and k. (c) Show that the time 
average of the Poynting vector is entirely in the z direction. (d) Calculate the average 
power crossing the rectangle bounded by x = 0, x = a, y = 0, and y = b. 

Consider the propagation of TM waves between two perfectly parallel conducting 
plates at y = 0 and y = a. (a) Determine the E and B fields propagating in the y-z 
plane between the plates. (b) What is the lowest mode? (c) Sketch the field patterns of 
the lowest mode. 
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Consider the propagation of a TE wave between the plates discussed in Section 16.4.1. 
(a) Calculate the average energy density and the average Poynting vector per unit width 
for the lowest two modes. (b) Calculate also v, and v, for the same modes. 

(a)  Show that TEM waves wherein E, = Hz = 0 can exist between two large, parallel 
conducting planes placed at x = 0 and x = a. As an example, choose H = H,(z)Q and 
E = E,(z)l. (b) Show that this solution has no restriction on w and can even work for 
direct current flow (o = 0). 

Determine the phase and group velocities of electromagnetic waves in rectangular 
waveguides with perl'ectly conducting walls. Determine their dependence on the free- 
space wavelength. 

Consider a rectangular wave guide of dimensions a and b along x and y coordinates 
and of axis along z. (a)  If a > h. show that the largest cutoff wavelength of the TE,, 
mode occurs for m = 1 and n = 0. (b) If a = 26, make a table of the cutoff frequency 
for tn, n 1 4 .  (c) What modes will propagate in the wavelength ranges l.la-2a and 
0.4 1 a- 20. 

Consider the possibility of having a TEM wave in a waveguide wherein both E, and 
Hz = 0 for all .u. y, and z. (a) Show that w is not restricted to a discrete set of 
frequencies. (b) Determine H, and H, for a rectangular guide of dimensions a and b 
along .u and y, respectively. (c) Use Maxwell's equations to show that such solutions 
of the wave equation cannot be satisfied for real mode numbers m and n. (Note that 
there are solutions for TEM waves in coaxial cylindrical guides and in parallel-plane 
geometry. See Problem 16.19.) 

Show that the m = n = 0 solution in a rectangular waveguide does not satisfy all of 
Maxwell's equations and the boundary conditions even if it does satisfy the wave 
equation. [Note that H, and H, are not necessarily zero for this special case (TE 
mode)]. 

A cavity resonator with perfectly conducting walls has a rectangular shape of sides a, 
b, and c. The allowed modes in the cavity are characterized by the integers I, m, and n, 
respectively. (a) Determine the degeneracy of the allowed modes when 1, m, and n # 0. 
(b) Determine the degeneracy when either I, m, o r  n is zero. (c) Discuss the order of the 
degeneracy when a, b, and c are in the ratio of integers. 

Consider T E  oscillations in a rectangular cavity resonator of sides a, b, and c where 
E,  = 0. (a) Determine the fields of the allowed modes. (b) Determine the lowest cavity 
mode. (c) Calculate the spectrum of resonance frequencies when a = b = c. (d) Show 
that the fields of part (a) can be obtained by specializing the fields derived in Section 
16.4.3 for the general case. 

Show that the fields in a cavity resonator such as the one treated in Section 16.4.3 
transmit no energy. 



SPECIAL THEORY 
OF RELATIVITY- 

ELECTRODYNAMICS 

The electromagnetic interaction between two fast-moving, charged particles 
occupies an important position in modern physics. It is usually analyzed in two 
steps. In the first step, the fields produced by one of the charges are calculated, and 
in the second step, the interaction between the fields and the other charge is deter- 
mined. Since we calculated the fields produced by time-dependent distributions of 
charges and currents in Chapter 15, we analyze here some aspects of the motion of 
charged particles in external electromagnetic fields. The interaction of each charge 
with its own field (self-interaction), however, will not be considered here. 

In the course of this treatment, however, we face some difficulty, because the field 
measurement is not unique since it depends on the state of the motion of the 
observer. It is the aim of this chapter to answer the following questions. Do the 
equations governing electromagnetism (Maxwell's equations) depend on the motion 
of the observer? How do the potentials and the fields measured by an observer 
relate to those measured by another observer? In this book, however, we will not go 
beyond the answers to these questions. (We will not formulate relativistic 
mechanics.) 

The answers to these questions lie in the heart of the special theory of relativity, 
whose history of development is quite interwoven with that of electromagnetism. In 
fact, the research for the unification of electricity, magnetism, and optics made the 
adoption of special relativity a necessity. Lorentz and Poincari: established the 
ground work of the theory in their studies of electromagnetism, and Einstein's work 
placed the theory on a more general basis. 

17.1 Galilean Transformation and the Wave Equation 

The principle of relativity (Galilean relativity) was first introduced by Newton in his 
discussion of the laws of motions: The motion of objects in a given region of space are 
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the same among themselves, whether that region is at rest or moves uniformly in a 
linear motion (straight line). 

In order to see the validity of this principle, we take two frames S and S' with 
parallel axes and origins coinciding originally at t = 0, and attached respectively to 
the region when it is at rest, and when it is in uniform motion along z with velocity 
v. The spatial coordinates and lime of an event occurring in this space as measured 
in S and S' are related by what are called the Galilean transformations: 

It is easy to show that if we substitute this transformation into Newton's laws as 
stated in S, we find that these laws transform to the same laws in S'. That is, 
Newton's laws are said to be invariant under a Galilean transformation, and hence 
it is impossible to determine the absolute velocity of any reference frame by mechan- 
ical experiments. 

On the other hand, it has been well known that the propagation of mechanical 
waves in stationary media has a fixed velocity with respect to the medium and 
appears more complicated when observed in a reference frame moving with respect 
to the medium. This can be easily seen by examining the one-dimensional wave 
equation of mechanical waves, which have a fixed propagation velocity c relative to 
the stationary medium (under Galilean transformation). 

Taking a/az = a/azt, slat = a/atl - v(a/azl), we find that 

which shows that the transformed equation is no longer of the same form as the 
original one (it is not invariant). 

Because the investigations into the phenomena of electricity and magnetism, and 
of light, led to the formulation of the laws of motion of charged particles- 
Maxwell's equations-it was logical to examine these laws under Galilean trans- 
formation. Since Maxwell's equations lead directly to a scalar wave equation gov- 
erning each cartesian component of E and B, it was realized that the Galilean 
transformation will not keep the electromagnetic wave equation invariant. Hence 
the transformation is not the correct one for the laws of motion of charged particles. 
This failure and other experimental findings (see Section 17.3) led to the finding of 
the correct transformation, which is introduced in the following section. 

17.2 Lorentz Transformation 
By studying the transformation properties of Maxwell's equations, Lorentz dis- 
covered what is now known as the Lorentz transformation, which leaves the equa- 
tions in the same form. To describe the transformation, we consider two coordinate 
systems S and S', where S' is moving with uniform velocity v along the z axis 
relative to S .  The motion is such that the coordinate axes stay parallel and that at 
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t = 0 they coincide. The relation between the space and time coordinates of the two 
systems (x', y', z', t') and (x ,  y, z, t )  are related by the Lorentz transformation: 

It is customary to use the abbreviations 

To get the inverse transformation equations, giving x, y, z, and t, in terms of x', y', 
z', and t', we merely interchange the prime signs and replace v with -v in Eq. (17.2) 
or (17.3). The relation between the velocities in S and S' can be derived from the 
above transformations. Consider Fig. 17.1. If there is a velocity vector u' in the S' 
system that makes polar angles 8' and # with z' of the S' system with components 
u: = ax'/atf, u; = ay1/at', and u: = az'at', then the corresponding components in the 
S system u, = axlat, uy = aylat, and u, = azlat can be determined from Eq. (17.2) or 
rather the inverse transformation. Using the chain rule, 

dx = dx' dy = dy' ( 1  7.4) 

Thus substituting Eqs. (17.4) and (17.5) in ui = dx,/dt gives 

dx dx' dx' 2 112 
u =-=-= u: ( :')112 dt' + ( ~ / c ) ~ d z '  = (l - $) 1 + v u ~ c 2  

(17.6) 
" dt dt 

Figure 17.1 Two coordinate systems moving 
relative to each other with uniform velocity v 
along the z axis. The systems coincide at t = 0 
and stay parallel. 
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The magnitude of u and the polar angles 0 and 4 that it makes with the z axis in 
terms of 6" and 4' can be determined from Eqs. (17.6) and (17.7). The results are (see 
Problem 17.3) 4 = 4' and ( ; 2 ) 1 / 2  u' sin 8' 

t an8  = 1 -, -- 
u' cos 8' + v 

[ut2 + u2 + 2u'u cos 9' - ( ~ ' ~ v ~ / c ~ ) s i n ~  
U = 

1 + u'u/c2 cos 8' 

The inverse transformation giving (Of, u') in terms of (8, u)  can be obtained by inter- 
changing the prime signs and changing the sign of v. 

We will now make the following comments about Lorentz coordinate and veloc- 
i t y  transformations. 

Limit of Small v/c (Galilean Transformation). The Lorentz transformation given 
by Eq. (17.2) reduces to the Galilean transformation in the range of low speeds such 
that o/c 6 1 .  Neglecting terms of order u2/c2 or higher in these equations gives 

x = x '  y = y l  z = z l + v t  t = t f  (17.10) 

These are the Galiean coordinate transformations in Eq. (17.1). It is to be noted that 
the Galilean transformation can also be looked at as the Lorentz transformation in 
the limit where the speed of light is infinite (c -t co). 

The Lorentz velocity transformations reduce to the Galilean velocity transform- 
ation in the limit when both the velocity of the coordinate system v and the velocity 
u are small compared to the speed of light (tllc G 1, u/c 4 1, and uv/c2 + 1). In this 
limit Eqs. (17.6) and (17.7) give u, = u i ,  u, = ub and u, = u: + o. 

As we mentioned above the Galilean transformations between two frames of 
reference in relative motion had been long known in classical physics before the 
introduction of Lorentz transformation. It was known that Newton's laws of mo- 
tion were unaffected by a Galilean transformation, with the result that it is impos- 
sible to determine the absolute velocity of any reference frame by mechanical means. 

Maximum Possible Speed for Any Observer. It is clear from (Eqs. 17.2) that no 
speed can exceed c, the speed of light. The case v > c makes the factor ( 1  - 0 2 / ~ 2 ) " 2  

imaginary, hence making the time or space coordinates imaginary. 
The Lorentz velocity transformation also, shows that it is impossible to obtain a 

velocity greater than that of light by adding two velocities even if each is very close 
to it. This can be seen using Eqs. (17.8) and (17.9). For the parallel velocity case 
(8' = 6' = O), Eq. ( 1  7.9) gives 

which shows that even as u' and o approach c, u approaches c without exceeding it. 

Constancy of the Speed of l ight.  As the Lorentz transformations stand, they imply 
that for all reference frames moving with uniform speeds there is only one value of 
the speed of light. That is, the speed of light is the same for all inertial frames [see 
(Eq. 17.1 I )] .  

Invariance of the wave equation. We analyze what happens to the electromagnetic, 
scalar, homogeneous wave equation under a Lorentz transformation. Consider the 
equation 
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where @ is a scalar function that stands for the scalar potential, the cartesian 
components of the vector potential, or the cartesian components of the electric field 
or magnetic field. The derivatives with respect to x ,  y, z ,  and t can be written in 
terms of the primed quantities using the Lorentz transformation and the chain rule. 
This gives 

Substituting for the second derivatives in Eq. 17.12 gives 

which shows that the form of the wave equation is retained in the primed system; 
and since it is homogeneous we can interchange Q, and 0' and write 

This result indicates that the homogeneous scalar wave equation is invariant under 
a Lorentz transformation, whereas it is not invariant under a Galilean transform- 
ation, as we showed in Section 17.1. 

Invariance of the "Length" Element and Proper Time. First we define what we 
mean by the "length" element and the proper time. In classical physics where 
electromagnetic interactions are not involved (Galilean relativity), the space and 
time coordinates are not interrelated; that is, the infinitismal element of distance, 
ds = (dx2  + dy2  + dz2)' l2,  and the infinitesmal element of time, dt ,  are separately 
invariant under Galilean transformations [see Eq. (17.1)]. Thus 

ds2 = dsf2  and dt2  = dtr2 (17.16) 

In physics where electromagnetic interactions are involved (Lorentzian relativity), 
time and space coordinates are interrelated. We define a differential "length" ele- 
ment by 

ds2 = d x 2  + d y 2  + dz2  - c2  dt (17.17) 

It is easy to show that this length is invariant under a Lorentz transformation (see 
Problem 17.5). The concept of an invariant "length" element, that is, 

leads to the concept of the invariant proper time. We define the proper time as the 
time measured in the moving reference frame-that is, in S'. Thus for an event 
occurring in Sf, dx' = dy' = dz' = 0 and dt' is called the proper time. Using Eq. 
(1 7.1 8 )  we find, for this case, 

- c2  d t t 2  = ds2 = dx2  + dy2  + dz2  - c2  dt2 (17.19) 

Because ds is an invariant quantity, then the proper time dt' = ( l / c )d s  is an invariant 
quantity. 



Time Dilation. Equation (17.19) can now be written in terms of the velocity of the 
S' frame: Writing dxldt = u,, and so forth, it becomes 

where v2 = vf + V: + v:. We should note that, in some books on relativity, the 
proper time t' is often labeled as r,. Equation (17.20) shows what is called the time- 
dilation effect. It shows that, for example, the time measured by a clock in S' is less 
than the time measured by a clock in the nonmoving frame S. Thus a clock moving 
relative to an observer runs more slowly than one that is at rest relative to the 
observer. 

Length Contraction. Consider an object at rest in the reference frame S', which is 
moving with speed v parallel to the z axis relative to a frame S. The dimension 
along the z' axis measured in S' is 1' = z; - z; .  The Lorentz transformation can be 
used to determine the corresponding length as measured in S. Taking the time at 
which z2  and z ,  are observed to be the same gives 

z2  - = ( - ) 1 ' 2 ~  and z - vt = (1 - $ ) 1 ' 2 ~  (17.21) 

Thus 1 = z2  - z ,  is as follows: 

We should note that in some books on relativity the symbol 1 ,  is used for l'. 
This result shows that the length of the object along the z axis gets contracted as 

seen in reference S. This effect is known as the FitzGerald-Lorentz contraction rule. 
Although the points z ,  and z ,  were measured simultaneously at time t ,  the points z; 
and z; in S' are not measured simultaneously. 

Phase, Wave Vector, and Frequency of Electromagnetic Waves. The phase 4 of a 
plane electromagnetic wave (Fig. 17.2) at time t and position r relative to a reference 
frame S is 

+ = k . r - w t  (17.23) 

J 
Figure 17.2 The waveform of a plane electromag- 
netic wave at time t, showing the number of crest 
reaching the observation point P from the origin in 
the time period from zero to t .  
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where k is the wave vector of the wave. An observer P located at a distance r from 
the origin counts the number of wave crests passing him or her. The crests are 
labeled as follows: The crest that passes the origin at t = 0 is 1, followed at a later 
time by 2, and so on. When the crest labeled 1 reaches the observer, he starts 
counting by counting it as 1. At time t, he will have counted N = $/2a wave crests 
or N = (1/2n)(k. r - at).  Because N is just a number, then it should be independent 
of the coordinate system being used, and hence invariant under a Lorentz trans- 
formation (see Problem 17.6). The invariance means that 

where the prime designates that the quantities are measured in a reference frame S' 
moving with velocity v parallel to the z axis relative to S, and coinciding at t = 0. 
Using the Lorentz transformation [Eq. (17.2)] one can show that 

In spherical polar coordinates, we take k and kt to make angles 8 and 8' relative to 
the z and z' axes (direction of o), respectively. Since k = w/c, k' = ol/c, k ,  = k cos 8, 
and k: = k' cos 8', then one can show that 

The numerator gives the customary Doppler shift valid at low speeds (vlc < 1). The 
factor (1 - V ~ / C ~ ) - " ~ ,  on the other hand, modifies the customary shift at higher 
speeds. Similarily one can show that 

(1 - v2/c2)'I2 sin 8 
tan 8' = 

cos 8 - v/c 

which gives the relations between the directions of the wave vectors in the two 
frames (see Problem 17.7). Also, one can show that 

0' = 
(1 - 02/c2)1/2 
1 + (vlc cos 8') 

Example 17.1 Time Dilation 

(i) Rocket Ship. A rocket of mass 10 tons is designed to travel to a distant star and return to 
earth with a constant velocity equal to v = ( 1  - x 10-4)c. The distance between the earth 
and the star is d = 5 light-years. The time taken by the rocket to make the round trip as 
measured by a clock at rest on the earth's surface is t = 2d/v z 10 years. 

To estimate the amount of food, drinks, and other supplies needed for the trip, one needs 
the time duration of the trip from the point of view of a clock on the rocket: 
t' = , / m t  = 0.01 x 10 = 0.1 year = 1.2 months. Thus the mission control needs to 
stock supplies on the rocket for only 1.2 months rather than for 10 years. This is relatively 
inexpensive; however, it takes a lot of energy to get the rocket to the above speed. 

(ii) Decay of Muons. When a muon, an elementary particle of mass m = 207me, where me is 
the mass of the electron, is produced at rest in the laboratory, an observer at rest in the 
laboratory measures its lifetime, which is a measure of how long the particle lives before it 
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decays to something else to be t' = 1.52 x s. We used t' since this is the proper time 
measured in the rest frame of the event. 

To  test the time-dilation concept, one has to find the change in the lifetime when the 
particle is produced in motion with respect to the laboratory. The production of this particle 
with I. z 0 .98~.  in fact, takes place above the earth in cosmic-ray collisions with nuclei in the 
atmosphere. The observer in the laboratory on earth who applies the time-dilation concept, 
would predict a longer lifetime t for the moving particle. That is, 

Thus if the particle indeed lives longer, the laboratory observer will find that the particle 
travels longer distances than what one would expect without the application of the concepts 
of relativity. Experimental observations were performed and it was found that indeed the 
particles travel longer distances, thus confirming the concept of time dilation. How d o  these 
decay events appear to an observer moving with the decaying muons? This question is left as 
an exercise (see Problem 17.1). 

Example 17.2 Transverse Doppler Effect-Red Shift 

A laser source is moving with velocity v, along the z axis with respect to  a detector. The laser 
beam is directed along the x axis according to an observer at rest with respect to the detector, 
as shown in Fig. 17.3. The frequency of the laser beam measured in the rest frame of the laser 
is w,. Let us take the rest frame of the laser to be frame S' and the rest frame of the detector 
to be S .  When the beam hits the detector, the detector measures a frequency that is different 
from o,, and we will take it to be w. We can use Eq. (17.26) to determine w, that is, 

Since the wave vector of the laser radiation is along x, then k ,  = 0. Thus 

The same result can be also determined from Eq. (17.27). Since the angle O between the 
propagation and the direction of motion of S' relative to  S is 7~12, then cos O = 0, and hence 
Eq. (17.27) reduces to the above result. 

The result of Eq. (17.31) is referred to as the transverse Doppler effect, or the so-called red 
sh10. Note that it is the same whether the detector is approaching or departing the source. 
Moreover, the leading term in the expansion is quadratic (second order in vlc); that is, it 
depends on oi/c2, which makes it generally smaller than the first-order effect. This relativistic 
transverse Doppler shift has been observed spectroscopically with atoms in motion (in 1938). 
The direction of the propagation as measured by the detector can be calculated from Eq. 
(17.25) or from Eq. (17.28); see Problem 17.8. 

Laser beam 
x+--- 

Detector v 
z 

Figure17.3 Transverse (relativistic) Doppler 
effect. A laser is moving normal to  its own output 
beam relative to a stationary detector. 
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Example 17.3 Solid-Angle Transformation 

A beam of light subtends a solid angle dR as measured by an observer in frame S. We are 
interested in calculating the corresponding solid angle of the beam observed by an observer 
S' moving along the ,- axis with velocity r relative to the first observer. 

Since JQ = sin 0 d0 d 4 .  then dR' in S' is dR' = sin 0' dl?' d&. The angle 4' seen by observer 
S' is the same as seen by observer S. The angle U' can be calculated from Eq. (17.28). Using 
trigonometric relations, one can show that 

cos II  - r /c  ( I  - v ~ / c ~ ) " ~  sin 0 
cos (I' = sin 0' = - 

1 - (ri'ckos 0  
( 1  7.32) 

I - r/c 

Thus 

For r,'c = 0.95. this result shows that dR'/dR drops from its maximum value at 0  = 0 
(namely, 39) to its minimum value at 0 = n (namely, 0.024). Moreover it can be shown that 
5 dR' = 4n for any velocity v. 

Example 17.4 Reflection Laws from a Moving Mirror 

A mirror S' is moving relative to the laboratory frame S with a velocity r along the normal to 
its surface. According to an observer at rest with respect to the mirror, a linearly polarized 
wave of frequency w',, and wave vector k', is obliquely incident on its surface at an angle 
with respect to its normal, as shown in Fig. 17.4. He also sees the wave get reflected at an 
angle O; with respect to the normal and with a frequency w; and wave vector k;. ,According 
to the laws of reflection in S', the wave gets reflected at an angle O; = n - 0;. with a fre- 
quency (I); = coTI. 

The laws of reflection from the moving mirror, however, are not the same according to an 
observer at rest in the laboratory. These can be calculated using Eqs. (17.27) and (17.28). 
First, let us call the frequencies of the incident and reflected waves seen by an observer S at rest 
with respect to the laboratory w ,  and w,.  Moreover, let us call the angles of incidence and 
reflection relative to the normal in the S frame 0 ,  and 0,. 

From Eq. ( 17.28) or ( 17.32) we write 

cos 0 ,  - f l  cos 0 ,  - ,!I 
cos 14 = - cos o; = 

1 - p cos 0 ,  1 - p cos 0 ,  

Figure 17.4 Reflection from a highly con- 
ducting metallic mirror moving along the 
normal to its surface. 
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Taking cos 8; = -cos 8; in these equations, we get 

cos 8, - cos 9, - /? 
= - 

1 - B cos 9, 1 - /3 cos 9, 

Rearranging the terms gives 

cos 9, = - ( 1  + B2)C0s 6, - 28 
1 - 28 cos 9, + f12 

We now determine the relation between w, and w,. Using (Eq. 17.27) we write 

Taking w', = w; gives 

1 - p cos 9, 1 - 28 cos 9, + p2 
w2 = w1 or w 2 =  W I  (17.36) 

1 - pcose,  1 -/!IZ 

17.3 Postulates of Special Relativity 
Although the research carried out by Lorentz in electrodynamics, which resulted in 
his discovery of the Lorentz transformation, carries the basis for the theory of 
special relativity, the far-reaching consequences of the theory were not actually 
realized by him. It was Einstein and Poincare who saw through all the bits and 
pieces of the new experimental evidence and theoretical advances resulting in the 
emergence of the theory of special relativity. 

In this section we discuss this theory, but before presenting its postulates we give 
a brief description of the chronological unfolding of research preceding its introduc- 
tion. This will give us more appreciation of the importance of the theory and will 
show us how it solved many of the problems and cleared up much of the confusion 
in physics. 

In 1865 Maxwell modified the existing equations of electromagnetism, in order to 
eliminate the contradiction present in them, by introducing the displacement cur- 
rent. A triumphant result of his modification is the explanation of the nature of 
light; the new set, Maxwell's equations, correlated light and electromagnetism and 
showed that light is just an electromagnetic wave. 

With the wave nature of light established, researchers directed their attention to 
the study of its propagation. Influenced by the previously established facts that 
mechanical waves needed a medium to propagate in, researchers assumed that light 
needed a medium through which to propagate. In view of the fact that light propa- 
gates over all space, it was necessary to assume that the medium, which was called 
"ether," permeated all space. Moreover, the medium was assumed to be of negligible 
density and to have negligible interaction with matter. 

This special medium, however, caused some problems. What about the state of 
motion of ether? How do Maxwell's equations transform under the existing 
Galilean transformation? The existence of an ether implied that the laws of 
electromagnetism were not invariant under Galilean coordinate transformation; 
there was a preferred coordinate system in which the ether was at rest. This con- 
tradicted what had been known that laws of mechanics were the same in inertial 
coordinate systems-systems moving uniformly relative to one another. 
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In order to remove this contradiction and to avoid setting electromagnetism 
apart from the rest of physics, a number of solutions were introduced. These so- 
lutions included the following: 

1. Assume that the velocity of light is c with respect to a reference frame in 
which the source is at rest. 

2. Assume that the preferred reference frame for light is the one in which the 
medium through which the light is propagating (ether) is at rest. 

3. Assume that astronomical bodies drag (carry along) the ether despite the fact 
that it has a very small interaction with matter. 

These solutions were abandoned soon after their introduction as a result of the 
findings of three major experiments: 

1. Observation of the aberration of starlight-that is, the shift in the apparent 
position of distant stars. This observation contradicted the hypothesis that the vel- 
ocity of light is determined by the transmitting medium or that the ether is dragged 
along by the earth. 

2. Measurements of the velocity of light in moving fluids in 1859 (Fizeau experi- 
ment). This experiment showed that if ether existed, it would have to be dragged to 
some extent by small objects with the degree of dragging depending on the refrac- 
tive indices of the objects. This result makes the either-drag hypothesis very super- 
ficial and not physical. 

3. Measurement of the motion of the earth relative to a preferred reference 
frame-the ether-in 1887 (Michelson-Morely experiment). This experiment showed 
that there is no evidence for relative motion through the ether. This implies two 
alternatives: either there is no preferred frame or the earth drags the ether with it. 
Although this negative result can be explained by the ether-drag hypothesis, this 
explanation however is inconsistent with the first two experiments. 

Influenced by the negativz result of the Michelson-Morely experiments, Poincare 
reintroduced the principle of relativity, which states that the laws of physics are the 
same in all frames moving with uniform velocities relative to each other. Simulta- 
neously and independently Einstein formulated special relativity in a general and 
complete way, obtaining the results of Lorentz and its implications. These postu- 
lates are as follows: 

1. The laws of nature are the same in all Galilean reference frames-frames 
moving with uniform velocities relative to one another. 

2. The velocity of light is constant, independent of the motion of the source and 
the observer. This postulate allows the derivation of the Lorentz transform- 
ations, which are the correct ones for the electromagnetic phenomena. (See 
Problem 17.12). 

17.4 Geometry of Space-Time (Four-Dimensional 
Space)--Four-Vectors and Four Tensors 

In applying special relativity to physical applications, it is more convenient to treat 
time, t, on equal footing to the three spatial coordinates x, y, z and introduce what 
is called a space-time geometry (four-dimensional space). Moreover, the three- 
dimensional vectors as we know them in three-dimensional space will be generalized 
to what is called four-vectors. 
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17.4.1 Three-Dimensional Space-Euclidean Space 

Before we introduce the four-dimensional space we will say a few words about the 
three-dimensional space. Consider a coordinate system x, y, and z, with origin 0. 
The length of the position vector R of a point whose coordinates are x,, x2.and x,, 
which stand for .u, y, and z ,  respectively, is given by 

After any transformation of the coordinate system, the coordinates of the point 
change to (x;, .xi, xi). The transformation is called linear if the new coordinates are 
given by a linear combination of the old coordinates; that is, 

where the ai j  coefficients are constants independent of the coordinates, and i and j 
run from I to 3. Furthermore, the transformation is called orthogonal if it is a real 
one (the a coefficients are real) and the length of the vector remains unchanged; that 
is, 

Since a rotation of the coordinate system about any of the coordinates x,, x,, and 
x, or about any combination of them, is a linear transformation and retains the 
length of the vector, then such rotations are linear orthogonal transformations (see 
Example 17.5). 

Finally we define what is called a Euclidean space. A space is called Euclidean if 
two conditions are met. First, the length of a position vector is the sum of the 
squares of the coordinates of the endpoint of the vector as given in Eq. (17.37). 
Second, the rotations in the space are real. 

17.4.2 Four-Dimensional Space-Minkowski Space 

We now consider a space where the coordinates of a point are given by the three 
spatial coordinates x, y, and z ,  and a fourth coordinate based on time, ct, where c is 
the speed of light. The length of the position vector R of a point whose coordinates 
are (x, y, z, ct) is not given by R2 = xZ + y2 + z2 + c2t2, as one would simply con- 
clude using Eq. (17.37). In fact, it is given [see (Eq. 17.17)] as follows: 

Let us determine the effect of a Lorentz transformation on R. We consider a frame 
moving along the z axis with velocity o. Using Eq. (17.2), one can easily show that 

~ ' 2  = ~2 (17.41) 

Equations (17.41) and (17.42) indicate that the length of the vector in four- 
dimensional space remains unchanged under a Lorentz transformation. Thus the 
Lorentz transformation is a linear orthogonal transformation. The fact that the 
length of a vector in this space is not the sum of the squares of the coordinates of 
the endpoint is, however, troublesome, and indicates that the four-dimensional 
space is not Euclidean. In order to make it mathematically look like a Euclidean 
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space, Minkowski introduced a mathematical trick by replacing the minus sign in 
front of c 2 t 2  of Eq. (17.40) by i 2 ,  where i = is the unit imaginary number, and 
wrote 

R2 = x2 + y2 + z2  + (ict)' (17.43) 

where x , ,  x , ,  x ,  stand for x,  y, z ,  and 

x ,  = ict ( 1  7 .45)  

Using the Minkowski notation and the abbreviations of Eq. (17.3), p = vlc and 
y = ( 1  - p2)-"', the Lorentz transformations of Eq. 17.2 become 

x; = X I  x;  = X 2  

x i  = yx, + ipyx, 

x i  = - ipyx,  + yx, 

Moreover, they can be written in the form of Eq. 17.38; that is, 

where ,u and v run from 1 through 4,  and a,, are constants independent of the 
coordinates. Note that it is customary to use Greek indices (that is, p and v) to label 
four-dimensional vectors and Latin indices ( i  and j) to label three-dimensional vec- 
tors. Comparing Eqs. (17.46) to (17.48) with Eq. (17.49) one finds that the a,, coeffi- 
cients are a , ,  = 1 ,  a , ,  = 1 ,  a , ,  = p,  a , ,  = i p y ,  a,, = - ipy,  a,, = y, and the rest of 
the coefficients are zero. It is convenient to write a,, in a matrix form; that is, 

The inverse transformation where x ,  is given in terms of the four coordinates of 
the moving frame can be determined by inverting Eq. (17.49). 

4 

x ,  = C x h ,  (17.51) 
v = l  

Using the matrix of Eq. (17.50) gives 

These results show that the inverse transformation can be derived by the inter- 
change of the primed with the unprimed and taking P -+ - P .  

It is clear that the Minkowski space is complex since one of the coordinates, 
x ,  = ict, is pure imaginary, and hence any transformation in it is complex. 
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Moreover, the transformation in this space is orthogonal [see Eq. (17.44)] and may 
be looked at as a rotation through a complex angle in the x, - x, plane (see 
Example 17.8). The orthogonality property [see Eq. (17.41)] requires the coefficients 
of the transformation a,, given in Eq. (17.50) to satisfy the relation 

where a,, is equal to 1 for v = A and equal to 0 for v # A (see the proof in Example 
17.6). 

Although the mathematical form of this space looks exactly like a Euclidean 
space, it is not physically so because of its complex nature as compared to the real 
nature of the Euclidean space. In fact, this space is known as Minkowski space after 
Minkowski, who introduced the mathematical trick given in Eq. (17.45). We should, 
however, note that many of the properties of the Minkowski space may be derived 
mathematically by treating it as a Euclidean space. 

17.4.3 Vector Properties of Four-Dimensional Space 

In the previous subsection we introduced the four-dimensional space in which the 
space and time coordinates are put on the same footing. In here we present some 
aspects of the vector algebra of this space in order to allow us to manipulate and 
recast the equations of electromagnetism from the point of view of the new space. 

Four-Dimensional Vectors-Four- Vectors. In three-dimensional (spatial) space, 
quantities are classified as scalars, vectors, and tensors of various ranks. In the 
four-dimensional space, on the other hand, quantities are classified as Lorentz 
scalars (or scalars), Lorentz four-vectors (or four-vectors), and Lorentz tensors 
(or four-tensors). In four-space, the coordinates of a point are represented by 
(x,, x,, x,, x,), and for brevity they are represented by x, where p runs from 1 
to 4. The four coordinates form a four-dimensional vector. In general a four-dimen- 
sional vector A, is a set of four quantities, A,, A,, A,, and A,, that transform as the 
components x,, x,, x,, and x, under a Lorentz transformation. Four-dimensional 
vectors are also called four-vectors or world vectors. Using Eqs. (17.46) to (17.48) 
and Eq. (17.51) we have 

A world scalar, on the other hand, is a quantity that remains unchanged under a 
Lorentz transformation. Finally a point in space-time (in Minkowski space) is called 
a world point, and a trajectory of a point particle in this space is called a world line. 

Four-Dimensional Gradient. When a Lorentz scalar 0 is differentiated with respect 
to xl, the resulting components, a@/ax;, where p = 1, 2, 3, and 4 transform as a 
four-vector. This dan be shown as follows. Using the chain rule one writes 

a@ am ax, -- - x -- 
ax; , = , ax, ax; 
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But 

and thus ax,/ax; = a,,, where a,, are the coefficients of Lorentz transformation. 
Hence 

where 

This result indicates that aO/ax, is a four-vector. This operation is analogous to the 
gradient operation V of the three-dimensional space. The symbol is sometimes 
used for the four-dimensional analog of V. Thus we write 

am 
grad @ = = - 

ax, 

Four-Dimensional Divergence. When a four-vector, A,, is differentiated with re- 
spect to x,, the resulting components, a A  Jax, or their sum, where p = 1, 2, 3, and 
4, transform as a scalar under a Lorentz transformation. This can be shown using a 
similar procedure to the one followed in the gradient case. Using the chain rule, one 
writes 

But 

and hence ax,/ax: = a,,. Thus Eq. (17.59) becomes 

Summing Eq. (17.60) over v ,  we get 

Interchanging the order of summation over p and v and using the fact that the 
coefficients a,, are independent of x,, we get 
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From Eq. (17.53). 
A 

and thus Eq. (17.62) becomes 

The sum on either side is called the four-dimensional divergence of a four-vector. It is 
analogous to the three-dimensional divergence defined in Chapter 1 : 

The syn~bol .is sometimes used to indicate the four-dimensional divergence. Thus 

4 a A  
div A,  = O . A ,  = 1 -' , = ax, 

We also note that Eq. (17.63) indicates that the four-dimensional divergence of a 
four-vector is a Lorentz scalar. 

Four-Dimensional Laplacian or d'Alembertian Operator. In three dimensions, the 
Laplacian V 2  was defined by taking the divergence of a gradient of a scalar, or 
V . ( V s )  = V2@. The four-dimensional Laplacian or d7Alembertian operator can be 
determined also using the same procedure. Taking the four-dimensional divergence 
of the four-dimensional gradient of a scalar CJ, we get . 0s = 0 2 @ .  Explicitly, 

a2s 
02s= , 1 = ,=(v2-7p ax, 0 a )  

Using procedures similar to these we used to derive the transformation properties 
of the four-dimensional gradient and divergence, one can show that the four- 
dimensional Laplacian of a Lorentz scalar is a Lorentz scalar too. That is, one can 
show that 

Moreover, if U 2  operates on some other function, such as a four-vector A,, the 
resulting quantity retains the transformation properties of the function operated on. 
That is, U 2 A ,  is a four-vector. 

Four-Tensors. Lorentz four-vectors are also called tensors of the jirst rank in a 
four-dimensional space. Higher-rank tensors are defined in an analogous way. A 
second rank tensor T,,, for example, is a set of 16 quantities; it is labeled by two 
indices and transforms according to the law 

where a,, and a,, are the 4 x 4 Lorentz transformation coefficient matrix [Eq. 
( 1  7.50)]. 

A second-rank tensor, which we will encounter in the next section, results from 
the differentiation of a four-vector A, with respect to x,, where both p and v run 
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from 1 through 4. We can show, using the same procedures used above, that the 
resulting 16 components ?A,/dx, transform according to the law 

One can construct what is called symmetric or antisymmetric tensor from dA,/dx,. 
For example, 

is a symmetric tensor; it satisfies the relation T,,,, = T,,. On the other hand, the 
tensor 

is an antisymmetric tensor since T,, = - T,,. Note that the four diagonal compo- 
nents of an antisymmetric tensor T,, are zeros, and therefore it has only six 
independent components. The symmetric tensor, on the other hand, has nine inde- 
pendent components. 

Example 17.5 Rotation in Three Dimensions 

We discuss in this example the properties of rotation in the three-dimensional space. Con- 
sider a cartesian system with origin 0. If the system is rotated about the z axis through an 
angle 0 as shown in Fig. 17.5, then the x, y, and z axes will be transformed into the x', y', and 
I' axes, where 

Writing this transformation in the form of Eq. (17.38), one can easily show that the a coeffi- 
cients are: a , , = c o s O ,  a , ,=s inO,  a , , = - s i n O ,  a,,=cosO, a , , = 1 ,  and 
a , , = a , , = u , ,  = a , , = O .  

Now we show that this rotation is an orthogonal transformation. The length of the po- 
sition vector in the original coordinate system R is given by R = (x2 + y2 + z2)'I2. In the new 

X' 

Figure 17.5 Rotation in three-dimensional 
space about the z axis. 
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system (that is, the primed system) it becomes R', where R' = (x" + y" + z ' ~ ) " ~ .  Substituting 
for x', y', and z' in terms of x, y, and z gives 

R' = [(x cos 0 + y sin 0)2 + (-x sin 0 + y cos ~ 9 ) ~  + z2]li2 

Expanding the squares and noting that cos2 0 + sin2 0 = 1, we get R' = (x2 + y2 
+ z2)'I2 = R. Thus the rotation is orthogonal. 

Example 17.6 Lorentz Transformation as an Orthogonal Transformation 

Equation (17.41) means that the Lorentz transformation is an orthogonal transformation. In 
this example we will determine the implication of this condition on the coefficients a,,. 
Taking 

then Eq. (17.41) is equivalent to 

The left-hand side is 

Equations (17.72) and (17.73) agree only if 

where 6,, is the Kronecker delta function; it is equal to zero if v # 1 and equal to 1 if v = 1. 
Equation (17.74) is the condition that defines the orthogonality of the transformation. 

Example 17.7 Four-Dimensional Differential Volume 

The four-dimensional differential volume is defined as d4x = -i dx, dx, dx, dx,. The trans- 
formation law of this volume element can be derived from the transformation of x,. One can 
show the well-known relation d4x' = J d4x, where J is the Jacobian determinant. 

The Jacobian determinant a(q, p)/a(u, v) is defined as the matrix: 

The Jacobian determinant J can be shown to be just the determinant of a,,, and since 
la,,[ = 1, then 

d4x' = d4x (17.75) 

indicating that the "four-volume" is a Lorentz scalar. 

Example 17.8 The Lorentz Transformation as a Complex Rotation 
In Four-Dimensional Space 

We now show that the Lorentz transformation can be interpreted as a rotation in the x,-x4 
plane through an imaginary angle. Assume the angle of rotation is 0; then one can write, 
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along the lines of Eqs. (17.71), 

x; = x ,  cos 0 + x,  sin 0 

Comparing Eq. (17.76) with Eq. (17.47), one finds that 

cos 0 = y and sin 0 = i by  

or 

io 
tan 0 = i/3 = - 

C 

which shows that the angle of rotation is not a real angle. 

17.5 Relativistic Electrodynamics-Covariance of Electrodynamics 
We are now in a position to cast the equations of electromagnetism using the four- 
dimensional formalism. A formulation of these equations that treats the space and 
time coordinates on the same footing is called a covariant formulation. 

Continuity Equation. The continuity equation relating the charge and current 
density is 

or using x, = ict 

Since the four-dimensioral divergence [Eq. (17.64)] is given by O . A ,  = V . A  
+ aA4/ax4,  then Eq. (17.78) can be cast in covariant form by introducing the four- 
vector current density (see Problem 17.14); that is, 

With this four-vector, Eq. (17.78) takes the following covariant form: 

Potential Wave Equations and Lorentz Condition. The wave equations for the vec- 
tor potential A and the scalar potential @ are given by Eqs. (15.9) and (15.10). Note 
that 

is the differential operator of the left-hand side of both of the wave equations. 
Moreover, since J and p are the space and time components of the four-vector J,, 
then A  and @ will have to combine to form a four-vector of the form 

A = A,-  = A, ,  A2 ,  A , , -  ( i:) ( C 
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Using Eqs. (17.79) and (17.81) for the four-vectors of the current density and poten- 
tial, the wave equations take the following single covariant form 

The Lorentz condition that relates the vector potential to the scalar potential 

hence takes a similar covariant form to the covariant form of the continuity 
equation 

Maxwell's Equations. Maxwell's equations in vacuum are V . E = p / & , ,  
V x B = p0 J + (l/c2)aE/at, V . B  = 0, and V x E = -aB/dt. Examining these 
equations shows that there is no obvious way of writing them in covariant form as 
was the case in the continuity equation, wave equations, and the Lorentz condition. 
This may indicate that the E and B fields do not combine to form four-vectors 
such as the above cases, but perhaps higher-rank four-tensors. 

Maxwell's equations are not a good starting point for showing this statement, but 
rather the following equations, which are derived from them: B = V x A, and E = 

-V@ - SAjdt. These were derived from Maxwell's equations V . B  = 0 and V 
x E = -dB/&; they relate the fields individually to the potentials A and @, which 
have already been combined in a four-vector form. Using Eq. (17.81) one can show 
that the components El and B, take the following explicit expressions. 

dA1 aA4 iEl = - -- 
ax, ax, 

Similarly, one can write explicit expressions for E,, E,, B,, and B,. It is clear that 
the electric and magnetic fields are elements of the second-rank, antisymmetric, 
field-strength tensor F,, similar to the one defined in Eq. (17.70); that is, 

where A, is the four-vector potential of Eq. (17.81). Under a Lorentz transformation 
F, ,  transforms according to Eq. (17 67), as follows: 

Explicitly, the field strength tensor is 

v 
+ 
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With the electric and magnetic fields combined in a four-tensor we can now 
proceed to write Maxwell's equations in a covariant form. Let us consider the 
equations: 

Expanding the three-dimensional divergence in Eq. (1 7.89) gives 

Substituting for E , ,  E,, and E ,  in terms of F,, of Eq. (17.88) replaces Eq. (17.91) by 

Adding - ic dF4,/i?x4 = 0 to this equation gives 

Equation (17.93) is the covariant form of Eq. (17.89). A similar procedure gives the 
covariant form of Eq. (17.90) to be Eq. (17.93) with p = 1 ,  2, and 3. Thus 

represent Eqs. (1 7.89) and (1 7.90). 
Similarly, the covariant form of the homogeneous Maxwell's equations 

dB 
V . B = O  and V x E =  -- (1 7.95) 

at 

can be shown to be given by 

% +-+- a F v ~  a F ~ w  = 0 # + 1, = 1 , 2 , 3 , 4  
a x ,  a x ,  a x ,  

Each term in Eq. (17.96) is a tensor of third rank because F,, is a tensor of second 
rank, and its differentiation with respect to x , ,  where 1, # p # v, increases the rank 
by 1 .  

As an application of the covariant formulation of the E and B fields in terms of 
four-tensors, we use the transformation property of the field strength tensor [Eq. 
(17.88)] to derive the transformation laws of these fields. Consider an observer at 
rest in reference frame S, where the electric and magnetic fields of an electromagne- 
tic wave are E and B. We now calculate the field E' and B' as observed by an 
observer moving with velocity v along the z axis. According to Eq. (17.87) we have 

Since [from Eq. (17.88)], B1 = F 2 , ,  then 
4 

B; = 6 3  = Ca2Ia3aFIo 
I .  0 
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Expanding the sums over I and a and using the matrix given in Eq. (17.50), one 
finds that many of the terms in Eq. (17.97) vanish, and B; = a22(a33F23 + a3,F2,) 
or 

On the other hand, the B; component, which is the component along the direc- 
tion of the motion, is invariant under the Lorentz transformation. This can be 
shown as follows: 

Using similar procedures, one can show that the transformation of all of the field 
components are 

The relations in Eq. (17.98) indicate that the components of the fields parallel to the 
direction of the motion stay unchanged under a Lorentz transformation. These 
equations can be generalized to the case where the frame S' is moving with an 
arbitrary velocity v relative to S: 

where I( stands for the component parallel to v and I stands for the component 
normal to v. 

The transformation of the fields can also be expressed in vector form, as follows: 

It is often required to determine the fields in the unprimed system in terms of the 
fields in the primed system. The resulting relations are the inverse transformation. 
One can easily show that the inverse transformation can be obtained from Eq. 
(17.98) to Eq. (17.100) by the interchange of primed and unprimed quantities and 
v -r -v. Finally, we note that the transformations given by Eqs. (17.98) to 
(17.100) indicate that the E and B fields have no independent existence; they are 
completely interrelated. 
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Example 17.9 E . B and E2 - c2B2 Are Lorentz Scalars 

In this example we use Eq. (17.98) to show that E.B is a Lorentz scalar; that is. we show that 
E'.B' = E.B. Substituting for the primed components from Eq. (17.98). we get 

Expanding the terms, we get 

Using similar procedures, we can show that E2 - c2B2 is also a Lorentz scalar (sec Problem 
17.15). 

Example 17.10 A Charged, Current-Carrying Cylinder 

An infinitely long cylinder is uniformly charged with a density 1 per unit length. Also, the 
cylinder cames a uniformly distributed current I as shown in Fig. 17.6. An observer S' is 
traveling in a direction parallel to the axis of the cylinder with a velocity v. 

According to an observer S at rest with respect to the cylinder (Fig. 17.6a), the electric and 
magnetic fields are 

The fields observed by S' can be calculated using the Lorentz transformation. With p, 4, and 
z taken to be the coordinates x,, x,, and x,, respectively, Eq. (17.99) gives 

Now we show that at certain velocities the observer S' can observe only either a pure 
electric or a pure magnetic field. We first consider the case 1c/l < 1 (curren:-like cylinder). 
When the observer S' is moving with velocity v = 1/~,p,I. then the electric and magnetic 
fields become (sec Fig. 17.66) 

where we used y = (1 - 12~2/1z)-11Z. In this case the cylinder behaves as a current-carrying 
conductor. We now consider the case where L / I  > 1 (charge-like cylinder). In this case and 
when S' is moving with velocity v = 111, the electric and magnetic helds become (see Fig. 
17.64 

whm we used y = (1 - 12/12~2)-112. In this cast, the cylinder behaves as a charged 
conductor. 

The last case we discuss is when lc/l = 1. in  this case there is no reference frame in which 
the electromagnetic field is pure electric or pure magnetic. As one can see from Eqs. (17.103) 
and (17.104). the velocity of the frame in this case approaches the velocity of light and both 
fields approach zero. 
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Figure 17.6 The fields of a long, stationary 
cylinder which simultaneously has a uniform 
charge density, and a uniform current mea- 
sured in intertial frames moving along the 
cylinder. Observer is moving relative to the 
cylinder at velocity (a) 0, (b) Ic2/I ,  (c)  111. 

Example 17.1 1 Parallel E and B Fields 

Assume that a uniform electromagnetic wave of E and B fields exists in a reference frame S. 
We are interested in finding the velocity v of the reference frame S' relative to the frame S in 
which the fields are parallel, as shown in Fig. 17.7. 

There are an infinite number of frames in which the parallelism can be achieved. To  see 
this, let us consider a frame S' moving with velocity v in which E' and B' are parallel; then the 
fields will stay parallel when observed in any other frame moving relative to S' in a direction 
along the common direction of E' and B' [see Eq. (17.99)]. Thus we need only to determine 
the velocity of the frame S' that moves normal to  the plane of E and B. For example, if E and 
B are in the x-y plane, then a frame moving along the z axis with the appropriate velocity v 
as shown in Fig. 17.7 can make E' and B' parallel. Now, if E' and B' turn out to  be along the 
x axis, then S' can also acquire any velocity along the x axis without changing the 
parallelism. 
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Figure 17.7 Observation of an electromagnetic field (E, B) in two 
reference frames moving relative to each other, showing that E and 
B appear parallel in one of them. 

Thus taking E' x B' = 0, and v to be along E x B-that is, normal to the plane of E and 
B-one can show by crossing the inverse of Eq. (17.100) that (see Problem 17.16) 

where 6 is a unit vector normal to the plane of E and B. 
The magnitude of the fields E' and B' can also be determined from the Lorentz transform- 

ation. We leave this as an exercise (see Problem 17.16). 

Example 17.1 2 Field-Strength Tensor in the Presence of Dielectric 
and Magnetic Materials 

In the presence of materials that have dielectric and magnetic properties, the fields E, D, H, 
and B are related to the polarization and magnetization vectors of the material, P and M, by 

Replacing the components Ei and Bi of the field strength tensor [Eq. (17.88)] by their 
values, (Di - Pi)/fiO and /co(Hi + Mi) ,  then one can easily show that F,, can be expressed in 
terms of two tensors H , ,  and M,, ,  where 

0 M ,  - M 2  i c P ,  

- M ,  0 M I  i c P ,  
M , ,  = 

M 2  - M I  0 i c P ,  

- i c P l  - i c P z  - i c P ,  o I 
and 
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Note that Eq. (17.109) combines the relations D = cOE + P and B = p,(H + M) into one 
single relation. 

Both H,, and M,, are second-rank antisymmetric four-tensors (Lorentz tensors). They 
transform under a Lorentz transformation according to Eq. (17.67) or Eq. (17.87). Using the 
same procedure we followed in deriving the transformation laws of E and B, we get 

Pil = PI ,  Mil = MI,  

Further applications of these transformations are found in Problems 17.20, 17.21, and 
17.23. 

Example 17.13 The Potentials of a Uniformly Moving Charge 

A point charge q is moving with a uniform velocity v along the z axis relative to an observer 
S at rest with respect to the laboratory (see Fig. 17.8a). According to an observer S' at rest 
with respect to q, the potentials produced by the charge are 

Figure 17.8 Determination of the potentials of a uniformly moving point 
charge using the Lorentz transformation of the four-potential. (a) Sketch of 
the motion. (b) Sketches of the equipotential surfaces, in the y - z plane. The 
surfaces are equally spaced and represent either @ or A,. 
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where r' = y(z - vt)2 + xQ + yf. According to the observer S, the potentials are not the same; 
they can be calculated from Eq. (17.54) by using the transformation properties of the four- 
vector A, = (A,  i@/c). Using the inverse transformation of Eq. (17.54) we get A, = yAk, A, = 
-iByA& and A, = A, = 0. Thus 

BY B @ =  yW and A 3 = c W = c @  (17.112) 

Substituting for W from Eq. (17.111) gives 

It is convenient to introduce the quantity R* as follows: 

In terms of R*, Eqs. (17.113) can be represented as 

Figure 17.86 illustrates a few equally spaced equipotentional surfaces in the y-z planes, they 
represent either @ or A,. We observe that the potentials have larger gradients in the direction 
perpendicular to the motion than in the direction along it. 

Example 17.14 The Fields Produced by a Uniformly Moving Charge 

Consider the uniformly moving charge discussed in Example 17.13. The fields produced by 
this charge can be calculated from the scalar and the vector potentials of the charge @ and A 
using the relations E = -V@ - aA/at, and B = V x A. These potentials were calculated in 
Example 17.13 using the Lorentz transformation. Here, however, we will not calculate the 
fields from the potentials but from the Lorentz transformation directly. 

According to the observer S' at rest with respect to the charge, the fields are given by (see 
the previous example) 

where r' = xQ + yf + y(z - vt)t = p i  + y(z - of)%. In the frame S, the fields can be calculated 
using Eq. (17.99). Since v is along the z axis, then the parallel and normal directions are in the 
z and p  directions respectively. Thus the inverse transformation of Eq. (17.99) gives, for the 
electric fields, 

E, = E' z Ep=yEp (17.117) 

In terms of the quantity R* defined in Eq. (17.114), the fields become 

In terms of vector notations, the total field E = E,t + Epj3 is 

where R = (z  - vt)t + p i  is the vector position of the charge in the S frame. Moreover, one 
can easily show that Eq. (17.119) can be written as 

where 0 is the angle between R and v. 
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The transformation properties of the magnetic field give 

Since v = 1.2. E, = t',,b. and i x fi = 6 is a unit vector in the d, direction, then 

Figure 17.Ytr gives the E field lines of the charge. They are radial straight lines originating 
from the present position of the charge, which is a remarkable property since the fields came 
from retarded (earlier) times. Moreover the figure shows that the lines are concentrated in a 
direction normal to v .  (see Fig. 17.8h). Figures 17.9h and 1 7 . 9 ~  give the B field lines as a 

( a )  

near 

( c )  

Figure 17.9 Sketches of the E and B field lines of a 
uniformly moving point charge. (a) E field lines. (b) B 
field lines as a function of 0. (c) B field lines as a 
function of r .  



function of 0 and 1.. respectively. Both show that the magnetic lield lines are circles with 
centers along the : axis --the charge path. Moreover. they show t l i ; ~ t  the lilies ;ire COIICCII- 

tr;ited near the chnrpe ; u ~ d  in directions perpendicular to v.  

Example 17.15 Electric Dipole in Uniform Motion 

A n  electric dipole p = p,,i is moving with a ~iniform velocity v along the : axis relative to a11 
c>bser\er S at rest with respec1 to the laboratory. as shown in Fig. 17.10. 

Accc>rding to a n  obser~er  S' i ~ t  rest with respect to p. the potentials produced by the dipole 
;I re 

where r' = ;.(I - u r ) i  + .sP + j.P. The potcnti;~ls in S c:ui be ci~lculatcd from 17.122 using thc 
inverse tr;~nsformation [see Eq. ( 1  7.54)]. Thus cD = ;no'. and .4, = P;W c. Substituti~lg for @' 
from 17.123 and nsi11p the convenient qi~antit) R* of Eq. (17.1 14). we get 

Figuve 17.10 Determination of the potentials 
of a uniformly moving electric dipole using the 
Lorentz transformation of the four-potential. 

17.6 Summary 
By Studying the transformation properties of Maxwell's equations, Lorentz discovered what 
is now known as the Lorentz transformation. The transformation mixes the space and time - 
variables, and thus puts them on the same footing in the form (.u, y, z ,  icr) where i = - I. 
The transformation, of course, yields at low velocities (with respect to the speed of light) the 
well-known Galilean transformation according to which space and time stay independent 
from each other. The new four-dimensional (space-time) space is complex (physically non- 
Euclidean) and is called Minkowski space, but mathematically has the same form as a Eu- 
clidean space. The implications of the transformation extend not only to geometry, but also 
to mechanics. electromagnetism. and electrodynamics, among other disciplines. 
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The transformation applies to any four-vector in this space: These vectors include the 
coordinate four-vectors x, (r, ict), potential four-vector A, (A, i@/c), and current four-vector 
J, (J, icp), which are relevant to electromagnetism. Moreover, four-tensors can be defined in 
this space, an example of which is the second-rank tensor defined by two consecutive Lorentz 
transformations. The electric and magnetic field components constitute the elements of such a 
tensor F,,.: 

The Lorentz transformation to a system moving with a velocity v in the z direction is 

0 0 

0 0 -ipy 

where b = vlc, and y = (1 - P2)-'l2, and 

where B, and T,, stand for any vector and any second-rank tensor. 
Some of the implications or facts that are built into the transformations are as follows: (1) 

The speed of propagation of electromagnetic radiation in vacuum c is constant in every 
uniformly moving coordinate system (inertial systems). (2) The transformation leaves x2 + y2 
+ z2 - c2t2 invariant. (3) The wave equation and Maxwell's equations are unchanged (cova- 
riant) under Lorentz transformation (requiring fields transforming as tensor elements, and 
potentials transforming as vector components). (4) The various relations in electromagnetism 
take on the following forms in four-space notations. 

Continuity relation: O . J , = O  (17.80) 

Lorentz condition: O.A, = 0 (17.83) 

Potential wave equation: n2A,  = -pO J, (17.82) 

Maxwell's j '=' OX' 

equations aF,, aF,, 
+-+-=O f o r p # v # 1 = 1 , 2 , 3 , 4  

axA ax, ax, 

where the symbols 0, El., and O2 are the analog quantities of gradient, divergence, and 
Laplacian of three-dimensional space 

a@ a~ (17.58) 
O Q = -  0 . A  = 1 2 0*@ = 

ax, , = I  ax, (17.66) 

Explicitly the field components transform as follows: 

Eil = Ell E" = y(E, + v x B,) 

where 1 1  stands for the component parallel to v and I stands for the component normal to v. 
Using these transformations, one can determine the fields produced by a uniformly moving 
charge from the fields produced by it in a frame in which the charge is at rest. 
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Problems 

17.1 Consider a high-speed muon produced in collisions between cosmic-ray particles from 
outer space and nuclei in the atmosphere (see Example 17.1). Analyze the decay from 
the point of view of an observer moving with the decaying muon. How d o  these decay 
events appear to an observer fixed on earth? 

17.2 Two rulers of the same length I, when they are at rest move in opposite directions 
with uniform velocities at relative velocity a. Observers 1 and 2 are at rest with respect 
to rulers 1 and 2, respectively, as shown in Fig. 17.1 1. (a) Determine the time interval 
At between the instants at which the left and right ends of the rulers pass each other 
as observed by observers 1 and 2. (b) What is the order in which the ends pass each 
other according to observers 1 and 2, and to a third observer with respect to whom 
both rulers move with equal velocities in opposite direction? 

Ruler 1 Ruler  2 

Figure 17.1 1 

17.3 Verify the velocity transformation in spherical coordinates given by Eqs. (17.8) and 
(1 7.9). 

17.4 Three reference frames S, S', and S are moving relative to each other uniformly while 
keeping their corresponding axes parallel. The frame S is moving relative to  S' with a 
velocity u ,  along the 2' axis, and S' is moving relative to S with a velocity v ,  along the 
z axis. (a) Show that the frames S" and S are connected by a single Lorentz transform- 
ation with a velocity u  given by 

17.5 Show that the four-dimensional "length" element given in Eq. (17.17) is a Lorentz 
invariant. 

17.6 Show that the number of wave crests in an electromagnetic wave is a Lorentz invari- 
ant quantity. 

17.7 Verify Eq. (17.28), which gives the relation between the directions of the wave vectors 
of an electromagnetic wave observed in two frames. Show also that it can be derived 
from Eq. (17.8). 

17.8 Consider the transverse Doppler effect treated in Example 17.2. Determine the direc- 
tion of propagation of the wave in the system in which the source is at rest. 

17.9 Assume that the stars are uniformly distributed. Determine their distribution as 
measured by an observer moving with a velocity v z c. 

17.10 A mirror moves along the normal to its plane with a velocity v z c with respect to the 
laboratory. A light wave of frequency o, is normally incident on the mirror according 
to an observer at  rest in the laboratory. Determine the frequency of the reflected wave 
when the mirror is approaching and when it is receding, as measured by the same 
observer. 

17.11 Determine the law of reflection of a plane monochromatic wave from a mirror mov- 
ing in a direction parallel to its plane. 

17.12 Determine the Lorentz transformation from the second postulate of special 
relativity-constancy of the speed of light. 

17.13 The wavelength of a light wave measured in the frame in which the source is a t  rest is 
1,. Determine the wavelength of the wave measured by an observer moving with 
velocity v relative to the source for both cases: an approaching and a receding 
observer. 
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(a) It is established experimentally that p d x ,  d x ,  d x , ,  where p is the charge density, is 
a Lorentz invariant. This is known as the invariance of electric charge. Use this 
incariance to derive the transformation property of p. Does it make J ,  a legitimate 
four-vector? (b) The number of electrons per unit length in a cylindrical conductor is 
i,. When a current is established in the wire, the electrons drift along the wire at  the 
drift speed r. Find the linear density i. of the drifting electrons in the wire in terms of 
i.,, 11, and c, as measured by an observer at rest with respect to  the wire. Assume that 
the electrons were at rest before the current was established. 

Show that E2 - c 2 B 2  is a Lorentz scalar. 

A uniform electromagnetic wave of E  and B  fields is observed by an observer in a 
frame S. In a reference frame S' the fields E' and B' are parallel. (a) Show that S' is 
moving relative to S at a velocity v given by Eq. (17.105). (b) Determine the fields E' 
and B' in terms of the field invariants E 2  - c 2 B 2  and E . B .  

In a reference frame S ,  the electric and magnetic fields of an electromagnetic wave E 
and B are perpendicular to each other. Determine the velocity of a reference frame S' 
in which (a) E' = 0 and (b) B' = 0. 

Consider a uniformly moving point charge. (a) Show that the motion reduces E along 
the line of motion as compared to the Coulomb field of a static charge. (b) Show that 
E is "compressed" in the direction of motion. (c) Interpret these properties in relation 
to the transformation Ell = E;, . 

Consider a uniformly moving point charge (see Example 17.13). (a) Determine -V@ 
and sketch the field lines corresponding to this field on Fig. 17.86. (b) Determine 
-?A/?t and sketch the field lines corresponding to this field also on Fig. 17.8b. (c) 
Show that the strength of -8Aldt  is enough to straighten out (make radial) the total 
electric field E = -V@ - dA/dt and to reduce it along the motion as shown in Fig. 
17 .9~ .  

Determine the E and B  fields of an electric dipole moving along the z axis with a 
velocity v relative to the laboratory using the Lorentz transformation of the fields. 
The dipole moment in its rest frame is p = p,2. 

Determine the Lorentz transformation for the electric and magnetic dipole moments p 
and m. [Hint: use the transformation formula for P and MI. 
A conducting bar of length 1 moves with constant velocity v normal to itself in a 
magnetic field B  (see Example 11.5). Determine the induced emf in the bar using (a) 
the transformation of the fields and (b) the transformation of the potentials. 

A plane, rectangular, wire loop carries a current I' as measured by an observer S' at  
rest with respect to the loop. The loop is moving relative to the laboratory S with a 
velocity v, as shown in Fig. 17.12. The lengths of sides 1 and 2 are a and b. (a) Calculate 
the charge on all sides as observed in the S frame. (b) Determine the electric dipole 
moment of the loop in S. (c) Determine the magnetic dipole moment in S. 

z 

0 

Figure 17.12 



SYSTEMS OF UNITS 

If one examines the history of the development of science and the system of units 
that served science, one would observe that the development of the systems reflects 
the various stages of the development of science itself. The electrostatic units (esu) 
system was, for example, introduced to suit the formulation of electrostatics and the 
electric properties of matter. The electromagnetic units (emu) system, on the other 
hand, was introduced to suit the field of magnetism and the magnetic properties of 
matter, a field that was studied separately from electricity. 

When the union between the fields of electricity and magnetism was established, 
and the field of electromagnetic theory emerged, new systems of units that suited the 
new theory emerged. These include the well-known Systeme International (SI), 
which is also known as MKSA, and the Gaussian system. 

The subsequent introduction of quantum mechanics and the emergence of the 
fields of atomic, plasma, nuclear, and particle physics added a great diversity to 
science and to the kind of considerations in choosing systems of units. 

Because the SI system utilizes the practical units of amperes, volts, and ohms, it 
has become the universal system in electromagnetic theory and its engineering app- 
lications. On the other hand, the Gaussian system has become the widely used 
system in the other fields of physics. Because electromagnetic interactions play some 
roles in the other fields of physics, a physicist must be familiar with the formulation 
of electromagnetic theory in both the SI and Gaussian system and should be able to 
convert from one to the other. 

The purpose of this appendix is not to give thorough discussions of the various 
systems, but to give a brief account that is enough to allow the student to recognize 
the system of units that a given relation is written in, and hence to choose the 
numbers that should be plugged in if a numerical answer is sought. Moreover, it will 
give guidance to how to convert a given equation from one system to the other. 

1.1 Force Laws-Origin of Systems 
All through this book the SI system has been used. This system is based on the four 
quantities-the meter, kilogram, second, and ampere, whereas the Gaussian system 
is based on the centimeter, gram, and second. In order to see the origin of these 
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systems, and others, one needs to examine the two force laws: Coulomb's law 
between two charges and the magnetic force between two current-carrying wires per 
unit length 

1 qq' d F  po II' F = - -  ---- - 
4nc0 r2 dl 2n r 

(SI, MKSA) 

which can be rewritten in more general forms as 

where q and I stand for charge and current, F  for force, 1 and r for length and 
distance, and the numerical values 1/(4ns0) and po/4n are what we used in the SI 
system, and whose ratio respectively is l/eOpO = c2 the square of the speed of light. 

If one always uses the same set of mechanical units (units of force, energy, 
power,. . .) i.e., mass x distance/time2, mass x distance2/time2, mass x 
distance2/time3 and realizing that I = q/t, when t represents time, then other 
systems of units can be introduced with freedom of choice of the numerical values 
and the dimensions of the constants C, and C, as long as their ratio always satisfies 
the relation: 

The use of 4n explicitly in C, and C, of a system (such as the SI system) is a 
convenience that makes no numerical factors of 4n appear in Maxwell's equations, 
and for this reason such a system is called a rationalized system of units. 

We will now use the above outline to discuss the esu and emu systems very briefly 
because they are not presently in use, and less so the Gaussian system because it is 
widely used. 

t 

1.2 Electrostatic and Electromagnetic Systems 
In the esu system, the units of length, mass and time are chosen as the centimeter, 
gram, and second (cgs), and hence the unit of force is the dyne = newton. In 
the system, we take C, = 1 and consequently C, = l/c2. The force laws then 
become : 

The unit of charge in this system is the statcoulomb. Its definition comes from the 
statement that two point charges are one statcoulomb each if the force of interac- 
tion at 1 centimeter of separation is 1 dyne. The statampere per square centimeter, 
the unit of current density, is defined via J = pv where p is in statcoulombs per 
cubic centimeter and v is in centimeters per second. The unit of the electric field, 
statvolts per centimeter is defined by the relation F = qE, where F is in dynes and q 
is in statcoulombs. Finally the esu unit of the magnetic field B is defined by the 
relation F = J x B. 

In the emu system, the units of length, mass, time, and hence force are taken as 
centimeter, gram, second, and dyne, respectively just as in the esu system. In the 
system we take C, = 1 and consequently C, = c2. The force laws then become 

, qq' dF 211' F = c  - - =- 
r2 dl r (emu) 
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The units of current and current density I and J are abampere and abampere per 
square centimeter, respectively. The definition comes from the statement that two 
very long filamentary currents are one abampere each if the force of interaction per 
unit length at 1 centimeter separation is 2 dynes per centimeter. The unit of charge 
is the abampere-second, whereas that of charge density p = J/v is the abcoulomb 
per cubic centimeter. One can go on and on with this procedure to define quantities 
like abvolt, abfarad, and so on. Here, however, we note that the unit of B comes 
from F x J x B and is called the gauss = tesla. Consequently the unit of 
magnetic flux is gauss x centimeters2, which is given the name 1 maxwell. 

1.3 Gaussian System 
In the Gaussian system the units of length, mass, time, and hence force are cen- 
timeter, gram, second, and dyne, respectively. That is, it is a cgs system just like the 
esu and emu systems. Each of the constants C, and C, have more than one value; 
in fact the system is a mixed system in which p, J, and E are measured in esu units, 
and B is measured in emu units. 

In this system, Maxwell's equations take on the form given in the accompanying 
table. 

Maxwell's Equations 

Microscopic Macroscopic 

V . E = 4 n p  V . D = 4npf 

The field vectors are related as follows: 

D = E + 4nP and H = B - 4nM (1.6) 

The constitutive relations in simple materials are written 

D = E E  B = p H  J = a , E  (1.7) 

P = x E  and M = x , H  (1.8) 

Equations (1.6) to (1.8) imply that 

E = 1 + 4 n ~  and p = 1 + 4 n ~ ,  (1.9) 

From the relations 

1 dB 
V . B = O  and V x E = - - -  

c at ' 

we find that the fields relate to the potentials in this system according to: 

(I. 10) 
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The Lorentz force acting on a charge q moving in a region of E and B fields is 

(I. 1 1) 

The electromagnetic energy density associated with the fields, and the Poynting 
vector in this system are 

As we mentioned above, the MKSA (SI) system is widely used in electrical en- 
gineering applications. This is bepause it uses practical units including the ampere, 
volt. ohm, henry, and farad. We cw now see this point if we examine Table 1.1, 
which gives the numerical relationships of SI units to Gaussian units. For practical 
reasons the statampere = 0.33 x ampere is too small and the abampere = 1 0  
amperes is slightly too large. The statvolt = 300 volts, staohm = 9 x 10'' ohms, 
stathenry = 9 x 10" henrys, are all too large. On the other hand the 
statfarad = 1.1 x 10-12 farad is much too small.we should, however, note that the 
unit tesla of SI is too large for practical purposes whereas the gauss = tesla is 
more of a practical unit. 

Table 1.2 gives the symbolic relationships of SI variables to Gaussian variables. 
The table is useful for quick conversion from SI to Gaussian or Gaussian to SI. 

Table I. I 

Quantity SI (MKSA) Gaussian 

Length 1 meter (m) lo2 centimeters (cm) 
Mass 1 kilogram (kg) lo3 grams (g) 
Time 1 second (s) 1 second (s) 
Force 1 newton (N) lo5 dynes (dyn) 
Work. energy 1 joule (J) lo7 ergs (erg) 
Power 1 watt (W) lo7 ergs per second 
Capacitance (C) 1 farad (F) 9 x 10'' statfarads 
Charge (4 )  1 coulomb (C) 3 x lo9 statcoulombs 
Charge density ( p )  1 coulomb per cubic meter (C/m3) 3 x lo3 statcoulomb/cm3 
Conductivity (a,) 1 (ohm-meter)- ' (f2.m)-' 9 x lo9 (statohm-cm)-' 
Current ( I)  1 ampere (A) 3 x lo9 statamperes 

= lo- '  abampere 

Current density (J) 1 ampere per square meter (A/m2) 
Displacement (D) '1 coulomb per square meter (C/m2) 
Electric field (E) 1 volt per meter (V/m) 
Inductance (I2) 1 henry (H) 
Magnetic intensity (H) 1 ampere per meter (A/m) 
Magnetic flux (F) 1 weber (Wb) 
Magnetic field (B) 1 Wb/m2 = 1 tesla (T) 
Magnetization (M) 1 ampere per meter (A/m) 
Polarization ( P )  1 coulomb per square meter (C/m2) 
Potential (Q) 1 volt (V) 
Resistance ( K )  1 ohm (R) 

3 x lo5 statampere/cm2 
1271 x 10' statvolt/cm 
f x statvolt/cm 
$ x lo- ' '  stathenry 
471 x 10- oersted (Oe) 
10' maxwells (Mx) 
lo4 gauss (G) 

oersted (Oe) 
3 x lo5 statvolt/cm 
- ,A, statvolt 
$ x 10- '' statohm 
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Table 1.2 

Quantity SI (MKSA) Gaussian 

Capacitance 
Charge 
Charge density 
Conductivity 
Current 
Current density 
Dielectric constant 
Dipole moment (electric) 
Dipole moment (magnetic) 
Displacement vector 
Electric field 
Inductance 
Magnetic intensity (H) 
Magnetic flux 
Magnetic field (B) 
Magnetization 
Permeability 

Permeability (relative) Km 
Permittivity 

Polarization P 
Resistance R 
Resistivity P 
Scalar potential @ 
Speed of light (PO "0) - 

Susceptibility X (x , )  
Vector potential A 

4ne0 C 
(47r~,)"~4 
(4~&o)'i2P (a,4 
4nso rr ,  
( 4 ~ e , ) " ~ 1  
( 4 n ~ , ) ' / ~ J ,  (K) 
E 

(4n&0)"2p 
(4~/!-'o)1i2m 
(~,/47c)'~~D 
(47~6,)- '12E 
(4~&,) -  ' L  
(4xp0) - U2H 
( ~ ~ 1 4 4  'IzF 
(!-'0/4n)Li2B 
( 4 n l ~ , ) " ~ M  
(1) K,!-',, then 
(2) Km -+ !-' 

!-' 
(1) KcO, then 
(2) K -+ E 



DIVERGENCE, 
CURL, GRADIENTS, 

AND LAPLACIAN 

Cartesian Coordinates 

Cylindrical Coordinates 
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Spherical Coordinates 

1 a 1 a 1 aA, 
V . A  = - - (r2A,)  + -- (A ,  sin 8)  + - - 

r2 ar r  sin 8  88 r  sin 8  a4 
1 aA a 3) 8 4  + 1 r  [-2 sin 8  8 4  - - ar (rA31( 

am 1 a@ A 1 am 
V @ = - P + - - 8 + - - - -  

ar r  88 r  sin 8  a4 d 
1 

V 2 @ = - -  r  - +7 
1 aZm 

a (z?) r   sin^(^^^^^)++^ r2 ar 



SOME FUNDAMENTAL 
CONSTANTS OF PHYSICS 

Best (1973) Value 
Computational 

Constant Symbol Value Valuea Uncertaintyb 

Speed of light in c 3.00 x 10' m/s 2.99792458 
a vacuum 

Elementary charge e 1.60 x 10- l 9  C 1.602 1892 2.9 
Electron rest mass me 9.1 1 x 10- 31  kg 9.109534 5.1 
Permitivity constant Eo 8.85 x 10- l 2  F/m 8.854187818 0.008 
Permeability constant Po 12.6 x H/m 477 (exactly) - 

Proton rest mass m, 1.67 x kg 1.6726485 5.1 
Avogadro constant N ,  6.02 x 1 0 ~ ~ / r n o l  6.022045 5.1 
Boltzmann constant k 1.38 x J/K 1.380662 32.0 
Molar volume of ideal vm 2.24 x 10- m3/mol 2.241 383 31.0 

gas at STY 
Bohr radius ao 5.29 x lo-"  m 5.29 17706 0.82 
Bohr magneton P B  9.27 x J/T 9.274078 3.9 

"Same unit and power of ten as the computational value. 
* Parts per million. 
' Standard temperature and pressure (STP) = WC and 1.0 atm. 
Source: The values in this table were selected from a longer list developed by E. :ichard Cohen and B. N. 
Taylor. Journal of Physical and Chemical Reference Data, Vol. 2, no. 4, 1973. 



SOME SI DERIVED UNITS 
WITH SPECIAL NAMES 

Expression Expression 
SI Unit in terms in terms 

of other of SI base 
Quantity Name Symbol units units 

Frequency 
Force 
Energy, work, quantity of heat 
Power, radiant flux 
Quantity of electricity, electric charge 
Electric potential, potential difference, 

electromotive force 
Capacitance 
Electric resistance 
Magnetic flux 
Magnetic field 
Inductance 

hertz Hz 
newton N 
joule J N.m 
watt W J/s 
coulomb C 

volt v WIA 
farad F cf l  
ohm R VIA 
weber Wb V.s 
tesla T W b/m 
henry H W b/A 





ANSWERS TO 
ODD-NUMBERED PROBLEMS 

Chapter 1 

1.1 * (3%- 29 + 62)/7 1.3 2x + 3 y +  6 z =  -28 1.5 7 % -  39 + 82 
1.9 (a) a = 4, b = 2, and c = -1; 
(b) = i ( x 2  - 3y2 + 2z2 + 4xy + 8xz - 2yz) 
1.11 = ln(a/r) 1.13 3, 3V where V is the volume enclosed by S 
1.15 (a) R = (x f  + y9)/(x2 + y2)1/2 = 6; (b) 90 
1.19 l / r2 ,  n(n + l ) rn-2 ,  0 1.21 %jZ + 99 + 22 

Chapter 2 

2.1 172 N 2.3 6.39 x 108A V/m6 

2.9 ( a ) E =  ojZ/e,, 0, -a%/&, forx  > 1, -1 < x  < 1,and x < -1, respec- 
tively; (b) E = -oS/e,, 0 for 1x1 < 1 and 1x1 > 1, respectively 

5 
2.11 E = - [ l  - 2e-2r(r2 + r + $)I3 

4eOr 

2.13 (a) 1 . l  x 10-'~/e, sin(V . m); (b) 2n/eo sin(V . m); (c) 0; (d) 0 
2.15 (a) p = ~, (18s in~8  + 2cos28)/r sine; (b) p, = (YE, for a I p I b 

2.17 (a) Q, = In r, + c; 

(c) a2 - = - (A/2neo)ln(r2/rl) same as that of an infinite wire 
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2.19 (a) El = ~ ~ r / 3 ~ ~ ;  (b) E 2  = p;)rt/3eO; (c) E = pOz02/3~O; 
(d) Q, = - pozor'cos e'/3eo 2.23 p = aaR32, 2 normal to the face 
2.25 F = (q/4ae0r3)[3p . i)i - p], 7 = - qp6 sin8/(4ae0r3) 
2.27 (a) F = 6qdl(d2 + 1 ~ ) - ~ / ~ ( ~ ~ 2  + pzk)/4neo; 
(b) F = (pl/4aeOl4)[3%(p - 2) + 32(p . k)] with p, = 2qdls(d2 + 
2.29 (a) Monopole moment = 0, p = 0, QZ, = 2qz;/9; 
(b) monopole moment = 0, p = 0, Q,, = qR2/6 

Chapter 3 

3.1 ( a ) @ =  V 
In tan 8/2 E =  - ve 

. (b) a = 
0 V 

In tan 8,/2 ' r sin 8 ln(tan 8,/2) ' r ln(tan 8,/2) 

3.3 E = - ~ d / r  sin 8 ln --- ( ::: :::: ) 
o = - eoV/r sin 8 ,  In ( - :"::::) at 81 

tan 8,/2 
a = eOV/r sin O2 In - ( tan B2/2 ) at '2 

4 a e o r 2  4meo(R; - R:) 

36 cos 8 

R; - R; 

3.7 Q , , =  - 
3 ~ 0  5 R  2 

2 a 0 R [ 2 - ( ~ ) c o s 8 + ~ ( i ) 2 ~ ( 3 c o s 2 8 - 1 )  1 f o r r s R  

a ' =  %[2(:) 1) for r >  R 
~ E O  

4vo 1 m a r  m a y  3.9 V(x, y) = - C maze sinh-sin- 
a 

1 
"'odd msinh- Yo Yo 

Yo 

3 

P ' ( t )  f 

3.13 (a) F = - . (b) F = - 4P 
4 '  

4 n ~ , ( z ,  - R2/zo) 4 7 ~ ~ ~ ~ 0 3  
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R(Y-+  Y + )  + Y - Y +  
3.17 (a) a (+)  = -X(y-- y + ) -  

( R 2  + 2y+Rcos+ + -y$)(R2 + 2y_Rcos+ + ~ 2 )  
, ~ 

at - A  cylinder where + is measured with respect to the x axis and origin at its 
center, y -=  -((A/2)2 + R2)'12 - A/2; y + =  ( ( ~ / 2 ) ~  + R2)'l2 - A/2 

d F  
(b) - = -(h2/4me0) 

dl [[i)' + R2] -'I2 

P 3.19 @ = - (R2  - R,) for r I R,, 

P 
E 0 

P 
- -(r + R?/r - 2R2)  for R,  I r I R,, -(R; - ~ : ) / r  for r 2 R 2  

2 ~ 0  2 ~ 0  

P Z , ~  
@(-zO r z r zo) = -cos(mz/zO) + Bo where Bo is a constant 

E 0 

'0 e + a z  3.23 $(x, y, z)  = - cosalxcosa2y with a = ; the minus sign 
2 ~ ~ a  

for z > 0 and the plus sign for z < 0 3.25 - 4 e p i r / "  + 
r a  

98 (r) 

Chapter 4 

4.1 (a) pp = 0;  a, = - P and Pcos 0 on flat and curved surfaces; (b) Q, = 0; 
(c) electrical neutrality; (d) 2mR3p2/3, same using both methods 
4.3 p p =  -(3ax2 + b +  a + cy);  

up = [ ax4  + ( b  + a ) x 2  + (cx2 + p x ) J m ~ / ~  
4.5 (a) E = q i / 2 m ( ~ ~  + &)r2; (b) of = q~o / [2ma2(~o  + E)] in the vacuum side, 
af = qe/[2ma2(eo + E)] in the dielectric side; (c) a, = -q(e - e0)/[2ma2(e + to)] 
4.7 (a) D = qi/4mr2; (b) pp = -qa/4mr2 4.9 (a) E = Xfi/2me0p where 
X = q/L; (b) with E = a/p we have E = Xfi/2ma 4.11 K1 tan0, = K, tang, 
4.13 a, = - A(el - e0)(20 + cot O)/r and - A ~ ~ ( E ,  - to)  cot 0/r3 in the sphere 
and in the shell, respectively. a, = A(2eO - el - e2)0 at r = a, 
and a, = Aa2(E2 - &,)0/b2 at r = b. a - Ae(c1 + e2) l -  
4.15 If E, > E,, then the axes of the cylinder and the disk become parallel to the 
field (stable equilibrium). If el < E,, then the axes become perpendicular. 
4.17 (a) F = - q2/16meod2; (b) same as (a) 
4.19 0, = Pop cos +/2e0, El  = - P0%/2eO in the cylinder; 
@, = ~ ~ ~ ~ c o s + / 2 e ~ ~ ,  E2  = ~ ~ p ~ ( c o s $ ~  + sin+$)/2eOp2 
4.21 (a) [(x + Ax)"+' - xn+']%/Ax(n + 1); (b) [(x + Ax)" - xn]?/Ax; (c) same 
as (b) 

4.23 (a) cP = - 
- .  

@ = pd(2d - x ) / 2 ( ~  + to)  for d I x I 2d 
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d F  p2d2(2& + e012 dF  ~~~~d 
(b) - = I a t x = O , - =  - I 

~ E ( E  + eO) ,  da 8(e + E ~ ) ~  

Chapter 5 

5.1 a = 1.3 x C 2 m 2 v - '  
a 

5.3 (a) pi = aE = - (3(p . i)i - P); 
4n&,R3 

a 
(b) U =  - p , .  E = - , ( 3 ( ~  . o2 + P 2 )  

(4ne0R3)  

1 1 
5.5 (a) a = ; (b) a' = 

2( EO/PO + 1/4n&oR3) 

5.7 a = 4 n e o R ~  + where q = poEo/kT, 

~ $ 0  ( P )  = ~ T E , R ~ E ,  + - 
3kT 

Na K - 1  Na 
5.9 - = - = 0.00096 # 1; thus the gas is not ferroelectric; - = 0.367 

3 ~ ,  K + 2 ~ E O  

# 1; thus the liquid is not ferroelectric 

Chapter 6 

6.3 4,  = - 3, 9,  = - ~ ( 1  - F), 9, = 
1 1 

1 1 
6.5 (a) P,, = -. (b) PI, = - . 4aeoa ' 4 m o /  ' 

Q 6.7 (a) E,  = - i a I r I b and r 2 c, otherwise it is zero; 
47re0r2 

- 1 

( d )  4neoc, 4ne o($ - t) 
6.9 AC = 0 in first order in 6; AC + r) for higher-order corrections 

6.11 (a) Q ,  = -qR,/d: (b) @I = (c) same results 
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V@ e v 6.19 (a) Q, = -- ; (b) o = at @ = P and - o at @ = 0, 
P PP 

e o n  &oh Q = --Bln(p2/pl) at @ = 8 and - Q at cg = 0; (c) C = -ln(p2/pl); 

e0hv2 
P 

(d) 7 = - - 
2P 

6.21 (a) Parallel to the field: stable, perpendicular to the field: unstable; 
(b) W = - 12aeoa6E~/1 

6.23 ( a ) W = -  bq2 ; (b) yes; 
8neo(r2 - b2) 

(c) - 

Chapter 7 

7.5 (a) Q = Qoe-"Jc/~~K) ' ;  (b) - Qdd = - 3. Q 2 ,  (c) 7 = 3.8 x s 
2AeoK 2 C 

7.7 (c) 1 = crEoa2W 7.11 1.4 X lo5 A 7.13 Q = I l IkRIk 
1.k 

Chapter 8 

8.1 (a) md2r/dt2 = q(E + v x B); (b) smallest B = 5.69 x l o3  T 
8.3 F/ I=  - ( I ~ o K o j r / ~ ) t a n - 1 ( W / 2 h ) ,  F/ I=  -Ip0K09/2 
8.5 v X B = 0 for p # 0, v X B + oo as p + 0 (filamentary current) 
8.9 (a) B = ( p o ~ l / 2 ~ ~ ) 6 ;  (b) F =  p o I l z o l n ( ~ 2 / ~ l ) / 2 ~ ;  (c) AA - 
poll  ln(p Jp1)/27r; (d) F on ab is poIl122 ln(p2/pl)/2n, F on bc is 
- ~ O I l I 2 ~ 0 9 / 2 ~ ~ 1  
8.11 A = - ( p o l  lnp)2/2n 8.13 B = 2fiPoI2/aa 
8.15 B = poIN2/4R 
8.17 (a) B = p o ~ ~ 2 2 / 2 ( z 2  + R ~ ) ~ / ~  + 3 p 0 ~ ~ 2 ~ p ~ / 4 ( z 2  + R ~ ) ~ / ~  
8.19 (a) B = -Bo[Wz/b + 2(1 + x/b)]; 
(b) F = eBo[-y(1 + x/b)W + i ( l  + x/b)jr + y2z/b] 
8.21 (a) m = aR2N12; (b) zero; (c) 7 = TR~NIB,(~ - W)/ fi 
8.23 (a) m = aa21(W + 2) = 10-4a(W + 2) A . m2; 
(b) B = a X 10-11[(27/25 - l)W + 36jr/25 - 2]/53 T 
8.25 (a) m = 4aPwR5i/15; (b) m = 4aawR4z/3 

Chapter 9 

9.1 (a) p, = -2(a2x + sly), om = [a2x3 + (aly2 + bl)y]/r; (b) J, = 0, 
K, = Wz(aly2 + bl)/r - jrza2x2/r + 2[a2x2y - x(aly2 + bl)]/r 
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9.3 ( a )  p,,, = 0,  om = 0  on flat surfaces, am = Mocos+ on the ribbon; ( b )  J,, = 0,  
K,, = - M,f on top, = Mof on bottom and = Mof  sin@ on the ribbon; 
( c )  H = - M T / 4 R ,  B  = p"M(1 - 2'/4R) 
9.5 ( a )  v x M = J,,, = v x M,, which does not depend on M ,  
9.7 (a) B = po1&(p2 - P : ) / ( P :  - P : ) ~ T P  for p 1  < P < p 2 ,  B2= p0;&/2rp 
for p > p,, B  = 0  for p < p,; ( b )  A = ~ ,12 ( -p ,  + 2p: In p)/477(p2 - p,)  
for p ,  < p < p,; A = - poIZ In p/2a for p > p,; ( c )  B  is the same as in (a)  
9.9 B = 9kBot / [ (2k  + l ) ( k  + 2) - 2 ( R , / ~ , ) ~ ( k  - I ) , ]  where k  = p2/p1;  
when p2 << p,, k  -' 0,  and B  = 0 :  a  shielding effect 
9-11 B, = ~ 2 l * . o M o g / ( ~ o  + ~ 2 )  for P < a,  
B,= pop,Mo~;(cos+(i+ s in+&)/(poi-  p2)p2 f o r p >  a  
9.13 ( a )  B  = pO(H + M / 3 ) ;  ( b )  B  = poH; ( c )  B  = po(H + M / 2 )  
9.15 m = q a ~ 2 2 / 3  
9.19 dF/dl = p 0 I 2 b / 4 ~ ( a 2  - b 2 )  
9.21 B = poM(l  - p i / 8 ~ 2  - l,/po) - pOM 9.23 1.24 T 
9.25 (a) A = . r r t 2 ~ ~ 2 f ( z 2  + ~ ~ ) ~ ~ / ~ / 8 ;  
( b )  , r r t 2 ~ R 2 i { [ ( z  - d ) 2  + R ~ ] - ~ / ~  + [ ( z  + d ) ,  + ~ ~ ] - ~ / ~ ) / 8  

Chapter 10 

ewp2 
10.1 (a )  m = - -2; ( b )  = - @ ( a  + $)i; 

2  2  

( c )  ( r )  = ( r 2 ) 1 / 2  = 7.8 X m 10.3 3.67 K 
10.5 (a )  3.3 x l o p 3 ;  ( b )  2.63 x l o p 3  ( A  . m2) ;  
( c )  M  = 1.8 x l o6  A / m  ( T ) ,  m = 18 A  . m2 
10.7 M, = 8.44 x l o 5  A / m ,  y = 2654 

Chapter 11 

11.1 E = 0 . 0 5 ~ 6  for p I p,, E = O.O~P;&/P  for P 2 PO 

R 'B, R 2  dBo 
11.3 (a )  A ,  = - for p 2 R ,  A ,  = i p B o  for p R ;  ( b )  E, = - -- 

2  P 2p dt 
P dB0 

f o r p  2 R ,  E, = - -- f o r p  I R; (c )  J = u,E,+ 
2  dt 

11.5 (a) E = - 
27r I ( / +  a ) '  

11.7 ( a )  - 7.5 cos a t ;  ( b )  - 7.5 cos wt - 2.25 sin wt 
p  I A A  P o  P 

11.9 Z 2 =  O '  ' ' a s i n a t  11.13 - + - l n ( b / a )  
4.rrr3 87r 277 

2~ 
11.15 2.37 x H/m 11.17 (a)  P017R1 '; ( b )  p o ~  

2h3 
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Chapter 12 

12.1 (a) 62.5 J; (b) 25 Webers 

POIP - 12.3 (a) B = - , U/l=  -. " I 2 ,  (b) L/I = p0/8n 
2 a a 2  16a 

12.5 (a) 2.3 X W; (b) I,, = 4 X l o p 2  A; (c) 2.5 X H 

12.7 (a) U = aR2P0N2z2,  F = p o ~ ~ 2 / 2 1  radial; (b) same as (a) 
21 

P Po Po I 1 1 2  12.9 (a) I, In p2; (b) - = -Il I, In R; (c) F/I = - - -- 
2 a I 277 277 R 

3 p o a 2 b 2 ~ l ~ 2  
12.11 F =  - along axis 

214 

Chapter 13 

d l  vo 
13.1 (a) V = R I  + L-; (b) I = -(I - e-(R/L"); (c) 

dt R 
( ( e R L  - R T L )  13.5 (a) Q = 8.66; (b) 0.01 H; (c) 0.52 

13.7 (a) I = 
vo sin(ot + +), tan+ = wL/R; (b) 0; 

(R ,  + ' d 2 ~ 2 ) 1 / 2  
(c) -a/2, VR lags VL 

13.11 (b) Vl = 2, V, = OV; (c)2, 1, and0,  A i n  R,, R,, and R, 
13.13 V2 = 4.48 cos(t - 63.5') = 4.48cos(t - 1.1), + = - 1.1 radians 

13.15 R , = w &  
C, + 2C 

13.19 (a) 02 = 
1 

LICl(Cl + 2C) ' Ll(Cl + 2C) ' 
1 1 

( b ) 0 2 = -  - for C = 0 o2 = - and 0 for C >> Cl 
LlC, '  LlCl LlCl 

13.21 (b) a /2  
13.23 (a) C ,  = F; (b) Qo = 100, Z = lo4;  it is both since Q,  >> 1; 
(c) z = 25(1 + 18i), inductive; (d) C, = 0.25 x F; 
(e) 4 x 1W2,  450 at oo and 0.9 wO, respectively 

iwL ( O ~ L C  - 1)' < 
13.25 (a) z, = i ; (b) 0 5 - w 2 ~ c  - 1 W ~ L C  

Chapter 14 

14.1 (a) I, = I, = goo cos of; (b) B = B+, z axis is normal to plates; 
(c) CLO~OWP C O ~ (  ' J t  )/2A 

ba 
14.3 I, = I, = 7.1 X l o p 5  ( - - a )COS 500t 

14.5 (a) D = cOE, B = -E/c, H = -E/cpO; (b) E = H/ccO = cpOH 
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14.7 (a) u = e0E~cos2(kz - wt), S = E ~ C E ~ C O S ~ ( ~ Z  - wt)2, S = U V ,  where 
bl = c; (b) (S) = $ E , C E ~ ~  for both 
14.9 (b) Elliptical polarization (E, + Ed); (c) E is normal to B; 
(d) E = E,$coswt + 2E0jlcos(ot - a/4) 
14.11 (a) E = E,e-'"', E, = %eJky + gelkx; (b) m = n linearly polarized at 45O, 
m = n f 4 linearly polarized at 135O, m = n f 2 circularly polarized, m = n f 1 
elliptically polarized along y = f x axis. 
14.13 (a) 65.2 W; (b) 222 W 
14.15 (a) E =  E , $ e x p [ - z / S - i w ( t - n z / c ) ] ;  (b) 6 =  8.15 lo-'  m, u = c/n 
= 511.5 m/s, h = 5.12 X m; (c) B = (1 + i)fE/6w; (d) n/4 
14.17 + = 3.98 x 10-3e-'"/4 52, u = 4.47 X lo3 m/s 

14.19 (b) B = 2 ; (c) P,,, = 8 x 10' ~ / m , ,  F = 8 x 10' N; 

(d) F =  2 x lo5 N 

Chapter 15 

15.3 (a) E = - +i?ap2 cos at, B = - p$ sinat; 

A,  = p o ~ o ~ l n ( / ~  + ct'/p2)/4n 
A = A l + A 2  if p 1 < c t a n d p 2 < c t ' ;  
A = A, if p, < ct, and p2 2 ct'; A = A ,  ifp, > ct andp, < ct'; andA = 0 
if p, > ct and p2 > ct ' where t ' = t - to; the vector potential will be equal when 

(dm + Ct)P, = (/- + Ctf)Pl 
15.9 (a) E = p,i[cos(wt - kz)/z3 - wsin(wt - kz)/cz2]/2aeo, B = 0, S = 0; 
(b) E = -po2[cos(wt - kx)/x3 - wsin(wt - kx)/cx2 - w2cos(wt - 
kx)/c2x]/4ae0, B = powg[k cos(wt - kx) + sin(wt - kx)/x]/4aeoc2x, S = 

( p o / 4 n e o ) 2 ( k w 3 / ~ 4 p o ) ~ ~ ~ 2 ( ~ t  - kx)/x2; (d) poo4cos2(wt - kx)/6aeoc3 
15.11 (a) Linear in the + direction; (b) circular in the direction - % - i f ;  
(c) elliptical 
15.15 (a) 1 3.8 cm; take I = 0.1 mrn; (b) p = 3 X C.m; 
(c) R = 6 X 52 
15.19 The pattern of a quarter wave antenna placed vertically close to ground, i.e., 
a vertical half-wave antenna 
15.21 (a) dP/dQ = q2a 2sin2 8/16n 'eOc3r ', independent of u,; 
(b) P = q2a2/6neoc3, E = q2auo/6a~oc3 
15.23 E = q2a/(6neOc2)~'(l - /I2)-) dB where Bo = uo/c 

15.25 (a) p(t) = sin wtg + pocos off ;  (b) a/2; 
(c) dP/dQ = p i k 4 ~ ( 1  + cos2 8)/87r 2 ~ 0  
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Chapter 16 

16.1 (3.5% + 3.4Q)/po A/m 
16.3 (a) 8, = sin-' n ,/n, or n/2; (b) (+p - +3) ma = (1 - n :/n;)/(n 2/n1); 
(c) yes provided 1 - n:/n; 2 2n2/n1 and n2/n1 r 0.414 
16.5 T = 3/[4 - 15 sin2(2wd/c)], 8/[9 + 72 sin2(4wd/c)], 
1/[4/27 - 45 sin2(2wd/c)/1296] ,- 

16.7 49.82, -0.96, -1.63 16.13 6, 3.14 X lo-,, 0.21 A/m 

16.15 (a) v . E = o = aEx/ax = O; (b) d2~ , /dy2  + (w2/c2 - k 2 ) ~ ,  = 0, 
nc 

E = ~~2 ~ i n ( n n ~ / a ) e ' ( ~ ~ " ' ) .  , (c) > - 
a 

16.17 (a) B = Bo%cos(kycos8)e' (kzSinBp"'~ E =  - cBo[j sin 8 cos(ky cos 8 )  - 
2i cos 8 sin(kycos 8)]e'(kz""B-w') 

n n 
where cos 8 = - and n is an integer; (b) n = 0 

ka 
16.19 (a) E = ji Eoe'(kz~-"') , H = j(Eo/poc)e'(kz-w') E ,, H, and dH,,/dx = 0 
at x = 0 and x = a; (b) the solution satisfies the wave equation and the boundary 
conditions without restriction on w 

2 -1/2 

16.21 (a) A ,  = [ (E)~  + (&) ] r 20 which is given by m = 1 and n = 0; 

(b) w,, (normalized to a,,): a,, = 2, oO2 = 4, wO3 = 6, a,, = 1, w12 = 2.24, 
w,, = 4.13, w2, = 2, w2, = 2.84, w2, = 4.48, w,, = 3, a,, = 3.61, w3, = 

5, w, = 4, w,, = 4.48, a,, = 5.66 
16.25 

(a) E = %Eo,cos 

where (Eo,/Eo,) = - (lb/ma); 

iE,, + 
H = - -- pow [ mac t sin($x)cos(%y)cos(yz)  

+ E~ c c o s ( $ x ) s i n ( ~ Y ) c o s ( ~ z )  - 2 

(b) TE,,,; (c) w2/c2 = (n2/a2)(I2 + m2 + n2) 

Chapter 17 

17.1 The life time is 1.52 x l o p 6  s. The distance to earth contracts by a factor of 5, 
thus giving the same result. 

No 1 - p 2  
17.9 dN/dQ' = - 17.11 8, =8, ,  and w ,  = o2 

4.rr (1 + ~ c o s 8 ' ) ~  

17.17 (a) when E < cB, v = B x E / B ~  and E' = 0, cB' = 

B~=/B. When E > cB, v = c2E x B / E ~  and B' = 0, 
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E' = EJ-/E. In the latter case B' will also be zero in any frame moving in 
the direction of E'. 

17.19 (a) - 

- -  a A I*oqov - (c) E =  -VQ - - = q R  which is radial from the 
~ T R * ~  at 4 n e o y 2 ~ * 3  

present position of the charge. 
v  

17.21 P'II = YP I ,  . m',, = ym,,  P; = P ,  - , X m , ,  m f , = m l  + v  x p ,  

17.23 (a) q ,  = - q, = - oaI ' / c 2 ,  sides two and four are unchanged; (b) q3b; 
(c) m  = m ' .  



INDEX 

Aberration, 569 
AC circuits. 407 
Accelerated charge. 508. 509 
Acceleration fields. 506 
Action at distance. 3 1 
Addition of vectors. I 
Adiabatic demagneti~ation, 381 
Admittance. 413 
Air gap. 3 19-321. 327 
Amperage drop, 318 
Ampere. 250. 254. 594 
Ampere's law. 25 1-257 

for H, 296 
Analog computers, 398 
Angle: 

Brewater, 526 
critical. 525 
graring, 525 
of incidence. 523 
plane. 9 
of reflection. 523 
of refraction. 523 
solid. 6. 38. 270 

Angular momentum. 287 
Antenna. 490.494, 498-499 

array, 498 
half-wave. 494 

Antiferromagnetism. 344 
Antireflection coatings. 532 
Area: 

element. 8 
as vector, 9 

Associated Legendre's equation. 482 
Attenuation distance, 425. 459 

Back-cab rule, 6 
Band-pass filter, 426 
Barium titanate, susceptibility of. 176 
Base vector, I 
Battery. 233 

nuclear, 237 
solar, 235 

Bessel function, 483 
Betatron. 354 
Biot-Savart law. 263-267,508 
Bohr magneton. 288 
Boltzmann constant, 173. 212, 333 

Boundary conditions. electric field, 47. 77, 516 
current density. 216, 223 
and Laplace's equation, 75 
magnetic field vectors. 260. 303, 516. 554 
magnetic scalar potential, 303 
at perfect conductor. 46 
scalar potential. 78 
vector potential. 258. 303 

Bound charge, 129 
Brewster's law. 526. 529. 540 
Bridge: 

capacitance, 432 
frequency. 432 
Maxwell. 433 

Brillouin function. 338 

Capacitance. 188 
of coaxial cylinders, 191 
coefficients of, 184 
concentric spheres. 192. 199 
dielectric. effect of. 190 
of parallel cylinders. 192 
of parallel plates. 190. 198 
plane and cylinder, 192 
of sphere, 189 

Capacitor. 188 
conic. 82 
cylindrical, 191 
energy of, 194 
nonaxial, 91 
nonconcentric, 85 
in parallel, 193 
parallel plate, 190, 198. 203. 204, 221. 438 
in series. 193 
spherical, 53. 81. 192. 195. 198 
wedge, 8 1 

Cavity definition: 
displacement. 149 
electric field, 149 
magnetic field. 327 

Cavity resonator, 542. 549 
Charge: 

bound. 129 
conservation, 28, 193, 212 
distributions. 35, 36, 37, 40, 42, 44, 51. 55, 62 

65.86, 114-118 
free, 129 
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Charge (Continued) 
induced, 137 
as invariant, 590 
linear density, 34 
magnetic, 25 1 
magnitude, 28 
negative, 28 
point. 30 
polarization, 129 
positive, 28 
surface density. 34 
symmetry. 28 
volume density. 33 

Charge density: 
bound, 129 
linear. 34 
polarization. 129 
surface, 34 
volume, 33 

Charge distributions: 
cylindrical shell, 54, 1 17, 191, 581 
dipole, 49, 62, 152, 499, 587 
disk. 52, 267 
exponential, 1 16, 1 18 
general surface, 157 
infinite slab. 114, 124 
line, 35. 42. 62 
localized distributions, 58, 499 
nonuniform cylinder, 93 
nonuniform sphere, 62. 86. 147, 194 
octupole. 72 
plane. 37, 41. 190 
point charges, 30, 62. 64. 146, 153.49 1, 504, 

584, 585 
quadrupole, 64 
ring, 36, 5 1, 62 
spherically symmetric, 55 
uniform sphere, 40, 115, 159, 183, 188, 439 

Charging, 404 
Circuit: 

AC, 407 
coupled, 405 
differentiating, 398 
integrating, 398 
magnetic, 3 17 
Norton, 4 12 
RC, 397 
RL. 395 
RLC. 400 

Circuital law, Ampere's, 251-257 
Circulation, 20 
Clausius-Mossotti relation. 168 
Coaxial line: 

magnetic fields of, 456 
self-inductance, 372, 388 
TEM mode, 599, 558 

Coefficient, of coupling, 37 1 
reflection, 52 1, 524, 533 
transmission, 52 1 ,  524, 533 

Coefficients: 
of capacitance, 184 

of inductance, 361 
of potential, 184, 187, 188 
of resistance. 229 

Coercive force, 300 
Coercivity, 300 
Collision time, 232 
Components. of vector, 2 
Conductance, 213 
Conductivity, 214 , 

and permittivity, 220-221 
table, 215 

Conductor, 45 
forces on, 157 
good. 460 

Corlservat~on: 
of charge, 28, 193, 212 
of energy, 452 

Conservative field, 20, 24. 27 
Constitutive relations. 139, 296 
Continuity, equation of. 212. 438 
Convection currents, 210 
Conversion: 

of numerical value, 594 
of symbols, 595 

Coordinate systems. I 
Coulomb, 30 
Coulomb gauge, 258, 470 
Coulomb's law, 29 

in dielectric, 146 
for magnetic poles, 293 

Coupled circuits, 405 
Coupling, coefficient of, 37 1 
Covariance, 577 
Critical angle, 525 
Critically damped. 402 
Crossed fields, 245 
Cross product. 5 
Cup, Faraday, 119 
Curie's law, 174 
Curie temperature, 177, 340 
Curie-Weiss law, 177, 341 
Curl, 16 
Current: 

balance, 254 
conduction, 210 
convection, 210 
displacement, 210,437-439 
eddy, 352, 371 
filamentary, 245 
four, 577 
free, 296 
image, 3 14 
induced, 352, 371 
longitudinal, 471 
magnetization, 288. 290 
steady, 213, 215, 251 
surface, 254. 260 
transverse, 471 

Current density: 
bound, 290 
magnetization, 290 



INDEX 613 

polarization, 210 
surface, 254. 260 
volume, 210 

Current distributions: 
circular loop, 264, 272, 385 
coaxial cable, 456 
coil, 3 17-322 
cylindrical, 252, 261, 386. 455 
cylindrical shell, 581 
differential wire (antenna), 490 
disk, 267, 276 
filamentary straight, 253, 261. 306, 315, 377, 

385,477 
half-wave wire, 495, 498 
loop, 274, 276, 378 
point charges in motion, 247, 504. 508-509. 

584,587 
quarter-wave wire, 499 
rectangular loop. 284, 352 
sheet, 254 
solenoid, 257. 265, 276, 351, 378. 383 
sphere, 3 12 
toroid, 256 
two-parallel loops, 365, 367 
wire segment, 266 

Current element, 264 
forces between, 253 
point charge as, 490 

Current loop. 264 
Current sheet, 254 
Cutoff wavelength, 545, 549 
Cycloid, 249 
Cyclotron frequency. 247 
Cylinder, magnetized, 290, 295, 309 

D'Alembertian, 574 
D'Alembert solution, 442,448 
Damping force, 232 

radiation, 507 
Degeneracy, 55 1 
Del operator, l I, 20, 2 1 

4-vector, 572 
Deformation polarization, 170 
Demagnetization. adiabatic, 38 1 
Demagnetizing factor, 3 12 
Demagnetizing field, 3 12 
Depolarizing field, 134-136, 151, 177 
Derivative of vector, 24, 574 
Diamagnetism, 330 
Dielectric, 127 

and capacitance, 190 
electric field within, 149 
force on, 204 
homogeneous, 139 
isotropic, 139 
linear, 139 
strength, 141 

Dielectric constant, 139 
table, 140 

Dielectric mirrors, 532 
Dielectric sphere, in uniform field, 149 

Differentiating circuit, 398 
Dipole: 

approximation, 490 
electric field of, 49, 490, 499 
energy in external field, 59, 280 
force on, 60, 280 
induced, 350 
magnetic field of. 277 
magnetic orientational energy, 
permanent, 172. 332 
potential of, 49, 59 
radiation, 484, 487, 490, 499 
torque on. 61, 280 

Dipoledipole interaction, 171. 180, 342 
Dipole layer. 78, 131 
Dipole moment. 60, 62, 126 

table, 169 
Dirac delta function, 25 
Discharging, 40 1 
Disk. potential of. 52 
Dispersion, 446. 459 
Dispersive and nondispersive, 446 
Displacement, 6 
Displacement current, 210, 437-439 
Displacement vector, 137 
Dissipation of energy, 234 
Divergence, 13, 22 
Divergence theorem, 15 
Domains, 343, 391, 395 
Doppler effect, 566 
Dot product, 5 
Drift velocity, 210-21 1 
Dyadics, 24 

Earnshaw's theorem, 74 
Eddy currents, 352. 371 
Edge effects, 3 19 
Einstein, 568 
Electret, 131, 178 
Electric field, 31 

boundary conditions, 47, 77, 516 
cavity. 149 
definition, 3 1 
in dielectric, 149 
of dipole, 49 
induced, 35 1 
of infinite plane sheet, 41 
of line charge, 35,42 
of long cylinder. 42 
motional, 355 
of moving point charge, 504 
nonconservative, 35 1 
as physical quantity, 160 
of spherical distribution. 55 

Electric pressure, 159 
Electromagnetic system of units, 592 
Electromotive force, 234, 349 
Electrostatic shielding, 118 
Electrostatic system of units, 592 
Emf, 235 

induced. 349 



Emf ( Con~inurd) 

motional. 355 
self-induced. 363 
thebenin. 412 
transformer. 407 

Emu, 592 
Energy: 

of capacitor, 194 
conserva!~on. 452 
current density. 376 
of dipole in external field, 60. 377 
dissipation. 234 
electrostatic. 18 1 .  196 
of free charges. 18 1 
hysteresis loss. 380 
interaction. 200 
kinetic. 212. 247 
magnetic. 373 
orientational. 28 I .  378 
self. 200 
of self-inductance. 374 
of spherical charge distribution, 183 
of  system of conductors. 184 

Energy density: 
In dielectric. 197 
electromagnetic, 453 
electrostatic. 197 
magnetic. 377 
magnetiration. 380 
polarization. 197 
time average. 455 

Equation of continuity. 212 
Equipotential surface. 49 

of dipole. 57 
of parallel line charges. 1 10 

Esu. 592 
Ether, 568 
Euclidean space. 570 
Exchange force. 330, 336 

Farad, 189.494 
Faraday's cup. 119 
Faraday's disk. 360 
Faraday's law. 349. 350. 351. 361 
Fast moving charge. 504. 508 
Ferrimagnet. 345 
Ferrimagnetism, 344 
Ferrite. 344 
Ferroelectricity. 176 
Ferromagnetism. 298, 336 
Field: 

conservative. 20, 24, 27 
demagnetizing. 3 12 
dipole. 49. 277, 490. 499 
guiding, 355 
linear quadrupole. 65 
magnetic, 244 

Filamentary current, 245 
approximation. 246 
dipole moment of, 275 

Filters, 423 

band pass, 426 
high pass, 426 
low pass, 425 

Fit7Gerald-Lorentz contraction, 564 
Fizeau. 569 
Flux: 

electric. 38 
magnetic. 259. 306 
power. 452 
of vector. 13 

Force: 
on charge distributions, 157 
on  conductors. 159 
on  current. 207, 204, 245 
density, 158 
on  dielectric. 204 
on  dipole. 60 
magnetic. 38 1 
of system of point charges. 30 

4-current, 577 
4-differential volume. 576 
4-dimensional space, 569 
4-divergence. 573 
4-gradient. 572 
4-Laplacian. 574 
4-potential. 577 
4-scalars, 572 
4-tensors, 574 
4-vector, 569, 572 
Free charge. 137 

density. 137 
energy of. 18 1 

Free currents, 296 
Free space: 

permeability of, 250 
permittivity of, 30 

Frequency: 
bridge. 433 
cutoff, 545. 549 
cyclotron, 247 
domain. 391. 407 
resonant. 405. 417 
table of, 448 

Fresnel coefficients. 521, 533 

Galilean relativity. 560 
Galilean transformation. 559, 562 
Gap, 319 
Gauge: 

Coulomb. 258, 470 
Lorentz. 470, 473, 577 

Gauge invariance, 472 
Gauge transformation, 468, 472 
Gauss' divergence theorem, 15 
Gauss' law, 38.43 

and conductor. 46 
for D. 136 
for J. 218, 223 
for magnetism, 28 1 

Gaussian system of units, 593 
Generator, induction. 360 



INDEX 615 

Insulator. 45. 461 g-factor. 336 
Gradient. I I 
(irwing angle incidence. 525 
Green:\ theorems. 22. 23 
Group belocity. 546. 552. 644 
Guide speed. 546 
(iu~ding field. 355 

Hagcn-Ruhens formula. 535 
Half-wave antenna. 494 
Hankel function. 483 
Heirenberg. 336 
Helicity. 451 
Helix. 248 
Hrlmholt7 coil. 285 
Helmholti. equation. 48 I 
Henry. 594 
Her[/. 599 
H igh-pass filter. 42k 
H!\teresis. 178. 298 

Image charges. 97 
of conducting sphere. 101 
force. 99 
of parallel cylinders. 108 
of semi-infinite dielectric. 155 
of semi-infinite plane conductor. 97. 486. 499 
of two surfaces. 1 13 

Image current, 3 14 
Image dipoles. 100. 105, 107 
Impedance. 409 

of free space. 454 
intrinsic. 454. 460 
matching. 414 
wave. 454 

Incidence: 
critical. 525 
graling. 525. 539, 540 
normal. 520. 533 
oblique. 522. 535. 538 

Index of refraction. 443 
complex. 458. 533. 535 

lnduced charge, 137 
lnduced dipole moment, 169 
Inductance: 

coefficient of, 361 
mutual. 361 
in parallel. 367 
self-. 366 
in series. 367 

Induction: 
coefficients of. 361 
Faraday's law of, 349 
generator. 360 
heating. 352 
magnetic, 244 
motor. 360 
zone. 494. 502 

Inertial frames. 348 
Initial conditions. 401 
Instantaneous Coulomb potential. 470 

Integrating circuit. 398 
Interaction energy, 200 

dipole-dipole. 171. 342, 379 
dipole in external B. 377 
magnetic, 377. 385 
magnetization. 379 

Interface. 46. 77. 144. 224. 304. 5 17. 532 
Interference. 498 
Invariant. 560. 563 
Isotropy. 139 

Joule. 594 
Joule Heating. 233 

Kinetic energy. 212, 247 
Kirchhoffs la\;. 238. 393 
Kronecker delta. 84. 90.482 

Lamination. 352 
Lande g-factor. 336 
Langevin function, 174. 333 
1.aplace's equation. 73. 78. 94. 144, 224, 268. 303 

cylindrical coordinates, 89 
one-dimensional. 79 
rectangular coordinates. 94 
spherical coordinates. 83 
for steady currents, 224 
two-dimensional. 83. 89 
uniqueness of solution. 74. 144 

Laplacian. 2 1 
fourdimensional. 574 

Layered interface. 532 
Laser. He-Ne. 448. 528. 529 
Left-handed system, 6 
Legendre polynomials, 84 
Length contraction. 564 
Lenz' law. 330. 350 
Lienard-Weichert potential. 504 
Light: 

pipe. 527 
speed of. 30. 443 

Line charge: 
electric field of. 35, 42 
poten$l of.50 

Line of B and H. 295. 312.586 
Line of E. 32 

differential equation for. 33 
dipole. 32. 5 14 
point charge, 32, 586 
refraction of, 163 

Line integral, 19 
Local field. 166, 337 
Logarithmic decrement, 402 
Longitudinal current. 47 1 
Lorentz condition. 470 
Lorentz contraction. 564 
Lorentz force, 244 
Lorentz gauge. 470,473, 577 
Lorentz transformation. 560 
Low-pass filters. 425 



Macroscopic equations. 295 
Magnet, 301-302 

fields of. 321 
Magnetic charge. 251 
Magnetic circuit. 317 
Magnetic cooling, 38 1 
Magnetic dipole. 273 

field of. 274. 277 
of filamentary current, 275 
force on. 280 
orientational energy. 280 
radiation. 484 
of solenoid. 276 
torque on. 280 

Magnetic energy, 373 
Magnetic field. 244 

boundary conditions. 260, 303 
of magnetized cylinder, 290, 295. 309 
of magnetized sphere. 293, 310 

cavity definition. 327 
of circular current. 264 
of current sheet. 254 
of ideal solenoid. 265 
line of, 295 
of moving point charge. 505. 585 
refraction of, 327 
remanence. 300 
of straight current. 266 
of toroidal coil, 256 
of permanent magnet, 321 

Magnetic flux. 259. 306 
Magnetic induction, 244 
Magnetic intensity. 296 
Magnetic moment, 274 
Magnetic pressure. 376, 467 
Magnetic scalar potential, 267-273,29 1-295 
Magnetic shielding. 322 
Magnetic susceptibility. 297 
Magnetization, 287 

current densities. 290 
currents. 288, 290 
energy density, 377 
interaction energy, 379 
saturation. 300, 334 
spontaneous, 339 

Magnetization curve. 298 
Magnetornative force, 3 18 
Mass susceptibility. 297 
Maxwell, 438, 594 
Maxwell bridge. 433 
Maxwell's equations. 437, 440,445,447, 593 

relativistic form, 578 
Memory elements, 178. 328 
Mesh law. 410 
Method of images. 97, 153,230, 314,486,499 
Michelson-Moly experiment. 569 
Minkowski space. 570 
Mirrors: 

dielectric, 532 
metallic. 539. 543 

MKSA units, 30 

Mmf, 318 
Mode, 480.484. 546 
Molar susceptibility, 297 
Molecular field, 166. 337 
Molecular polarizability, 168, 170, 17 1 
Monopole: 

electric, 59 
magnetic. 250 

Motional emf. 355 
Multipole expansion, 58, 478, 499 
Multipoles. 69 
Mutual inductance, 361 

of coil and solenoid, 363 
of parallel rings, 364 
of parallel wires, 372 
of wire and plane, 372 

Near zone, see Static zone 
Negative charge, definition. 28 
Neumann function, 483 
Nodal law, 41 1 
Normal vector, to surface of discontinuity, 46 
Norton equivalent circuit, 412 

Octupole, 69, 72 
Ohm, 2 13. 594 
Ohm's law, 213. 214 
Operator. D'Alembertian, 574 

del. l I .  20. 21 
Laplacian, 2 1 

Orientational polarirability, 174 
Orthogonality, 84, 90, 482, 575, 576 
Overdamped. 403 

Parallel plate capacitor. 142, 190. 198 
Paramagnetism, 322 
Permanent dipole. 172 
Permanent magnet. 290. 301. 302. 321 
Permeability, 298 

of free space. 250 
Permittivity, 139 

and conductivity, 220-221 
of free space. 30 

Phase, 445. 564 
Phase angle. 402,409. 416-417.449, 458 
Phase matching, 522 
Phase velocity, 545, 644 
Phasors, 407 
Piezoelectric effect. 14 1 
Plane of incidence, 522 
Plane sheet, electric field of, 41 
Plane wave, 442 
Point charge, 30 

as current element, 490 
radiation from, 508 
relativistic field, 506, 585 
scalar potential of, 48. 505. 584 
systems of, 30, 18 1 
vector potential of, 505, 584 

Point dipole, 50 
Poisson's equation, 73, 113, 144 258, 303 



INDEX 617 

Polarizability, 168, 170, 171, 174 
Polarization, 126, 522, 526. 529. 531. 540 

charge density, 129 
current density, 21 I 
permanent, I78 
of wave. 449-452 

circular, 45 1 
elliptical, 450 
linear, 449 

Polarization potential, 129 
Polarizing angle, 526 
Polar molecule. 140. 168 
Pole, magnetic, 251 
Position vector, 3 
Positive charge, definition of, 28 
Potential. scalar, 48 

charged disk, 52 
coefficients of. 184. 187- 188 
continuity of, 78 
dipole, 49, 59 
and energy, I81 
line charge, 80 
magnetic, 267-273, 29 1-295 
of moving point charge, 476, 504 
multipole expansion, 58 
octupole. 72 
parallel line charges, 108 
point charge, 48 
quadrupole, 63-64 
retarded, 473, 477, 478 
ring, 5 1 
shell, 54 
spherical charge. 55 
vector, 258.273.291-295 

boundary conditions, 259, 303 
dipole, 276 
ideal solenoid, 284 
of magnetized materials, 291-295 
multipole expansion, 276, 499 
point charge, 505, 584 
retarded, 476 
small loops, 276 
straight currents, 260 
for uniform B, 284 

Potential energy: 
of point charge, 18 1 
and scalar potential. 18 1 
of two point charges, 181 

Power factor, 416 
Power flux, 452 
Poynting's theorem, 453 
Poynting vector, 453 
Pressure: 

electric, 159 
magnetic, 376,467 
radiation, 454 

Product, scalar, vector, 5 
Propagation constant, 447 
Propagation vector, 447 
Proper time, 563 
Pulsed emission, 509 

Q. 40 1 
Quadrupole moment. 64 

linear, 65 
potential of. 63 
two-dimensional, 65 

Quality factor, 402 
Quasistatic equations. 392 

Radiation damping. 507 
Radiation resistance, 494 
Radiation zone, 494, 502 
Rationalized units, 3 1 
RC loop, 397 
Reactance. 410 
Red shift, 566 
Reflection: 

angle of, 523 
law of, 524 
total, 525, 53 1 

Reflection coefficient, 521, 524, 533 
Refraction: 

angle of. 523 
index of, 446,458 
law of, 524, 535, 537 
of lines of B, 327 
of lines of E, 163 

Relativity: 
Galilean, 559, 560, 562 
special, 568 

Relaxation time, 215, 232 
Reluctance, 3 18 
Remanence, 300 
Remanent B, 300 
Resistance, 214, 218, 223. 229. 230, 23 1 

and capacitance, 221 
coefficients, 229 
radiation. 494 

Resistivity, 2 14 
Resistors, in series and parallel. 239 
Resonance. 417,423. 427 

anti. 422 
parallel, 421 
phase, 422 
series, 4 17 

Resonant cavity. 542, 549 
Resonant frequency. 417 
Retarded potentials, 473, 477. 478. 499 
Retarded time, 476 
Retentivity, 300 
Right-handed system, 6 
Right-hand rules, 6 
Right-hand screw convention. 6, 20. 252 
RL loop. 395 
RLC loop. 400 
Root mean square, 416 
Rowland ring, 298 

Saturation, 174, 300, 302, 328 
Saturation magnetization. 300 
Scalar, I 
Scalar potential. see Potential, scalar 



Scalar product. 5 
Screening. 147 
Self-torcc. 509 
Self-~nductance. 366 

ct1axi;ll line. 372 
energy of. 374 
ideal solenoid. 369 
parallel cylinders. 372 
toroldal co~ l .  369 

Semiconductors. 2 I 4  
Separ;rtion of \artable. 83. YO 
Shielding. 118. 322 
Sign conLentlons. 6. 20. 252. 349 
Simpl! connected reglon. 201. 268 
SI units. 30. 592 
Skin depth. 459 
Snell's la&. 524. 535. 537 
Solenoid: 

dipole moment, 276 
and Faradak's Law. 351 
magnetic circu~t. 3 17 
magnetrc field of. 257. 265 

\elf-inductance. 369 
Lector potential of. 28.3. 2x4 

So l~d  angle. 6. 567 
Space-time. 569 

Speed o f  light. 30. 443 

Sphere: 
capacitance. I88 
of  charge. 40. 55. 62. 86. 115 
conducting in conducting medium. 218. 222. 

225 
conducting in  external current, 227 
conducting i n  uniform field. 87. I59 
dielectric i n  external field. 149 
magnetic i n  external field. 308 
un~formly magnetired. 293, 3 10 
uniformly polarbed. 134 

Spherical capacitor. 53, 81. 192. 195, 198 
Spherical charge distribution. 40. 55. 115. 117 
Spin. 330, 336 
Standing wa\e. 495 
Static 7one. 494. 502 
Steady currents. 2 15 
Steradian, 10 
Stokes'theorem. 16, 18, 23 
Superconductors. 2 I 4  
Superposition. 30 
Surface charge density. 34 
Surface current. 254. 260 
Surface integral. 13 
Susceptance. 4 13 
Susceptibility: 

electric. 139 
magnetic, 297 
mass and molar. 297 
table. 297 
tensor, 140. 297 

T E M  mode. 546,549. 558 
T E  mode. 480.484 

Temperature. Curie. 177, 340 
Tensor: 

electromagnetic field. 578 
q~radrupole moment. 64 
second rank. 574 
susceptibility. 139. 297 
symmetric, 575 
third rank, 579 

Tesla. 245, 594 
Thevenin emf. 412 
Time: 

dilation. 564. 565 
domain. 391. 395 
proper, 563 
relaxation. 215. 232. j96. 398 
retarded. 476 

T M  mode, 480.484 
Toroid, 256 
Torque. on dipole. 61 
Transmission coefficient. 521. 524. 533 
Tranbverse current. 471 
Transverse Doppler effect. 566. 589 
'Transverse gauge. 470 
Triple scalar product. 6 
Triple vector product. 6 

Underdamped. 401 
Uniqueness. 74. 144. 470 
Units. SI. 30, 592 
Unit vector: 

cartesian. 2 
cylindrical. 3 
normal. 3, 9. 12 
spherical. 4 

Van de Craf f  machine. 119 
Vector: 

addition of. I 
as area. 9 
component. 2 
curl, 16 
definition. I 
derivative of, 24 
divergence. 13, 22 
f lux of. 13 
gradient. I I 
line integral of. 19 
magnitude of, I 
product with scalar, I 
propagation. 447 
scalar multiplication, 5 
solenoidal. 27 
square of. 2 
surface integral of, 13 
unit. 2 

Vector field, I 
Vector potential, see Potential, scalar, vector 
Vector product. 5 
Vector relationships, 22 
Velocity: 

addition of, I. 562. 589 



drift, 210. 21 1 
group. 546. 552. 644 
phase. 545. 552. 644 
transformation of. 561 

Volt. 594 
Voltage, induced. 349. 360 
Volume element. 10 

Watt. 594 
Wave: 

damped. 441. 458-459, 531. 537 
incoming. 484 
outgoing. 484 
polari7ation of, 449-452 
sinusoidal, 445 
spherical, 478 

standing. 495 
transverse. 445 

Wave equation. 440. 468. 478. 559, 562 
time independent. 458. 479 
transformation of. 562. 577 

Wave guide. 542 
Wavelength: 

cutoff. 545. 549 
free space. 447 
guide, 545 
table. 448 

Wave number. 447 
Wave vector. 447 
Weber. 594 
Weiss. 343 

Zonal harmonics. 84 
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