LENSES

Types of Lenses:

Convex and Concave Lenses

- A lens is a piece of transparent material, such as glass or plastic, that is used to focus light and form an image.

Each of a lens's two faces might be either curved or flat.

Basic Types of Lenses

- Convex
> Concave

Converging lens

Diverging lens

Convex lenses are thicker in the middle and thus they converge light rays.

Concave lenses are thinner in the middle and thus they diverge light rays.

Thin spherical lenses

Convex Lens:
focal length (f) is positive

Convex lens
 rouncx tenz

convex lens

Ray diagram for convex lens

Rules for ray diagrams for convex lens

- A parallel ray refracts through the focal point.
- A ray through the center of the lens continues straight.
- A ray coming through the focal point, refracts parallel to the principal axis.

Lenses

Just as with concave mirrors, the characteristics of the image formed by a converging lens depend upon the location of the object.

There are six "strategic" locations where an object may be placed. For each location, the image will be formed at a different place and with different characteristics. We will illustrate the six different locations and label them as CASE-1 to CASE-6.

Case-1: Object at infinity
Case-2: Object just beyond 2 F'
Case-3: Object at 2F'
Case-4: Object between 2F' and F'
Case-5: Object at F'
Case-6: Object within focal length (f)

"far away".

NOTE
CASE-2: Object just beyond 2F'

Inverted (upside down)
This ray is extra in locating the
image.

Again:
In order to establish an image point, all we need are two

Image is real (formed by refracted rays)
Inverted (upside down)
This ray is extra.
Same size as object

CASE-4: Object between 2F' and F'

$\cos \mathrm{Il}^{10)^{1015}}$
CASE-5: Object at F'

CASE-6: Object is within focal length

Image is virtual
(formed by extended rays)
Upright
Magnified
Located on same side as object

Summary for convex lens

DलITHITATA IOI COHACY ICII?

When the object is:

- Beyond 2F
- At 2F
- Between 2F and F
- At F
\checkmark Between F and lens

Then the image is:
Between 2F and F

At 2F

Beyond 2F

No image

Virtual image

Sign convention

$d_{0}+$ object distance
$d_{i}+$ real image, other side of lens
d_{i} - virtual image, same side as object
$\mathrm{h}_{\mathrm{i}}+$ erect image
$h_{i} \quad$ - inverted image
$\mathrm{f}+$ converging lens (convex $=$ converging $)$
f - diverging lens (concave = diverging)

Lens equation

$$
\begin{aligned}
& \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \\
& m=-\frac{d_{i}}{d_{o}}=\frac{h_{i}}{h_{o}} \\
& d_{i}=\frac{f \cdot d_{o}}{d_{o}-f}
\end{aligned}
$$

PRACTICE

Convex Lenses and Real Images

D Paper can be ignited by producing a real image of the Sun on the paper.

- The rays of the Sun are almost exactly parallel when they reach Earth.
- After being refracted by the lens, the rays converge at the focal point, F, of the lens.

Concave lens

Image:

- Virtual,
- reduced,
- upright

- A lens can form a virtual image just as a mirror does.
$>$ Rays from the same point on an object are bent by the lens so that they appear to come from a much larger object.

