

فصل چهارم

ميدان الكتروستاتيك در محيط هاى دى الكتريك

بخش سوم

Example 45 Point Charge on a Plane Interfacc - Laplace's Equation

 In One DimensionThis example deals with a situation where a point charge q is placed on the plane interface of two homogeneous infinite dielectrics1 and 2 with permittivities ε_{1} and ε_{2}, respectively.

At points away from the point charge, the potential satisfies Laplace's equation;

$$
\nabla^{2} \Phi=0
$$

$$
\begin{array}{ll}
\mathbf{\Phi}_{1}=\frac{C_{1} q}{r}+B_{1} & \text { in regions 1 } \\
\mathbf{\Phi}_{2}=\frac{C_{2} q}{r}+B_{2} & \text { in regions } 2
\end{array}
$$

Where C_{1}, C_{2}, B_{1}, and B_{2} are constants.

Boundary conditions
(1) potential is due to a localized point charge

$$
r \rightarrow \infty \quad \Phi_{1}=0 \quad, \quad \Phi_{2}=0
$$

$$
B_{1}=B_{2}=0
$$

the potential is continuous at the boundary gives

$$
\begin{aligned}
& \varphi_{1}(r)=\varphi_{2}(r) \\
& \Phi_{1}=\frac{C_{1} q}{r} \\
& \Phi_{2}=\frac{C_{2} q}{r} \quad \square C_{1}=C_{2}=\stackrel{?}{C}
\end{aligned}
$$

(3) Evaluation of C by using Gauss' law

$D=-\varepsilon \nabla \Phi$

$$
\begin{aligned}
& \vec{D}=-\varepsilon \vec{\nabla} \Phi \\
& \vec{D}_{1}=\varepsilon_{1} \frac{C q}{r^{2}} \hat{r} \quad \vec{D}_{2}=\varepsilon_{1} \frac{C q}{r^{2}} \hat{r}
\end{aligned}
$$

Spherical surface S with its
center at the point charge

The electric field and displacement \& Polarization

$$
\begin{aligned}
& \oint \vec{D} \cdot \hat{n} d a=q \\
& \int \vec{D}_{1} \cdot \hat{r} d a+\int \vec{D}_{2} \cdot \hat{r} d a=q \\
& \int \varepsilon_{1} \frac{C q}{r^{2}} \hat{r} \cdot \hat{r} d a+\int \varepsilon_{2} \frac{C q}{r^{2}} \hat{r} \cdot \hat{r} d a=q \\
& \varepsilon_{1} \frac{C q}{r^{2}}\left(2 \pi r^{2}\right)+\varepsilon_{2} \frac{C q}{r^{2}}\left(2 \pi r^{2}\right)=q \\
& 2 \pi C q\left(\varepsilon_{1}+\varepsilon_{2}\right)=q \quad \longrightarrow C=\frac{1}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}=\frac{C_{1} q}{r}+B_{1} \\
& \Phi_{2}=\frac{C_{2} q}{r}+B_{2} \quad \text { in regions } 1 \\
& \quad B_{1}=B_{2}=0 . \\
& C_{1}=C_{2}=C=\frac{1}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \\
& \longrightarrow \Phi(\mathbf{r})=\frac{1}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\frac{1}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r^{2}} \hat{\mathbf{r}} \quad \text { for all } r \\
& \mathbf{D}_{i}(\mathbf{r})=\frac{\varepsilon_{i}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r^{2}} \hat{\mathbf{r}} \quad i=1,2 \\
& \mathbf{P}=\mathbf{D}-\varepsilon_{0} \mathbf{E} \\
& \longrightarrow \mathbf{P}_{i}(\mathbf{r})=\frac{\varepsilon_{i}-\varepsilon_{0}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r^{2}} \hat{r}
\end{aligned}
$$

induced charge

$\rho_{p}=-\nabla \cdot P$ is zero for $r \neq 0$

$$
\sigma_{p}=\mathbf{P} \cdot \mathbf{n} \text { is not zero }
$$

$$
q_{p}=-\lim _{a \rightarrow 0}\left[\frac{\varepsilon_{1}-\varepsilon_{0}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{a^{2}}+\frac{\varepsilon_{2}-\varepsilon_{0}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{a^{2}}\right] 2 \pi a^{2}=-q\left[1-\frac{2 \varepsilon_{0}}{\varepsilon_{1}+\varepsilon_{2}}\right]
$$

Where a is taken to be the radius of q. The assignment of a radius to the point charge is just an intermediate step to facilitate evaluating the induced charge since the final result was derived in the limit of a becoming very small.

Example: A Conducting Charged Sphere Between Two Dielectrics-One-Dimensional Problem

sphere of radius and center at the plane interface

the electric field in a conductor is zero

$$
\sigma_{1 f}=D_{1 n} \text { and } \sigma_{2 f}=D_{2 n}
$$

Charge densities on the two halves of the sphere

charge density on the surface of the sphere

$$
\begin{aligned}
& \Phi(r)=C q / r, \text { where } C=1 / 2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right) . \\
& \vec{D}=-\varepsilon \vec{\nabla} \Phi \\
& D_{\text {in }}=-\varepsilon_{i} \frac{\partial \Phi}{\partial r} \quad \text { evaluated at } r=R \\
& \sigma_{1 f}=\frac{q \varepsilon_{1}}{2 \pi R^{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)} \quad \text { and } \quad \sigma_{2 f}=\frac{q \varepsilon_{2}}{2 \pi R^{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)} \\
& Q_{f}=2 \pi R^{2}\left(\sigma_{1 f}+\sigma_{2 f}\right)=q
\end{aligned}
$$

polarization charge densities on the surface of the sphere

$$
\mathbf{P}_{i}=\mathbf{D}_{i}-\varepsilon_{0} \mathbf{E}
$$

$$
\mathbf{P}_{1}=\frac{\varepsilon_{1}-\varepsilon_{0}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r^{2}} \mathbf{P}
$$

$$
\mathbf{P}_{2}=\frac{\varepsilon_{2}-\varepsilon_{0}}{2 \pi\left(\varepsilon_{1}+\varepsilon_{2}\right)} \frac{q}{r^{2}} \mathbf{f}
$$

Surface densities

$$
\sigma_{1 p}=\left.\mathbf{P}_{1} \cdot \hat{\mathbf{a}}\right|_{r=R}=-\frac{q\left(\varepsilon_{1}-\varepsilon_{0}\right)}{2 \pi R^{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)}
$$

$$
\sigma_{2 p}=\left.\mathbf{P}_{2} \cdot \hat{\mathrm{n}}\right|_{r=R}=-\frac{q\left(\varepsilon_{2}-\varepsilon_{0}\right)}{2 \pi R^{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)}
$$

total polarization charge on the sphere

$$
\begin{aligned}
& q_{p}=2 \pi R^{2}\left(\sigma_{1 p}+\sigma_{2 p}\right) \\
& q_{p}=-q\left(1-\frac{2 \varepsilon_{0}}{\varepsilon_{1}+\varepsilon_{2}}\right)
\end{aligned}
$$

Example: A Long, Dielectric Cylinder in an Electric Field-Two-Dimensional Problem

Consider a long, dielectric cylinder of permittivity ε placed in a uniform electric field that is normal to its axis. We choose a cylindrical coordinate system with the origin taken at the axis of the cylinder and the \mathbf{x} axis along the electric field.

$\mathrm{E} \uparrow \uparrow \uparrow \uparrow \uparrow$

Since there is no free charge on the cylinder, the potential in the $\boldsymbol{x}-\boldsymbol{y}$ plane satisfies Laplace's equation.

The potentials Φ_{1}, and Φ_{2} inside and outside the cylinder, respectively, depend on ρ and φ.
potentials not to depend on z because the cylinder is long.

Therefore, the potentials are given by the cylindrical harmonics

$$
\begin{aligned}
\Phi= & \sum_{n=1}^{\infty}\left(A_{n} \cos (n \phi)+B_{n} \sin (n \phi)\right) \rho^{n} \\
& +\sum_{n=1}^{\infty}\left(A_{n}^{\prime} \cos (n \phi)+B_{n}^{\prime} \sin (n \phi)\right) \rho^{-n}+A_{0}+A_{0}^{\prime} \ln \rho
\end{aligned}
$$

Boundary conditions

(1) Inside dielectric cylinder:

The potential $\Phi_{1}(\rho, \varphi)$ should not blow up as $\rho \rightarrow 0$. This implies that it should not have terms of radial dependence $\frac{1}{\rho^{n}}$ and $\operatorname{In} \rho$.

$$
\begin{aligned}
\Phi= & \sum_{n=1}^{\infty}\left(A_{n} \cos (n \phi)+B_{n} \sin (n \phi)\right) \rho^{n} \\
& +\sum_{n=1}^{\infty}(\underbrace{\left(A_{n}^{\prime} \cos (n \phi)+B_{n}^{\prime} \sin (n \phi)\right)}_{0} \rho^{-n}+A_{0}+\underbrace{A_{0}^{\prime} \ln \rho}_{0}
\end{aligned}
$$

Outside dielectric cylinder :
Far away from the cylinder, the potential should reduce to a uniform electric field in the \boldsymbol{x} direction.

$$
\Phi_{2}(\rho, \phi)=-E_{0} \rho \cos \phi+V_{0}, \text { where } V_{0} \text { is a constant. }
$$

$\Phi_{2}(\rho, \varphi)$ should not have terms of radial dependence ρ^{n} where $n>1$

$$
\begin{aligned}
\Phi= & \sum_{n=1}^{\infty} \overbrace{\left(A_{n} \cos (n \phi)+B_{n} \sin (n \phi)\right)}^{0 \text { for } \mathrm{n}>1} \rho^{n} \\
& +\sum_{n=1}^{\infty}\left(A_{n}^{\prime} \cos (n \phi)+B_{n}^{\prime} \sin (n \phi)\right) \rho^{-n}+A_{0}+A_{0}^{\prime} \ln \rho
\end{aligned}
$$

(3) On the boundary of dielectric cylinder :
because of boundary condition, Φ_{1}, and Φ_{2} should not include terms of $\cos n \varphi$ where $n>2$ and terms of $\sin n \varphi$ where $n \geq 1$. This result is directly related to the fact that $\sin n \varphi$ and $\cos n \varphi$ are linearly independent functions.

$$
\Phi_{1}\left(\rho=\rho_{0}\right)=\Phi_{2}\left(\rho=\rho_{0}\right)
$$

Outside dielectric cylinder :
Because the cylinder has no free charges, then Φ_{2}, should not include a In p term, since such a term is proportional to the total charge on the cylinder.

$$
\begin{array}{ll}
\Phi_{1}(\rho, \phi)=A_{0}+A_{1} \rho \cos \phi & \rho<\rho_{0} \\
\Phi_{2}(\rho, \phi)=B_{0}+\frac{B_{1}}{\rho} \cos \phi+C_{1} \rho \cos \phi & \rho>\rho_{0}
\end{array}
$$

The constants $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$, and C_{1} can now be. evaluated using some more conditions.
(5) Outside dielectric cylinder:

$$
\rho \rightarrow \text { large, } \Phi_{2}(\rho, \phi)=-E_{0} \rho \cos \phi+V_{0}
$$

$B_{0}+C_{1} \rho \cos \phi=-E_{0} \rho \cos \phi+V_{0}$

$$
B_{0}=V_{0} \text { and } C_{1}=-E_{0}
$$

(6) On the boundary of dielectric cylinder :

The continuity of the potential at $\rho=\rho_{0}$ gives

$$
\Phi_{1}\left(\rho=\rho_{0}\right)=\Phi_{2}\left(\rho=\rho_{0}\right)
$$

$A_{0}+A_{1} \rho_{0} \cos \phi=V_{0}+\frac{B_{1}}{\rho_{0}} \cos \phi-E_{0} \rho_{0} \cos \phi$

$$
A_{0}=V_{0} \text {, and } A_{1}=\left(B_{1} / \rho_{0}^{2}\right)-E_{0}
$$

(7) On the boundary of dielectric cylinder :

Another equation between A , and B , can now be found from the continuity condition of the normal D components:

$$
\begin{aligned}
& D_{Y_{n}}-D_{\backslash n}=\sigma \xrightarrow{\sigma=0} \mathrm{D}_{2} \cdot \hat{\mathrm{n}}=\mathrm{D}_{1} \cdot \hat{\mathrm{n}} \\
&-\left.\varepsilon \frac{\partial \Phi_{1}}{\partial \rho}\right|_{\rho=\rho_{0}}=-\left.\varepsilon_{0} \frac{\partial \Phi_{2}}{\partial \rho}\right|_{\rho=\rho_{0}} \\
&-K A_{1}=\left(B_{1} / \rho_{0}^{2}\right)+E_{0}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
A_{0}=V_{0} \\
A_{1}= \\
B_{0} \\
=V_{0} \\
B_{1}
\end{array}=\rho_{0}^{2} E_{0}(K-1) /(K+1)\right. \\
C_{1}=-E_{0} \\
\\
\\
\quad \Phi_{1}(\rho, \phi)=V_{0}-\frac{2 E}{K+1} \rho \cos \phi \\
\qquad \Phi_{2}(\rho, \phi)=V_{0}+\frac{\rho_{0}^{2} E_{0}}{\rho} \frac{K-1}{K+1} \cos \phi-E_{0} \rho \cos \phi
\end{array}\right.
$$

If the material of which the cylinder is made has a very high dielectric constant ($\mathrm{K} \gg 1$)

$$
\begin{aligned}
& \Phi_{1}(\rho, \phi)=V_{0} \\
& \Phi_{2}(\rho, \phi)=V_{0}+\frac{\rho_{0}^{2} E_{0}}{\rho} \cos \phi-E_{0} \rho \cos \phi
\end{aligned}
$$

Example: A Dipole at the Center of a Dielectric Sphere

The angular dependence is produced by inserting a dipole of moment \mathbf{p} at the center of a dielectric sphere of radius \boldsymbol{R} and permittivity $\varepsilon_{\boldsymbol{\varepsilon}}$. The permittivity of the material external to the sphere is ε_{2}. potential is a function of an angle as well as a distance.

