Pressure and Volume (Boyle's Law)

Boyle's Law

Boyle's Law states that

- the pressure of a gas is inversely related to its volume when T and n are constant.
- if volume decreases, the pressure increases.
- The law states that **pressure is inversely proportional to the volume**

PV = nRT

Boyles' Law and Breathing

During an inhalation,

- the lungs expand.
- the pressure in the lungs decreases.
- air flows towards the lower pressure in the lungs.

Boyles' Law and Breathing

During an exhalation,

- lung volume decreases.
- pressure within the lungs increases.
- air flows from the higher pressure in the lungs to the outside.

How can we investigate Boyle's Law?

Method 1:

using of pump for creation of pressure difference

Method 2:

pressure difference due to height difference (U type tube)

Method 1

- Gas volume = constant (sealed into a cylinder)
- Temperature = constant
- Apply increasing pressure to the gas through Pascal law
- We can calculate the pressure by dividing the force applied by the area of the top of the cylinder
- The volume will be shown on the scale on the cylinder

Below are some results of an experiment

Pressure p	Volume V	P x V
1.1	40	44
1.7	26	44
2.2	20	44
2.6	17	44

• Calculate P.V (pressure x volume) for each set of results. What do you notice?

• For a fixed mass of gas, at constant temperature, $\mathbf{P}.\mathbf{V} = \mathbf{constant}$ or

$$\mathbf{P}_1 \cdot \mathbf{V}_1 = \mathbf{P}_2 \cdot \mathbf{V}_2$$

diver

A deep sea diver is working at a depth where the pressure is 3.0 atmospheres. He is breathing out air bubbles. The volume of each air bubble is 2 cm². At the surface the pressure is 1 atmosphere. What is the volume of each bubble when it reaches the surface?

volume of bubbles = 6 cm^3

Note that P_1 and P_2 have the same unit, as will V_1

$$A = Cons \tan t$$

$$V_{gas} = A.h_{1} , P_{gas} = P_{0} + \rho_{Hg} gh_{2}$$

$$Boil's law: P_{gas}.V_{gas} = Cons \tan t$$

$$\rightarrow A.h_{1}.(P_{0} + \rho_{Hg} gh_{2}) = Cons \tan t$$

$$h_{1}.(P_{0} + \rho_{Hg} gh_{2}) = Cons \tan t$$

$$if P = P(mmHg) \Rightarrow h_{1}.(P_{0} + h_{2}) = Cons \tan t$$

No. experiment	h ₁ (mm)	h ₂ (mm)	$h_{1} \cdot (P_{0} + h_{2})$

