

Types of Lenses:

Convex and Concave Lenses

- A lens is a piece of transparent material, such as glass or plastic, that is used to focus light and form an image.
- Each of a lens's two faces might be either curved or flat.

Convex lenses are thicker in the <u>middle</u> and thus they converge light rays.

Concave lenses are thinner in the <u>middle</u> and thus they diverge light rays.

Thin spherical lenses

Convex Lens: focal length (*f*) is positive Concave Lens: focal length (*f*) is negative

http://www.shokabo.co.jp/sp_e/optical/labo/lens/lens

http://www.shokabo.co.jp/sp_e/optical/labo/lens/lens.ht

Convex lens

Ray diagram for convex lens

Rules for ray diagrams for convex lens

- ► A parallel ray refracts through the focal point.
- > A ray through the center of the lens continues straight.
- > A ray coming through the focal point, refracts parallel to the principal axis.

Lenses

Just as with concave mirrors, the characteristics of the image formed by a converging lens depend upon the location of the object.

There are six "strategic" locations where an object may be placed. For each location, the image will be formed at a different place and with different characteristics. We will illustrate the six different locations and label them as **CASE-1** to **CASE-6**.

Case-1: Object at infinity
Case-2: Object just beyond 2 F'
Case-3: Object at 2F'
Case-4: Object between 2F' and F'
Case-5: Object at F'
Case-6: Object within focal length (f)

Summary for convex lens

When the object is:

► Beyond 2F

► At 2F

► Between 2F and F

► At F

► Between F and lens

Then the image is:Between 2F and F

At 2F

Beyond 2F

No image

Virtual image

Sign convention

d_o + object distance

- d_i + real image, other side of lens
- d_i virtual image, same side as object
- h_i + erect image
- h_i inverted image
- f + converging lens (convex = converging)
- f diverging lens (concave = diverging)

Lens equation

Convex Lenses and Real Images

- Paper can be ignited by producing a real image of the Sun on the paper.
- The rays of the Sun are almost exactly parallel when they reach Earth.
- After being refracted by the lens, the rays converge at the focal point, F, of the lens.

Concave lens

Image:

- Virtual,
- reduced,
- upright

- > A lens can form a virtual image just as a mirror does.
- Rays from the same point on an object are bent by the lens so that they appear to come from a much larger object.

