
انرزى الكتروستاتيك

٪.६ انرظى دستگاه رساناهای باردار • ضرايب پتانسيل

يك رابطهُ خطى ميان بتانسيلها و بارهاى مجموعهاى از رساناها وجا وجود دارد. دردستگاهى مر كب از N دسانا، بتانسبل هر يك ازرساناهـا

انرزى الكتروستا تيكى مجموعهاى از N رسانــاى باردار

$$
\begin{aligned}
& \varphi_{i}=\sum_{j=1}^{N} p_{i j} Q_{j} \quad \text { يتانسيل ايجاد شده در محل بار أم توسط رساناهاى باردا ديعى } \\
& \square U=\frac{1}{r} \sum_{i=1}^{N} \sum_{j=1}^{N} p_{i j} Q_{i} Q_{j}
\end{aligned}
$$

جند حكم كلى درمورد ضر ايب pij

$$
p_{i j}=p_{i_{i}}(1)
$$

(Y) ممبُ

$$
\text { . } p_{i i}-p_{i j} \geqslant 0 \text { هرجه باشد } j(r)
$$

$$
U=\frac{1}{Y} \sum_{i=1}^{N} \sum_{j=1}^{N} p_{i j} Q_{i} Q_{j}
$$

$$
U\left(Q_{1} \cdots Q_{N}\right) \text { معادله } U \text { بر حسب }
$$

$$
\longmapsto d U=\left(\frac{\partial U}{\partial Q_{\uparrow}}\right) d Q_{\uparrow}+\cdots+\left(\frac{\partial U}{\partial Q_{N}}\right) d Q_{N}
$$

تغييرات انرظى به ازاء تغييرات همه بارها هر گَاه فقط \QQ تغيير كند،

$$
\begin{equation*}
d U=\left(\frac{\partial U}{\partial Q_{\backslash}}\right) d Q_{\backslash}=\frac{1}{r} \sum_{j=1}^{N}\left(p_{\backslash j}+p_{j \backslash}\right) Q_{j} d Q_{\backslash} \tag{1}
\end{equation*}
$$

سهم برهمكنشى ذره ا با پتانسيل ذرات ديگر + سهم پپتانسیل ذره ا در برهمكنش با ذرات ديگر

از طرف ديگر كار انجام شده بر روى نموبار dQ1 ام در انتقال از بى نهايت به نتطه مود نظر به صورت انزظى پتانسيل در سيستم ذخيره مى گردي

$$
\begin{equation*}
d U=d W=\varphi_{\backslash} d Q_{\backslash}=\sum_{j=1}^{N} p_{\backslash j} Q_{j} d Q_{\backslash} \tag{2}
\end{equation*}
$$

با

(1) $\int d U=\frac{1}{r} \sum_{j=1}^{N}\left(p_{i j}+p_{j}\right) Q_{j} d Q_{, ~}$ بهاذاى تمام مقادير ممكن Q_{i} بإيد بادل باشند،
 (2) $d U=\sum_{j=1}^{N} p_{j} Q_{j} d Q_{1}$

$\longrightarrow \frac{1}{\gamma}\left(p_{, j}+p_{j}\right)=p_{, ~}$
$\varliminf_{p_{i}=p_{i j}}$

اثبات حكم سوم) فرضها و نكات ث رساناى i i + بقية رسا ناal با بـ بـارند.
† .كه اين رسانا را ترك مى كنتد صفرخواهد بود.
† بردسى دو حــالت
(الف) هيج خطط جابهجايى بمرساناى ز وارد با ازآن خار ج ندى شود؛
(ب) تعداد خطوطشار جا بهجايـي كه وارد رسانانی ز با تعداد خطوط خروجهى ازآن برا بر بد.
(الف) هيج خطج جابهجايى بدرساناى j وارد يا ازآن خارج نـىشود؛

$p_{i j}=p_{i i}$

(ب) تعداد خطوط طشار جا بهجايیى كه وارد رسانایى j مى ششوند باتعداد خطوط خروجار خار ازآن برابر برارد.

 بنا براين، i دربتانسيل بالاترى از از قراردارده، يعنى

$$
\begin{aligned}
& \varphi_{i}>\varphi_{i} \quad\left(Q_{i}\right) \\
& \text { خطوط ميدان از يتانسيل بيشتر به سمت تِّانيل كمتر است } \\
& p_{i i}>p_{i j}
\end{aligned}
$$

مغيل بودن ضر ايب ذكر يك مـُال

يك رساناى كروى بیبار راكه يك بار نمطهاى q به فاصلةٔ r ازمر كز آن قراردارد

¢. ه ضرايب ظرفيت و ضرايب القا

$$
\varphi_{i}=\sum_{i=1}^{N} p_{i} Q_{i}
$$

دستگاهى از N مهادلهُ خطىاستكه يتا نسيل رساناهارا برحسب بارها يشان بيان مى كند.

$$
\begin{aligned}
& Q_{i}=\sum_{j=1}^{N} c_{i j} \varphi_{j} \\
& c_{i i}
\end{aligned}
$$

حل واقیى ^هـادلئ كه ضر ايب c را برحسب با وارونهكردن ماتريس (باستفاده از دترمينانها) انجام شود.

$$
\begin{aligned}
& \text { خو اص c ها مشابه p } \\
& { }^{{ }^{\prime} c_{i j}=c_{j i}(1)} \\
& { }^{\prime} c_{i i}>o(r)
\end{aligned}
$$

(r) ضر ايبالقاصفرويامنغى اند

$$
\begin{aligned}
& U=\frac{1}{v} \sum_{j} Q_{i} \varphi_{i} \\
& Q_{i}=\sum_{j=1}^{N} c_{i j} \varphi_{j}
\end{aligned}
$$

$$
\Longrightarrow U=\frac{1}{r} \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i j} \varphi_{i} \varphi_{j}
$$

انرנٔى الكتر وستا تيكى دستگاهى هركب اذ N رسانا

Example 6.3 The Coefficients of Potential-Three Identical Spheres

This example shows how the method of coefficients of potential can be used to solve some electrostatic problems. Consider three initially isolated and uncharged equal conducting spheres placed with their centers at the vertices of an equilateral triangle as shown in Fig. 6.1.

> Conductor 1 is now charged to potential V and isolated, and it is found to have a charge Q_{1}, on it. Conductor 2 is then charged to potential V and isolated, and it is found to have a charge Q_{2}, on it. Conductor 3 is finally charged to potential V and isolated.

The coefficients of potential $P_{i j}$ where $\mathrm{i}, \mathrm{j}=1$ to 3 are not all distinct.

* Since the spheres are identical, then $\mathrm{P}_{11}=\mathrm{P}_{22}=\mathrm{P}_{33}$
* because of the symmetrical positioning of the spheres, then $\mathrm{P}_{12}=\mathrm{P}_{13}=\mathrm{P}_{23}$.
* using the property $\mathrm{P}_{\mathrm{ij}}=\mathrm{P}_{\mathrm{ji}}$,

then there are only two distinct coefficients: P_{11}, and P_{12}.

$$
\Phi_{j}=\sum_{k=1}^{N} P_{j k} Q_{k}
$$

In the first step, the charges on conductors 2 and 3 are zeros

$$
V=P_{11} Q_{1} \quad V=P_{11} Q_{2}+P_{12} Q_{1} \quad V=P_{11} Q_{3}+P_{12}\left(Q_{1}+Q_{2}\right)
$$

$$
\left\{\begin{array}{l}
V=P_{1} Q_{1} \\
V=P_{11} Q_{2}+P_{11} Q_{1} \\
V=P_{1}\left(Q_{3}\right)+P_{12}\left(Q_{1}+Q_{2}\right)
\end{array}\right.
$$

\longrightarrow

$$
\begin{aligned}
& P_{11}=V / Q_{1}, \\
& P_{12}=\frac{V}{Q_{1}}\left(1-\frac{Q_{2}}{Q_{1}}\right) \\
& Q_{3}=Q_{2}^{2} / Q_{1}
\end{aligned}
$$

Example: Coefficients of Potential of Concentric Spheres

Let us assume we have two conducting, concentric, spherical shells of outer radii R_{1} and R_{2}. Suppose charges Q_{1} and Q_{2} are placed upon these shells, respectively, and we wish to find the potential function at all points due to the resultant charge distribution.

$$
\begin{aligned}
\mathbf{E}_{1} & =\frac{\mathbf{Q}_{1}+Q_{2}}{4 \pi \varepsilon_{0}} \cdot \frac{\mathbf{f}}{r^{2}} \quad r>R_{2} \\
\mathbf{E}_{3} & =\frac{\boldsymbol{Q}_{1}}{4 \pi \varepsilon_{0}} \frac{\mathbf{f}}{r^{2}} \quad R_{1}<r<R_{3} \\
\Phi & =-\int_{\infty}^{r} \vec{E} \cdot d \vec{r}
\end{aligned}
$$

$$
\xrightarrow{4}
$$

$$
\Phi(\mathrm{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q_{1}}{r}+\frac{Q_{1}+Q_{2}}{R_{2}}-\frac{Q_{1}}{R_{3}}\right)
$$

$$
R_{1}<r<R
$$

The potential of the inner sphere $\left(r=R_{1}\right)$

$$
\Phi_{1}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}-\frac{1}{R_{3}}\right) Q_{1}+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{2}}{R_{2}}
$$

The potential at the outer sphere $\left(\mathrm{r}=\mathrm{R}_{3}\right)$

$$
\Phi_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1}}{R_{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{2}}{R_{2}}
$$

$\xrightarrow{\square}$

$$
\begin{aligned}
& P_{11}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}-\frac{1}{R_{3}}\right) \\
& P_{12}=P_{21}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{R_{2}} \\
& P_{22}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{R_{2}}
\end{aligned}
$$

9.9 خاز 9 خها

اگَردو رساناى ا و ץ خازنى تشكيل بدهند،

0^{4}

$$
\begin{aligned}
& \varphi_{1}=p_{1 I} Q+p_{1 r}(-Q)+\varphi_{x} \\
& \varphi_{r}=p_{1 r} Q+p_{Y Y}(-Q)+\varphi_{x}
\end{aligned}
$$

$\pm Q$ φ_{x}

$$
\begin{aligned}
& \varphi_{1}=p_{\ 1} Q+p_{1 \mathrm{r}}(-Q)+\varphi_{x} \\
& \varphi_{Y}=p_{M_{r}} Q+p_{Y Y}(-Q)+\varphi_{x}
\end{aligned}
$$

اختلاف بتانسيل ميان دو رسا ناى يكَ خازن متناسب است بابار ذخيره شده، Q.
$\xrightarrow{C u}$

$$
C=\left(p_{\backslash}+p_{Y r}-r p_{\Upsilon r}\right)^{-1}
$$

ظرفيت خازن

انرزیخازن باردار

$$
U=\frac{1}{r} C(\Delta \varphi)^{r}=\frac{1}{r} Q \Delta \varphi=\frac{1}{r} \frac{1}{\frac{Q}{C}}
$$

دستور العمل محاسبه ظرفيت خازن ها:

1- فرض مى شود كه خازن داراى بار ذخيره شده q مى باشد. بنابراين يكى صفحه رسانا داراى بار q+ و صفحه ديگر بار q- است.

دستور العمل محاسبه ظرفيت خازن ها:

Y- ميدان ايجاد شده بين دو رساناى باردار محاسبه مى شود (به كمك قانون گاوس)

$$
\oint \vec{E} \cdot d \vec{A}=\frac{q}{\varepsilon_{0}}
$$

دستور العمل محاسبه ظرفيت خازن ها:

r- ــ محاسبه اختلاف بتانسيل بين دو رسانـانـا

اختلاف تِتانسيل بين دو رسانا را حساب نمود.

$$
V=V_{+}-V_{-}=-\int_{-}^{+} \vec{E} \cdot d \vec{s}=\int_{+}^{-} \vec{E} \cdot d \vec{s}
$$

دستور العمل محاسبه ظرفيت خازن ها:
ع- محاسبه ظرفيت خازن:

خازن استو انه ایى
خازن كروى

محاسبه ظرفيت خازن تخت

الكتريكى هوا و جود دارد.

Electric field lines

$$
\begin{aligned}
& E=0 \\
& E \neq 0 \quad E \neq 0 \\
& \vec{E} \| d \vec{A} \quad \vec{E} \perp d \vec{A}
\end{aligned}
$$

$$
\begin{gathered}
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}= \frac{q}{\varepsilon} \quad \rightarrow \quad E A=\frac{q}{\varepsilon} \\
& \rightarrow E=\frac{q}{\varepsilon A}=\frac{\sigma}{\varepsilon} \\
& \Delta \varphi=\int_{+}^{-} \vec{E} \cdot d \vec{s}=\int_{+}^{-} E d s=E \int_{+}^{-} d s \\
& \rightarrow \Delta \varphi=E d=\frac{q}{\varepsilon A} d \\
& C=\frac{q}{\Delta \varphi}=\frac{q}{\frac{q}{\varepsilon A} d} \quad \rightarrow \quad C=\frac{\varepsilon A}{d}
\end{aligned}
\end{gathered}
$$

محاسبه ظرفيت خازن استوانه اى
 و به طول L كه فضاى بين استوانه هاى رسانا، دى الكتريك هوا و وجود دارد.

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}=\frac{q}{\varepsilon} \rightarrow \int \vec{E} \cdot d \vec{A}=E \int d A=\frac{q}{\varepsilon} \\
& \rightarrow E(2 \pi r L)=\frac{q}{\varepsilon} \rightarrow E=\frac{q}{2 \pi \varepsilon L r}
\end{aligned}
$$

$\Delta \varphi=\int_{+}^{-} \vec{E} \cdot d \vec{s}=\int_{+}^{-} E d r=\int_{a}^{b} \frac{q}{2 \pi \varepsilon L r} d r$
$\Delta \varphi=\frac{q}{2 \pi \varepsilon L} \int_{a}^{b} \frac{d r}{r}=\frac{q}{2 \pi \varepsilon L} \ln \frac{b}{a}$

$$
C=\frac{q}{\Delta \varphi}=\frac{q}{\frac{q}{2 \pi \varepsilon L} \ln \frac{b}{a}}
$$

محاسبه ظرفيت خازن كروى خازن كروى شامل دو صفحه كروى شكل رساناى هم مر كز با شعاع داخلى a و خارجى b كه فضاى بين كره هاى رسانا، دى الكتريك هوا وجود دارد.

$$
\oint \vec{E} \cdot d \vec{A}=\frac{q}{\varepsilon} \rightarrow E\left(4 \pi r^{2}\right)=\frac{q}{\varepsilon} \rightarrow E=\frac{q}{4 \pi \varepsilon r^{2}}
$$

$$
\Delta \varphi=\int_{+}^{-} \vec{E} \cdot d \vec{s}=\int_{+}^{-} E d r=\int_{a}^{b} \frac{q}{4 \pi \varepsilon r^{2}} d r
$$

$$
\Delta \varphi=\frac{q}{4 \pi \varepsilon} \int_{a}^{b} \frac{d r}{r^{2}}=\frac{q}{4 \pi \varepsilon}\left(-\frac{1}{r}\right) \frac{b}{a}=\frac{q}{4 \pi \varepsilon}\left(\frac{b-a}{a b}\right)
$$

$$
C=\frac{q}{\Delta \varphi}=\frac{q}{\frac{q}{4 \pi \varepsilon}\left(\frac{b-a}{a b}\right)}
$$

تركيب خاز نها

اتصال موازى خازن ها

1- شرط موازى بودن خازن ها:
Terminal
در رفتن از يک پايانه به پايانه ديگر در هر مسيرفقط از يک خازن بگذريم همه خازن ها در دو سر مشترك مى باشند

همه صفحات با بار مثبت به همديگر و همه صفحات با بار منغى به همديگر متصل شده باشند اختلاف پتانسيل دو سر همه خازنها يكسان

$$
V_{1}=V_{2}=V_{3}=V
$$

٪ كل بار تحويل داده شله به خازن ها وابسته به ظرفيت شان بين شان تقسيم مى گردد.

$$
q_{t}=q_{1}+q_{2}+q_{3}
$$

「- بار ذخيره شده روى خازن ها

$$
\begin{aligned}
& q_{1}=C_{1} V \\
& q_{2}=C_{2} V \\
& q_{3}=C_{3} V
\end{aligned} \quad \begin{aligned}
& q_{t}=q_{1}+q_{2}+q_{3} \\
& q_{t}=C_{1} V+C_{2} V+C_{3} V \\
& q_{t}=\left(C_{1}+C_{2}+C_{3}\right) V
\end{aligned}
$$

تركيب خاز نها

اتصال سرى يا متوالى خازن ها

1- شرط سرى بودن خازن ها:
در رفتن از يکى پايانه به پايانه ديگر در هر مسير از همه خازن ها
بخذريم
$V_{3} \uparrow \stackrel{+q \mid}{-\overline{q \mid C_{3}}}$
" صفحه مثبت يك خازن به صفحه منفى خازن مجاور وصل مى باشد

$$
V_{t}=V_{1}+V_{2}+V_{3}
$$

$$
q_{t}=q_{1}=q_{2}=q_{3}
$$

$$
\begin{array}{ll}
V_{1}=\frac{q}{C_{1}} & V_{t}=V_{1}+V_{2}+V_{3} \\
V_{2}=\frac{q}{C_{2}} & V_{t}=\frac{q}{C_{1}}+\frac{q}{C_{2}}+\frac{q}{C_{3}} \\
V_{3}=\frac{q}{C_{3}} & V_{t}=q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)
\end{array}
$$

(a)

(b)

خازن معادل با يكى مجموعه از خازنهاى سرى، خازنى است كه اگر به پتانسيل كلى كه به مجموعه خازنها وصل شده وصل شود بارى برابر با بار كل روى صفحات آن ذخيره مى گردد
Series capacitors and their equivalent have the same q ("seri-q").

$$
\begin{aligned}
& V_{t}=q \sum_{i} \frac{1}{C_{i}} \\
& V_{t}=\frac{q_{t}}{C_{e q}}
\end{aligned} \quad \frac{1}{C_{e q}}=\sum_{i} \frac{1}{C_{i}}
$$

تركيب خاز نها
اتصال مر كب خازن ها

تركيبى از حالت هاى سرى و موازى

مثال) دو خازن تخت C 1 و C 2 با صفحات A با همديگر سرى شده اند و بخش ميانى اين دو خازن به طول b در جايیى بين صفحه بالايی و پايينى قرار دارد. ظرفيت معادل را با با

$$
\begin{aligned}
C_{1} & =\varepsilon_{0} \frac{A}{x} \\
C_{2} & =\varepsilon_{0} \frac{A}{a-b-x} \\
\frac{1}{C_{t}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{\varepsilon_{0} \frac{A}{x}}+\frac{1}{\varepsilon_{0} \frac{A}{a-b-x}} \\
\frac{1}{C_{t}} & =\frac{1}{\varepsilon_{0} A}(x+a-b-x)=\frac{1}{\varepsilon_{0} A}(a-b) \\
C_{t} & =\frac{\varepsilon_{0} A}{a-b}
\end{aligned}
$$

مثال) خازن تختى با صفحاتى به شكل مربع و به ضلع a داريم. صفحات خازن با با همديگر زاويه بسيار كو چک θ مى سازند. ظرفيت خازن را با بدست آوريد.

مجموعه ای از المانهاى خازنى موازى
مساحت صفحات المان خازنى

$$
d C=\varepsilon_{0} \frac{a d x}{d_{0}+x \tan \theta}
$$

$$
C=\int d C=\varepsilon_{0} a \int_{x=0}^{x=a} \frac{d x}{d_{0}+x \tan \theta}=\frac{\varepsilon_{0} a}{\tan \theta} \ln \left(d_{0}+x \tan \theta\right)^{x=a} \begin{aligned}
& x=0
\end{aligned}
$$

$$
C=\frac{\varepsilon_{0} a}{\tan \theta} \ln \left(\frac{d_{0}+a \tan \theta}{d_{0}}\right)=\frac{\varepsilon_{0} a}{\tan \theta} \ln \left(1+\frac{a}{d_{0}} \tan \theta\right)
$$

مثال) خازن تختى با صفحاتى به شكل مربع و به ضلع a داريم. صفحات خازن با همديگر موازى بوده و فضاى بين آنها توسط دو گوه از جنس دى الكتريى با ضرايب ع و و 2 غ پرشده است. ظرفيت خازن را بدست آوريد.

