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The Equations of Electrostatics Inside Dielectrics 
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 If χ (or K) does not depend upon location in a piece of material, the

material is called homogeneous.

 If χ does not depend on E, then the material is called linear,

 If χ does not depend upon the direction of E in the material, the

material is called isotropic.



Even if simple, the electric susceptibility will depend on such parameters as
temperature and pressure.

There are instances where the existence of a polarization may be due to

forces other than those due to imposed electric fields. Thus inertial or

gravitational forces may affect a charge separation in atoms or molecules

creating an effective polarization. Mechanical stresses may also produce a

polarization. This occurs, for example, in quartz, and the associated

phenomenon is called the piezoelectric effect. It has many practical

applications, as in the fabrication of electromechanical transducers where a

mechanical signal is to be converted into an electric signal or viceversa.
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Example: Conducting Sphere Enclosed by a Dielectric Shell-Gauss' Law

In this example, we shall assume we have a conducting sphere of radius R1,
on which is placed a charge Q (=Qf). In contact and concentric with this
sphere is dielectric material having a dielectric constant K that extends out
to a radius R2. We wish to find the fields and charge densities generated
everywhere.
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Because of the spherical
symmetry, it is expected that the
electric field at a distance r from
the center of the sphere will be
radial and independent of θ and
φ. As a result, Gauss' law can be
used to determine the fields
easily.
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The fields inside the sphere, of course, vanish; therefore
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in the vacuum regions



Polarization & charge density

polarization surface charge densities, at r = R1
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charge density at R1

r̂
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polarization surface charge densities, at r = R2

charge density at R2

r̂
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This must be true because the dielectric is assumed to have no net charge, 

There is no volume polarization charge



Potential of the conductor

R1



Example
The Parallel-Plate Capacitor--Gauss'
Law

Consider two parallel conducting plates
whose dimensions are very large compared
to their separation, d. The surface area of
the plates is A. A dielectric slab of thickness
t was inserted between the plates. The
dielectric has a permittivity ε = Kε0, and the
potential difference between the plates is
ΔΦ.
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