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Abstract
Laser forming is one of the most recent forming processes developed which uses a laser beam to induce a deliberate thermal 
stress on a workpiece to form a sheet metal. Accordingly, bending tubes using laser beam have attracted the attention of many 
engineers. In this paper, we studied the effects of various laser beam parameters on the tube bending process. To investigate 
the effects of all the parameters, we performed a large number of analyses and generated applicable tube laser bending data. 
We utilized Taguchi design of experiment method to manage the finite element simulation of the laser forming process. 
Subsequently, to have an easier, but more flexible and more complete laser forming data bank, we employed artificial neural 
networks to predict the required tube bending parameters for the proposed forming criteria. Finally, we used genetic algorithm 
programming to solve the multi-objective optimization with respect to the laser forming parameters. The objectives include 
maximum bending angle, minimum ovality, minimum thickening, and minimum forming energy consumption. The results 
from this study indicate that we can use applied data tables to find the optimum tube laser forming parameters. The outcome 
of the numerical experiments is consistent with the existing literature on the laser forming process.

Keywords  Laser forming · Tube bending · Finite element · Multi-objective optimization · Genetic programming · Neural 
networks

1  Introduction

The idea of laser forming as a modern thermoforming pro-
cess originates from a similar process of flame bending or 
line heating. Laser forming is a spring back-free and non-
contact forming process achieved by introducing non-uni-
form thermal stress into the workpiece with a focused laser 
beam. In this process, forming mechanisms are determined 
by the temperature field, which depends on the geometry of 
the workpiece, laser power, laser spot diameter, scanning 
velocity, scanning path, and material properties. A number 

of mechanisms for the laser forming process have been sug-
gested in the literature. These mechanisms mainly comprise 
the temperature gradient mechanism (TGM), the buckling 
mechanism (BM) and the upsetting mechanism (UM). The 
UM acts when the irradiated surface is large in compari-
son to the workpiece thickness; The laser beam diameter 
is equal to or larger than the material thickness; addition-
ally, the velocity of beam scan is low, thereby, the whole 
cross section of the sheet will be heated such that the tem-
perature gradient between the top surface and the bottom 
surface is small. Therefore, the induced thermal expansion 
will be hindered by the surrounding material. In addition, 
the geometry of this part is structurally stiff and does not 
allow the buckling to take place. Therefore, the irradiated 
zone will be shortened (and thickened) and the workpiece 
will be bent locally. Tube bending has many industrial appli-
cations. Because of the ability of laser forming to produce 
forms and curves that cannot be created through mechanical 
bending, this mechanism can be applied in different ways to 
a wide range of forming results. This promising approach for 
producing complex tube shapes can be applied in numerous 
products such as heat exchangers, boiler helical and spiral 
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coil systems, air conditioners, automobile exhaust systems, 
medical patient lifts, engines, refrigeration systems and 
many other types of custom tube bending. The laser form-
ing of metal sheets has been extensively investigated in the 
literature. Laser bending of tubes and its related physical 
mechanisms are very complicated due to the large number 
of parameters involved in this process. Limited studies have 
been done in the field of laser tube bending compared to 
laser forming of metal sheets.

Li and Yao studied the mechanism of tube laser bend-
ing in more detail with the FEM software “ABAQUS” and 
experimental investigations. They explained the causes for 
various aspects of deformation characteristics such as wall 
thickness variation, ovality, protruded intrados, and bend-
ing radius. Other characteristics of laser bent tubes such as 
asymmetry of deformation and the ways of reducing the 
asymmetry were also examined. A closed-form expression 
for the bending angle was also proposed [1]. To identify 
the relationship between the bending angle and the process-
ing parameters, Hao and Li established a new analytical 
model for tube bending angle. Their model presents an ana-
lytical expression of the bending angle as a function of the 
energy (laser power, absorption, scanning speed), geometric 
(tube diameter and wall thickness) and material properties 
(coefficient of thermal expansion, density, heat capacity, 
Young’s modulus, yield stress) [2]. They also investigated 
the development of stress and strain during laser tube bend-
ing through thermal–mechanical finite element transient 
analysis and discussed the mechanism of laser tube bending 
based on simulation results [3]. Hsieh and Lin simulated 
the transient state of a thin metal tube under buckling with 
axial preloads due to a continuous wave CO2 laser beam, 
and compared them with the measurements such as the elon-
gation of the tube, the surface temperature and axial force 
taken in the experiments [4, 5]. Safdar et al. investigated 
the effects of various beam geometries on stress distribu-
tion and other useful parameters of laser tube bending with 
the FEM package ANSYS. The availability of laser beams 
with rectangular shape opens up the possibility of axial scan-
ning in laser tube bending [6]. Compared to circumferential 
scanning scheme which needs multiple passes and is too 
time consuming, the axial scanning of a rectangular (or line) 
source can potentially generate sufficient bending in a single 
axial scan. Zhang et al. conducted a numerical study of the 
bending mechanism, bending characteristics, and suitable 
operating conditions of various schemes of axial scanning 
by a line source, and compared the results with circumfer-
ential scanning by a circular (or point) source [7]. Safdar 
et al. [8] used finite element modeling for the study of scan-
ning schemes on tube bending angle. Guglielmotti et al. [9] 
studied the bending of slotted tubes as well as enlarging one 
tube end with circumferential scanning paths. Wang et al. 
presented a scanning path planning strategy based on laser 

tube characteristics. Their strategy involves a method for cal-
culating the geometric curvature of the final shapely tubes. 
They considered both plane bending and three-dimensional 
bending and obtained a three-dimensional scanning path 
plan by combining the data in the two-dimensional planes. 
In addition, they carried out an experimental verification 
for bending straight tubes into a two-dimensional sinusoidal 
and a three-dimensional helical coil-shaped tube using their 
strategy of scanning path planning [10].

FEM is a powerful tool for investigating the laser 
forming process. However, to achieve good tube bend-
ing quality, the FEM procedure has to be performed sev-
eral times with different combinations of laser forming 
process parameters. Unfortunately, it is very difficult to 
consider so many parameters for such a complex process. 
Taguchi method is a popular experimental design method 
for engineering and scientific studies based on orthogo-
nal array experiments, which can be designed to control 
experiments via optimization. Gollo et al. employed the 
Taguchi method to find the parameters which significantly 
improve the bending process of laser sheet metal bending 
[11]. Unfortunately, FEM is not only very time consum-
ing, but also requires finding optimum parameters to sug-
gest a practical laser forming process. Therefore, there is 
a need for faster and more efficient methods to understand 
the relationship between the deformed shape and the laser 
forming parameters. Understanding such a relationship 
should predict the desired parameters in a timely manner.

Artificial neural networks (ANNs) have the ability to 
analyze data as a predictive tool. A trained ANN is a non-
linear function, capable of representing a complex rela-
tionship between the responses (output) and given parame-
ter settings (input), and can help make accurate predictions 
about this relationship. Cheng and Lin used three super-
vised neural networks to estimate sheet metal bending 
angles formed by laser. Inputs for these neural networks 
included the laser forming parameters such as spot diam-
eter, scan speed, laser power, and workpiece geometries 
including thickness and length of sheet metal workpiece 
[12]. Chen et al. [13] proposed an adaptive fuzzy neu-
ral network to predict the sheet metal bending deforma-
tion. Du and Wang proposed an improved BP network 
based on the Double Chains Quantum Genetic Algorithm 
(DCQGA). Their predicted model of laser bending angle 
based on their proposed BPN-DCQGA network was set up 
in the process of sheet metal laser bending [14]. Shen et al. 
[15] and Tarkesh Esfahani et al. [16] constructed models 
for sheet metal bending angle in laser forming using adap-
tive fuzzy logic, called an adaptive network fuzzy infer-
ence system (ANFIS). Maji et al. present neural networks 
and fuzzy logic-based methods used for developing the 
models of bending angle and conducting an inverse analy-
sis of the laser forming process [17].
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Imhan et al. investigated the laser tube forming using 
experimental, analytical modeling, and numerical simula-
tions. They considered changes of material specification dur-
ing the process due to the temperature rise and modified their 
analytical model accordingly. PSO algorithm was also used 
in their model to optimize the analytical and experimen-
tal results and reduce the mean absolute error [18]. Again, 
Imhan et al. used a high-power pulsed Nd–YAG laser to 
irradiate stainless steel 304 tubes and while also employing 
a motorized rotation stage with a computer controller to hold 
and rotate the tube. They carry out experiment investigations 
to improve the laser tube bending process by enhancing the 
absorption coefficient of the material and the mechanical 
formability using laser softening heat treatment [19].

Many parameters affect the quality of laser tube form-
ing, including laser power, spot diameter, scanning velocity, 
laser path length, the number of scans, among other param-
eters. Therefore, in practical laser tube bending’s test, it is 
required to determine laser forming parameters which result 
in optimal tube bending. In this area, only Guan et al. have 
focused on optimization and inverse analysis of tube laser 
bending. They integrated the finite element method simula-
tion process with genetic programming and optimized the 
laser bending process of tubes based on different objective 
functions. They maximized two objective functions sepa-
rately: bending angle after single laser scan and the fixed 
bending angle after single laser scan. Therefore, these objec-
tive functions for a single laser scan could be approached by 
means of matching laser forming parameters [20].

It is clear that in addition to the primary purpose of laser 
tube bending, i.e., producing bending, undesirable defor-
mations such as wall thickness variation and ovality occur 
which can distance the bending from the ideal state. Unfor-
tunately, the presence of such consequences is inevitable. 
Every time genetic programming is executed to search 
through single-objective optimizations of the previous 
studies, a new and different solution for the laser forming 
parameters is found, which in turn leads to different ovality 
values of wall thickening. Hence, any set of laser forming 
parameters found cannot be expressed as an optimal solution 
and is just one of the many possible answers for the genetic 
programming. However, if more than one objective is simul-
taneously considered for the laser forming, especially when 
these objectives compete with each other, attempting to 
optimize the whole set of objectives makes the optimization 
problem a multi-objective one. The purpose of this paper 
is to achieve the laser forming parameters for tube bending 
angle to have minimum ovality and wall thickening as well 
as minimum energy consumption. These objectives conflict 
and the conditions leading to an optimal value of one objec-
tive results in non-optimal values for the others.

Therefore, if a state is found so that no other state is pref-
erable to it, this said state will have the quality of being 

Pareto optimal. In this paper, first, neural networks with the 
LMBP algorithm are used to develop the nonlinear rela-
tionship model between the laser forming parameters and 
the output responses on the experimental data. As such, 
data samples are required for training and testing the neural 
networks. In addition, thermo-mechanical FEM model of 
the laser tube bending with Taguchi design of experiments 
is used to collect the required data. Then a non-dominated 
Sorting Genetic Algorithm NSGA-II is applied to find the 
Pareto optimal set of the laser tube bending process. By sort-
ing bending angles in different laser scanning passes and 
taking into account the laser forming parameters, a set of 
conditions are presented to the user which can produce the 
desired bending in the tube. The approach proposed in this 
paper is shown in Fig. 1. The NN and GA from MATLAB 
toolboxes are used to develop the required network model 
and to solve the global optimization in this work.

2 � Laser tube bending

Laser bending of tubes is generally achieved through the 
upsetting mechanism and two kinds of scanning schemes: 
circumferential scanning and axial scanning. These scanning 
schemes are shown in Fig. 2. Circumferential scanning was 
carried out in the middle of the tube length for a prescribed 
scanning angle. Multiple scans at the same location are usu-
ally required to generate sufficient bending. Axial scanning 
scheme may involve a continuous point-source irradiation 

Fig. 1   Schematic diagram of the proposed approach
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of the tube along its axis. In this paper, only circumferential 
scanning scheme was investigated.

3 � FEM model of laser tube bending

Laser tube bending process is modeled as a thermo-mechan-
ical weakly coupled problem. It is assumed that the stress/
deformation field depends on the temperature transient 
field. However, the temperature field can be found without 
knowledge of the stress/deformation response [21]. There-
fore, due to the use of the laser beam source, the tempera-
ture transient field can be used as a thermal load to evaluate 
the stress–strain distribution and the final shape of the tube. 
Numerical simulations are performed using commercial 
finite element code ABAQUS. The material of the metal 
tube is AISI 304L. For finite element model, the following 
main assumptions have been made:

•	 During the entire laser tube bending process, no melting 
takes place.

•	 Heat generated through plastic deformation is negligible, 
compared to the energy input in laser bending.

•	 The tube material is isotropic and homogeneous.

•	 Melting is not involved in the plate during the forming 
process.

•	 Phase transformation is not accounted for in the simula-
tion. Thus, both transformation strain and transformation 
plasticity are ignored.

•	 The effect of creep is negligible because there is no cyclic 
thermal load involved.

•	 The tube is initially stress free and strain free.

It is a primary condition to use the appropriate elements 
for finite element models to obtain the most accurate solu-
tion through the FE analysis. DC3D20 elements are used 
in thermal analysis in ABAQUS. Each DC3D20 element is 
a three-dimensional diffusion element with twenty nodes 
which allows for heat storage and heat conduction. They 
provide temperature output which can be used directly as 
input to equivalent stress elements [21].

The temperature-dependent properties of AISI 304L, 
thermal conductivity, specific heat, and density are impor-
tant for accurate calculation of a temperature distribution, 
and are, therefore, used in the finite element model. The 
variations of these properties with temperature are given 
in Table 1. Initial temperature of the tube is 25 °C.

Fig. 2   Tube bending: a axial scanning, b circumferential scanning

Table 1   Temperature-dependent 
thermal properties of AISI 304 
[22]

Temperature (K) Thermal conductivity k 
(W/m K)

Specific heat Cp (J/
kg K)

Density � (kg/
m3)

Convection 
coefficient h 
(W/m2)

300 14.7 477 7795 20
400 16.5 515 7245 –
600 19.0 557 6720 –
800 21.6 582 5290 –
1000 24.1 611 4310 –
1200 26.9 640 3315 –
1500 27.9 682 1856 –
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As shown in Table 2, the peak temperature at the mid-
point of outer tube surface is not affected by increasing the 
number of elements over 2408. Therefore, the presence of 
two elements in the direction of thickness is sufficient for 
modeling.

According to Fig. 3, a biased mesh with ratio of 1:5 is 
used through the thickness and fine meshes are created 
in the region near the laser path due to the high heat flux 
involved in the portion, and other portions have coarse 
meshes. With this mesh pattern, both accurate results of 
simulation and reduction of computational time can be 
achieved. The same mesh is created for both thermal and 
mechanical analyses.

The thermal flux intensity on the tube surface caused 
by laser beam is modeled as a Gaussian distribution and 
is described as follows:

where P is the laser power, R is the effective laser beam 
radius defined as the radius at which power density decreases 
to, and r is the distance from the center of the heat source 
and � is the laser absorption coefficient selected as 0.6. A 
user-defined subroutine is developed using FORTRAN in 
numerical simulation to define this Gaussian distribution. 

(1)q(r) =
2� ⋅ P

� ⋅ R2
exp

(

−
2r2

R2

)

, Heat losses from the tube surfaces to the surrounding areas 
take place by means of natural convection:

where h is the heat transfer coefficient and is set to 10.0. 
W/m2, K is the surrounding temperature set to 25 °C. The 
contour of the passage of laser beam thermal flux (Fig. 4) 
has been illustrated by Gaussian distribution in ABAQUS 
software for the circumferential scanning in Fig. 5.

(2)qc = h
(

T0 − T∞
)

,

Table 2   Mesh sensitivity 
analysis for circumferential 
scanning of tube based on 
maximum temperature

a The solving time is calculated using parallel dual-core processor with base frequency of 2.67 GHz

Test num. Num. of elements 
through thickness

Total number 
of elements

Max. temp. at 
inner surface

Max. temp. at 
outer surface

Thermal 
analysis time 
(s)a

1 1 1186 698 1159 301
2 2 2408 700 1144 727
3 2 3850 702 1144 801
4 3 5202 703 1144 1246

Fig. 3   Mesh model
Fig. 4   The contour of the passage of laser beam

Fig. 5   Graphical schematic of laser heat source according to the 
Gaussian distribution Eq. 1. P = 500 W, R = 3.5 mm, η = 0.6
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For developing the mechanical model in finite element, 
the material is modeled as thermo-elastic plastic with iso-
tropic strain hardening. Material properties are assumed 
to be temperature dependent. The temperature-dependent 
Young’s modulus and Poisson’s ratio used for the elasticity 
model and temperature-dependent coefficients of thermal 
expansion for modeling the thermal strains are presented 
in Table 3.

Table 4 presents the yield stresses of AISI 304 steel at 
different temperatures. The missing data for some high tem-
peratures are linearly extrapolated. In this simulation, the 
linear isotropic hardening is adopted and the behavior of 
the material after yielding is approximated to plastic strains.

All degrees of freedom at one end of the tube are 
restricted and the other surfaces are free. The element type 
in thermal stress analysis must be compatible with that in 
heat transfer analysis. A quadratic 20-node brick element, 
i.e., C3D20R, is used in the mechanical analysis because 
this kind of element has no shear locking and hourglass stiff-
ness and is also suitable for bending deformation-dominated 
processes such as laser forming.

4 � Deformation characteristics

In this section, according to the simulated shape of a laser 
formed tube, the deformation characteristics considered in 
this paper are introduced. Figure 6 shows a bent tube angle 
after circumferential scanning in the middle and intro-
duces the bending angle. Figure 7 shows that the material 
is shortened in the longitudinal direction. As a result, the 
thickness of the wall increases at the intrados. It can be 
seen that there is no appreciable thinning at the extrados.

Figure 8 shows the ovalization of a bent tube cross sec-
tion. The ovalization is defined as follows:

where Dmax and Dmin are the maximum and minimum 
deformed diameters, respectively, and Dtube is the unde-
formed tube diameter [1].

In the present paper, the existing experimental results 
available in the literature [8] were used to validate the 
FEM simulation. Figure 9 shows a comparison of dis-
placements in y-direction (instead of bending angle) for 
axial scanning scheme with the experimental results. It 

(3)
Dmax − Dmin

Dtube

,

Table 3   Temperature-dependent elastic properties of AISI 304 [22]

Temperature 
(°C)

Coefficient of thermal 
expansion � (1/K)

Poisson’s 
ratio ( �)

Elastic 
modulus E 
(GPa)

27 16 E−06 0.27 197
127 17 E−06 0.28 191
327 18 E−06 0.28 175
527 19 E−06 0.29 157
727 20 E−06 0.30 141
927 22 E−06 0.31 82
1227 23 E−06 0.32 16

Table 4   Temperature-dependent plastic properties of AISI 304 [23]

Temperature (°C) Yield stress �
y
 (MPa) Plastic 

strain 
(MPa)

25 262 434
148 193 365
287 165 358
370 158 337
481 138 310
592 124 296
703 110 234
815 82 131
900 68 89
1000 62 62
1100 27 34

Fig. 6   Produced bending angle after circumferential scanning, power: 
550  W, scanning speed: 2.5  rad/s, beam diameter: 7  mm, scanning 
path angle: 180°, tube outer diameter: 15.88  mm, wall thickness: 
0.89 mm, length of tube: 100 mm

Fig. 7   Variation in the wall thickness in the scanning plane, thicken-
ing at the intrados and thinning at the extrados (magnification ×15)
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can be seen that FEM simulation result is consistent with 
the experiment.

5 � Design of experiments and parametric 
investigation of laser forming process

There are many factors affecting the laser tube forming pro-
cess, but the current article focuses on a part of the process 
and geometrical factors, while the rest are considered as 
constant parameters.

To select a suitable array for the design of experiment, 
the number of the degrees of freedom required should be 
computed. Each of the four factors of laser beam (P), laser 
beam diameter (D), laser beam scan speed (W), and the 
rate of angular distance (CA) are studied at three levels. 

Table 5 shows effective factors in the process of circum-
ferential laser tube bending and considers different level 
changes.

Each factor has two degrees of freedom (DOF = n-1) 
where n is the number of the levels. The interference degree 
of freedom can be calculated by multiplying the degrees 
of freedom of the interfering factors. Due to the structural 
limitation of Taguchi method, evaluating the interference 
for all four factors is not possible in the Taguchi optimiza-
tion; therefore, only the effects of the interference among the 
three factors of power, laser beam diameter, and scanning 
speed were taken into consideration. This means that the 
degrees of freedom for P*D, P*W, and D*W are all equal 
to 4 which is calculated in a similar manner (DOF = 2*2). 
The total degree of freedom for the four factors and the three 
interferences in this state equals to 20 (DOF = 3*4 + 4*2). 
The degree of freedom related to Taguchi orthogonal array 
should not be less than the degree of freedom of the whole 
experiment. Here, the most affordable selection is the L27 
array with 13 columns and 27 rows. The result of the experi-
mental design, along with the columns assigned to the inter-
ference effects among the factors in this state, can be seen 
in Table 6.

Fig. 8   Ovalization of the cross 
section (magnification ×15)

Fig. 9   FEM simulation of displacements in y-direction and its valida-
tion with experimental results of Ref. [8] for axial scanning scheme. 
Power: 200 W, scanning speed: 19.85 mm/s, beam diameter: 7 mm, 
axial scanning length: 20  mm, tube outer diameter: 14  mm, wall 
thickness: 1 mm, length of tube: 100 mm, number of scans: 4

Table 5   Effective factors in the process of circumferential laser tube 
bending and level changes for Taguchi method

Factors Level changes

1 2 3

P
Laser power (W) 300 400 550
D
Laser beam diameter (mm) 6 7 8
W
Laser beam velocity (rad/s) 1.5 2 2.5
CA
Circumferential scanning angle (°) 90 120 180
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It is worth mentioning that the number of the laser scan 
pulses in all the 27 experiments has been equal to 30. To 
observe the rate of changes in average quality index for dif-
ferent levels of the factors, a diagram showing the effects 
of each factor is employed. Here, we used MINITAB 16, 
which is a specialized software in the area of experiment 
design. Larger-the-better state is selected for optimizing the 
quality index of the cross-sectional bending angle of the tube 
represented by BA. For indexes such as the percentage of 
the ovality of the middle cross section, angular asymmetry 
in the main bend (AS), the percentage of an increase in the 
thickness of the bent tube intrados (IT), and the percentage 
of the reduction of the outer arc thickness of the bent tube 
(OT), the smaller-the-better state is selected. Due to lack of 
repetition for the experiments of finite element in this paper, 
the diagram of the effects is similar when using S/N ratio or 
average values. The manner of the effect of each factor on 
the quality index of BA can be observed in Fig. 10.

By increasing the power of the laser beam, the rate of the 
tube bending also increases. An increase in each factor of the 
laser beam diameter and the speed of the laser scan leads to a 
reduction in the rate of the final bending. It is also observed 

that by increasing the angular distance, laser scans the tube 
surface (CA), the final bending angle of the tube also shows 
an upward trend.

The analysis of variance (ANOVA) is a mathematical 
method that quantitatively expresses the relation between 
the factors and qualitative specifications intuitively obtained 

Table 6   Design of experiments 
of circumferential laser forming 
based on L27 orthogonal array 
with the effects of interference

Test num. P D P × D – W P × w – D × w CA – – – –

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 3 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 1 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 3 2 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2

Fig. 10   Main effect plots for means of output bending angle
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from the diagrams of the main effects of the factors. Table 7 
represents the results of ANOVA for bending angle. With 
regard to Table 7 and based on data of the percentage of 
participation, it is possible to rank the rate of effectiveness 
for each effective parameter in tube forming with the help 
of the laser beam. The power of the laser beam has the larg-
est effect on the maximum rate of bending. Accordingly, 
the rate of the angular distance of the beam scan, laser scan 
speed, and laser beam diameter have the largest impacts on 
the change of the final shape. To observe the manner of the 
effectiveness of the parameters of laser forming process on 
the rate of ovality of the tube’s middle cross section, dia-
gram of effects on the quality index of (OV) is used which 
is shown in Fig. 11. As can be seen, an increase in the laser 
power results in an increase in the tube ovality. However, an 
increase in the parameters of the diameter of the laser beam, 
the speed of the laser scan, and the scanned circumferential 
distance leads to a decrease in the ovality of the middle cross 
section of the tube.

To increase the number of the training data for the neural 
network and to introduce the manner of the effectiveness 

for other factors such as tube thickness and the number of 
laser beam pulses, a set of other orthogonal tests was also 
designed. The effects of the parameters of laser forming pro-
cess on the quality indices of (As), (Ot), and (It) are shown 
in Figs. 12, 13 and 14, respectively.

Table 7   Results of ANOVA for the bending angle

Factor Degree of 
freedom

Sum of square Variance ratio Percent 
contribu-
tion

P 2 58.78 11.77 30.64
D 2 11.63 2.33 6.06
w 2 31.84 6.37 16.6
CA 2 38.11 7.63 19.87
P × D 4 9.82 0.98 5.12
P × w 4 14.01 1.40 7.30
D × w 4 12.58 1.26 6.6
Error 6 14.99 – 7.81
Total 26 191.78 – 100

Fig. 11   Main effect plots for means of ovality%

Fig. 12   Main effect plots for means of As

Fig. 13   Main effect plots for means of Ot

Fig. 14   Main effect plots for means of It
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Table 8 shows the factors under study and the levels of 
changes in new experiments. Here, the best selection is the 
L25 array from Table 9.

Figure 15 is obtained on the basis of the average tube 
thickness effect on the cross-sectional bent angle with 
regard to the results of the finite element experiments of 
L25 orthogonal design. It can be observed that an increase 
in thickness results in a decrease in the obtained bent angle.

Figure 16 shows the average effects of factors in Table 8 
on the maximum surface temperature based on L25 orthogo-
nal experiment design. It demonstrates an increasing in the 
power and angular distance of laser scan on the tube results 
in an increase in the temperature generated on the tube. Fur-
thermore, increase in the speed of the laser beam and diam-
eter of the tube results in decrease in the temperature on the 
tube surface. An increase in the tube thickness also has a 
descending effect on the maximum tube surface temperature.

6 � Modeling of finite element result using 
neural networks

To create an efficient and automatic process, the required 
heating conditions for the scan path in laser forming process 
should be determined within a short time. Neural network is 
an efficient and suitable tool that provides immediate acces-
sibility to the outputs for these processes. The architecture 
of the neural networks in MATLAB is designed in a manner 
that the finite element analysis output is used as the training 
data. Using the required processing parameters as the input, 
it is possible to employ neural networks for the prediction 
of tube deformations. Trained neural networks are able to 
predict the tube bending.

The neural network input consists of geometrical and 
laser forming processes’ parameters. Thickness is the 
geometrical parameter of the tube and the parameters of 
the laser forming process include power, laser diameter, 
scanning speed, number of scan pulses, and the angular 
distance of tube circumferential scan. The neural network 

Table 8   Effective factors and level changes for the new orthogonal 
experiments

Control factors Levels

1 2 3 4 5

P
Laser power (W) 300 400 500 600 7300
D
Laser beam diameter (mm) 4 5 6 8 11
t
Tube thickness (mm) 0.889 1.067 1.245 1.651 2.108
NP
Number of scan passes 20 1 5 2 10
w
Velocity (rad/s) 1 1.5 2 2.5 3
CA
Beam coverage (°) 90 100 120 150 180

Table 9   Design of experiments 
of circumferential laser forming 
based on L25 orthogonal array

Test num. Control factors

P D T N V C

1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 2 1 2 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 2
9 2 4 5 1 2 3
10 2 5 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 3 5 2 4 1
14 3 4 1 3 5 2
15 3 5 2 4 1 3
16 4 1 4 2 5 3
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 5 3 1
20 4 5 3 1 4 2
21 5 1 5 4 3 2
22 5 2 1 5 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1

Fig. 15   The effect of thickness increasing on tube bending
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also provides the maximum values for parameters of tem-
perature on the laser scan path and tube deformations such 
as the rate of the main tube bending angle, the percent-
age rate of the ovality of the middle cross section in the 
scanning region, and the percentage of the increase of the 
intrados thickness at the tube middle cross section as its 
outputs. For each of these outputs, one separate neural 
network is trained. The tube external length and diameter 
are also considered constant at 100 mm and 15.88 mm, 
respectively.

The training data set for each network is the values of the 
data related to the design of the experiment. The data for 
scan numbers higher than one scan are saved in the finite 
element files. This data set, which includes a total of 210 
experiments, is extracted for the training of the neural net-
work. In other words, each of the input matrices for network 
training has a dimensionality of 6*210 and the training data 
matrix at the output of each network has a dimensionality 
of 1*210.

All the neural networks are designed on the basis of the 
neural network topology of proactive back-propagation of 
error. The raw architecture of neural networks is all con-
structed with the help of MATLAB software. The path with 
suitable potential efficiency has been selected for the selec-
tion of the final architecture for each network. Different 
combinations of the layers (single and double layers) with 
different numbers of neurons in each layer have been stud-
ied in this paper. To study each of these combinations, the 
weights and the biases of the networks have been reinitial-
ized (assignment of value) multiple times. Supervision over 
the neural network has been performed with the help of five 
evaluation criteria in each initialization. These criteria are

•	 Network performance curve for training set, validation 
set, and experimental set.

•	 The sum of squared error between the network output and 
target vectors.

•	 Linear regression diagrams for the training set, the vali-
dation set, and the experimental set.

•	 The network outputs and target vectors with attention to 
statistically specific value (correlation coefficient).

•	 Comparison of the prediction and actual network perfor-
mance against a number of unidentified inputs; R changes 
between zero and one and R = 1 means full correlation 
among the data and R = 0 means there is no correlation 
among the data.

The input data sets are presented to the network via 
sequential training and the training algorithm employed is 
the Levenberg–Marquardt algorithm. The generalization of 
some networks has been improved using self-adjustment 
method and others with the help of early stoppage method. 
The training stoppage of the network depends on different 
criteria such as the intensity of the gradients, the number of 
validation examinations, the minimum of the performance 
value, and the maximum of the number of the periods or 
iterations of training process.

In this paper, aside from the change in maximum num-
ber of iterations of the training process of the learning 
parameters of the Levenberg–Marquardt algorithm [24], 
the basis of the early stoppage method are also modified. In 
this state, 15%, 70%, and 15% of the input information have 
been allocated to the validation set, the training set, and the 
experimental set, respectively. The values of 1 mu, 1.5 mu, 
and 0.8 mu are allocated to fitting parameters, multiplier 

Fig. 16   Study the effects of 
laser forming geometric and 
process factors on maximum 
temperature of tube surface
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coefficient, and reduction factor in this network, respec-
tively. For the neural networks performing on the basis 
of self-adjustment method, 70% and 30% of the data are 
allocated to the network training and the experimental sets, 
respectively. The values of the fitting parameters, multiplier 
coefficient, and reduction factor in this network are set to 
0.05 mu, 10 mu, and 0.1 mu, respectively. The trigger func-
tions employed in the hidden layers for all the networks are 
the sigmoid hyperbolic tangent functions and a linear trans-
fer function has been used for the output layer.

7 � Rate of the tube cross‑sectional bending 
parameter

The neural network related to this specification has an input 
layer and a multi-layer perceptron including two hidden lay-
ers and one output layer. The first hidden layer has eight neu-
rons, the second hidden layer has one neuron and the output 
layer also has one neuron corresponding to its only output, 
i.e., the tube cross-sectional bending. Figure 17 shows that 
the network production outputs are properly conformed to 

the targeted vectors of the cross-sectional angle of the tube 
in the related classifications, i.e., the sections of training, 
experimental, validation, and the total data while the cor-
relation coefficient approximates to one.

Figure 18 also shows that the training performance curves 
and the network test behave similarly and at the point of the 
network training stoppage, the test performance curve and 
the validation are close to each other. On the other hand, the 
mean squared error has also adopted the value of 3% for the 
validation set.

Table 10 also shows the network prediction results for the 
rate of the tube cross-sectional bending against a number 
of unidentified and random input data. Therefore, it seems 
that no over fitting has occurred. Data classification clearly 
shows that the generalization of this network has improved 
with the help of an early stoppage approach.

The neural networks are used to predict the maximum 
temperature and the percentage of the ovality of the tube 
cross section. The increase in tube thickness has similar 
effects to neural network process related to the tube bending. 
Therefore, the trained neural networks are able to predict the 
required outputs for laser forming. The output parameters 

Fig. 17   Linear regression and 
the dependency coefficient for 
the training and experimental 
sets and the total of the network 
data between the output and 
target vectors for the tube cross-
sectional bending
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are related to the laser forming parameters in a complex and 
completely nonlinear manner. With the help of a suitable 
search algorithm, it is also possible to search the parametric 
space of the laser forming. Moreover, based on the indented 

conditions specified by the user, the laser forming param-
eters suitable for tube bending are obtained.

Table 11 shows the final neural network architecture for 
prediction of other necessary laser tube bending factors. 
Thus, trained neural networks are capable of predicting the 
required outputs of the laser forming process based on their 
complex and highly nonlinear relationship with the laser 
forming parameters.

8 � Multi‑objective optimization of laser tube 
bending

To enjoy the advantages of laser forming in the bending of 
tubes, it is necessary to adjust process parameters including 
the beam power, beam scan speed, laser beam effect diameter, 
and the distance covered by the laser beam to achieve optimal 
bending. The goal of this paper is to enable the user to bend the 
tube with specific and desired curvature and angle. The optimi-
zation of the bend produced at one cross section of the tube has 
been studied in this paper. Therefore, the user will decide to 
perform the laser scan process at n cross sections and produces 
the specific angle at each stage. Since the required angle at 
each cross section of the tube is identified, it is only sufficient 
to provide the parameters of tube laser forming process for the 

Fig. 18   The network performance curves (measurement on the basis 
the sum of the error squares) for the training and experimental set and 
validation of the tube cross-sectional bending

Table 10   Neural network 
prediction for unknown data

Test P D W CA NP T Max temp BA Ov It

1 FEM 1 470 5 2.2 160 1 0.889 1147 0.176 1.633 4.813
NN 1 1135 0.187 1.552 4.073

2 FEM 1 470 5 2.2 160 3 0.889 1149 0.450 6.500 12.333
NN 1 1136 0.421 6.632 9.6662

3 FEM 1 470 5 2.2 160 5 0.899 1150 0.798 9.099 23.399
NN 1 1136 0.785 10.102 18.951

4 FEM 1 680 6 1.7 180 1 2.108 1215 0.128 0.783 1.786
NN 1 1202 0.139 0.692 1.801

5 FEM 1 680 6 1.7 180 4 2.108 1220 0.403 0.237 6.256
NN 1 1203 0.380 0.204 4.974

6 FEM 1 680 6 1.5 180 8 2.108 1326 0.870 0.0731 14.532
NN 1 1325 0.874 0.0704 14.691

7 FEM 1 600 5 1.5 180 8 1.651 1365 1.350 0.350 28.330
NN 1 1365 1.366 0.356 28.149

8 FEM 1 550 5 1.5 150 6 1.245 1393 1.362 0.690 36.023
NN 1 1393 1.354 0.598 34.597

9 FEM 1 600 9 1.4 150 2 0.889 1130 0.560 0.717 9.303
NN 1 1133 0.564 0.603 9.633

10 FEM 1 500 4 2 180 1 0.889 1228 0.284 0.588 5.820
NN 1 1467 0.261 0.561 5.771

11 FEM 1 500 4 2 180 3 0.889 1232 0.683 1.219 13.351
NN 1 1468 0.983 1.108 13.489
Average error of network with respect to the finite 

element
4.075 3.08 8.56 0.08
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user (beam power, beam scan speed, the diameter of the laser 
beam effect, the distance covered by the laser beam, and the 
number of the scan passes of the laser beam). The main goal 
is the production of cross-sectional curvature in tube bending. 
Factors such as the rate of ovality of the circular cross section 
and an increase in the tube intrados thickness can also distance 
the bending from its the ideal state. The output of the prob-
lem presented in this section of the paper includes processing 
parameters of laser forming for which the most optimal bend-
ing angle is produced. The rate of ovality and the intrados 
thickness in the optimal state also tend toward the least pos-
sible values. The lowest energy consumption is also taken into 

consideration as much as possible. Furthermore, the suggested 
values for parameters of the laser forming process should not 
generate temperatures higher than the melting point of 304 
steel on the tube. By sorting the bend angles at different scan 
passes along with the conditions of laser forming process for 
each bend angle, a set of the conditions for laser forming will 
be available to the user. Based on these conditions, it is pos-
sible to produce the intended bend in each tube with specific 
diameter and thickness. It is worth mentioning that the results 
are extracted for a fixed tube diameter. As it was specified, the 
abovementioned problem has three minimizations, one maxi-
mization and one constraint for keeping the temperature below 
the melting point. On the other hand, all these goals are also 
important for the problem. Therefore, the problem of finding 
the laser forming conditions should be regarded as a multi-
objective optimization problem.

A multi-objective optimization problem (MOOP) deals 
with more than one objective function, which should be mini-
mized or maximized. Most of the multi-objective optimization 
algorithms employ the concept of dominance. In this paper, the 
elitist non-dominated sorting genetic algorithm (NSGA-II) has 
been employed as the optimization tool for finding the Pareto 
optimal set. The values of the objective functions required 

Table 11   Neural network topologies for the prediction of laser tube 
bending characteristics

Laser tube bending characteristics Symbol Topology

Maximum temperature of surface Max Temp 6–8–2–1
Tube bending angle (°) BA 6–8–1–1
Ovality percentage of tube at the scan-

ning path plane
Ov 6–7–1–1

Increasing of thickness in the intrados It 6–7–1–1

Table 12   Laser forming 
conditions for cross-sectional 
bending of a tube with a 
thickness of 0.889 mm

NP P (w) D (mm) W (rad/s) CA (°) BA (°) IT (%) OV E (J)

1 426 7.3 2.3 121 0.1 0.9 0.2 3167
1 473 7.0 1.8 124 0.2 2.9 0.2 4448
1 548 8.0 1.0 121 0.5 11.4 3.3 9053
2 547 7.1 1.3 142 0.6 16.3 2.5 8219
2 529 7.0 1.2 121 0.7 18.5 2.4 7629
3 552 7.7 1.2 113 0.7 19.6 3.3 7170
3 548 7.8 1.3 132 0.8 19.4 3.0 8009
3 563 7.4 1.2 155 1.2 23.7 1.3 9916
4 524 6.9 1.1 113 1.3 32.7 1.3 7425
4 530 7.2 1.1 122 1.5 33.9 3.5 8354
4 547 7.5 1.0 120 1.6 34.0 3.5 8831
5 543 8.2 1.2 143 1.7 33.3 2.3 9111
5 572 7.1 1.4 159 1.8 36.7 2.7 9152
5 579 7.9 1.1 146 2.2 43.8 2.4 10,563
6 562 7.3 1.2 164 2.7 50.3 2.6 10,489
6 572 6.5 1.3 160 2.7 53.9 3.4 9897
6 527 6.4 1.2 165 2.8 56.6 1.7 10,130
7 488 7.5 1.1 169 3.0 60.1 2.7 10,804
7 562 6.9 1.2 170 3.6 62.5 3.4 11,095
8 522 6.7 1.2 166 3.8 76.8 3.5 10,327
8 540 6.6 1.2 164 4.0 78.0 3.3 10,483
9 560 7.7 1.1 158 4.1 80.8 3.3 10,825
9 559 6.2 1.4 173 4.2 74.0 3.4 9839
9 560 7.6 1.1 175 5.0 82.1 2.4 12,322
10 578 7.2 1.1 175 5.9 90.6 2.9 12,166
10 582 7.2 1.1 177 6.1 90.1 2.7 12,474
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by the genetic algorithm trained by the neural networks are 
computed and produced. The mathematical structure of this 
problem is as follows:

where α is the cross-sectional bend angle produced in the 
tube, Oν is the percentage of ovality of the tube scanned 
cross section, IT is the percentage of increase in the tube 
intrados thickness, and E is the criterion for the measure-
ment of the consumed energy.

The intervals in which the genetic algorithm is permitted 
to search for each one of the parameters of the laser forming 
process, i.e., laser beam power (P), laser beam diameter (D), 
laser beam scan speed (w), and the rate of angular distance 
(CA) are presented in the following equations. The number 
of the passes of the laser beam scan (N) can also change 

(4)Max � orMin − �,

(5)MinOv,

(6)Min IT ,

(7)MinE,

from 1 to 10. The units of P, D, V, and CA are Watt, mm, 
rad/s and deg, respectively,

For the purpose of minimizing energy consumption 
and changing the search path of the genetic algorithm in 
the direction of energy issue, the energy term in Joules is 
defined using the following equation:

where w is the speed of the laser beam scan and l is the travel 
distance of the laser beam along the tube circumference. 
Ultimately, a maximum number of ten laser passes may be 

(8)300 ≤ P ≤ 700,

(9)4 ≤ D ≤ 10,

(10)1 ≤ w ≤ 2.5,

(11)90 ≤ CA ≤ 180,

(12)1 ≤ NP ≤ 10.

(13)E =
P × l

w
,

Table 13   Laser forming 
conditions for cross-sectional 
bending of a tube with a 
thickness of 1.245 mm

NP P (w) D (mm) W (rad/s) CA (deg) BA (deg) IT (%) OV E (J)

1 446 7.2 2.2 109 0.1 0.8 0.1 3100
1 447 6.1 1.5 119 0.3 2.4 0.1 4961
1 580 6.8 1.1 142 0.5 10.0 0.1 10,747
2 517 7.5 1.0 126 0.6 8.6 0.4 8755
2 555 7.3 1.1 124 0.6 10.0 0.5 8424
2 582 7.3 1.0 147 0.7 14.4 0.2 11,486
3 563 6.7 1.2 128 0.8 19.2 0.2 8606
3 573 6.5 1.0 142 1.1 26.3 0.6 11,049
3 580 6.3 1.0 146 1.3 27.2 0.5 11,608
4 574 7.1 1.0 127 1.4 29.6 0.5 9847
4 571 6.0 1.0 142 1.6 36.6 0.5 10,769
4 588 6.6 1.0 162 1.7 29.2 0.4 12,757
5 563 6.2 1.2 165 1.9 32.0 0.4 11,155
5 572 6.0 1.0 169 2.3 37.7 0.4 12,797
6 564 6.2 1.1 159 2.4 44.5 0.6 11,231
6 564 6.4 1.1 171 2.5 41.1 0.4 12,302
6 564 6.1 1.1 169 2.6 43.7 0.5 12,183
7 555 6.0 1.2 167 2.8 48.2 0.4 11,081
7 567 5.7 1.2 163 3.0 52.6 0.4 11,123
7 562 5.8 1.1 167 3.1 53.1 0.4 11,641
8 545 5.8 1.0 148 3.5 74.4 0.5 11,050
8 588 6.3 1.0 169 4.4 65.9 0.5 13,661
8 591 6.4 1.0 174 4.5 62.9 0.5 14,076
9 586 6.6 1.0 169 4.7 72.1 0.5 13,668
9 592 6.4 1.0 171 5.0 71.8 0.5 13,753
10 590 6.0 1.0 162 5.5 86.5 0.8 13,114
10 587 6.0 1.0 168 5.7 83.7 0.6 13,443
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used based on the conditions of laser forming for a tube with 
a diameter of 15.88 mm with several different thicknesses to 
achieve the desired bent angle.

Gamultiobj in MATLAB software is an algorithm which 
obtains the Pareto optimal answer for a multi-objective min-
imization problem based on elitist non-dominated sorting 
genetic algorithm (NSGA-II). Tables 12, 13, and 14 present 
the laser forming parameters required for the cross-sectional 
bending of the tube at different bending angles specified by 
the user. In each specific pass of the laser beam scan (1–10), 
the multi-objective optimization has been carried out based 
on the largest bending angle and the least rate of bending 
asymmetries and energy.  

The NSGA-II algorithm calculates the required laser 
forming conditions for the objective functions and Pareto 
optimized values for each scan pass of the laser beam. Since 
there is no possibility to define a nonlinear constraint on 
optimization path for NSGA-II algorithm in MATLAB soft-
ware, the laser forming parameters resulting in a temperature 
higher than the melting point of the tube were deleted ini-
tially. Among the remaining data of laser forming param-
eters, only the bending angles with a distance of 0.1° are 
selected. Undoubtedly, due to elimination of some of the 
data in the previous step, not all the angles are distanced by 

0.1°. It is worth mentioning that the laser forming condi-
tions might not be equal for a specific bending angle since 
other targets have generated different values. Therefore, they 
have no priority relative to each other in Pareto optimization 
issue. Accordingly, it is within the user’s power to select 
the laser forming conditions in this state. For example, it 
is possible to select choices with less ovality percentage 
or with less increase in its intrados thickness; or in cases 
where the geometrical precision is not important for the 
user, but energy consumption is important, it is possible 
to select a state which consumes less energy. Furthermore, 
in the process of screening the laser forming results, the 
higher ranks of the laser scanning passes have been deleted. 
With regard to the functional structure of this algorithm, a 
limited number of the genetic algorithm results might not 
have been located on the optimal rows of Pareto. Therefore, 
re-monitoring is performed on the conditions of laser form-
ing producing with similar cross-sectional bend angle and 
conditions in which the objective function is dominant are 
also deleted. As an example, in Table 12, conditions are 
provided for the case when user aims to bend a section of the 
tube with the length of 470 mm with thickness of 0.889 mm 
and a diameter of 15.88 mm according to Fig. 19 under a 45° 
angle and internal bending radius of 600 mm.

Table 14   Laser forming 
conditions for cross-sectional 
bending of a tube with a 
thickness of 2.108 mm

NP P (w) D (mm) W (rad/s) CA (deg) BA IT (%) OV E (J)

1 563 8.6 2.2 171 0.1 0.6 0.1 6004
2 547 7.7 1.3 136 0.2 1.1 0.1 8036
3 551 6.9 1.1 149 0.3 2.8 0.3 10,381
3 569 6.8 1.0 136 0.4 4.7 0.1 10,215
4 562 6.9 1.2 145 0.7 3.3 0.9 9820
4 592 5.7 1.0 164 1.0 13.5 0.1 13,317
4 593 5.5 1.0 172 1.1 15.0 0.1 14,033
5 568 6.1 1.0 154 1.2 10.6 0.8 11,959
5 568 5.9 1.0 174 1.3 13.5 0.2 13,372
6 575 6.4 1.1 158 1.5 10.8 1.1 11,665
6 574 5.7 1.1 162 1.6 14.1 0.7 11,886
6 575 5.3 1.0 166 1.8 21.0 0.3 12,874
7 567 5.4 1.1 157 1.9 20.1 0.6 11,715
7 572 6.0 1.0 165 1.9 19.8 1.4 12,633
7 573 5.4 1.0 163 2.1 25.7 1.6 12,809
8 588 5.4 1.1 162 2.2 25.2 1.8 12,040
8 587 5.3 1.1 165 2.3 27.5 1.3 12,396
8 586 5.3 1.0 165 2.4 31.2 1.7 12,813
9 580 5.4 1.1 167 2.5 27.6 1.1 12,153
9 581 5.3 1.1 173 2.7 35.8 1.2 13,088
9 580 5.0 1.1 174 2.8 38.4 1.5 13,128
10 576 5.1 1.1 175 3.0 39.5 1.4 12,837
10 577 5.0 1.0 175 3.3 48.7 1.9 13,541
10 577 4.8 1.0 176 3.4 51.6 1.7 13,657
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9 � Conclusions and scope for future work

In this paper, the goal was to investigate the laser tube 
bending process and to extract applied data. Using ANOVA 
method, the influence of the tube bending parameters was 
studied. The results indicated that the laser beam power, 
the laser beam coverage, and the laser beam speed have the 
highest impacts on the tube bending. With the aid of the 
Pareto-based multi-objective genetic algorithm and neural 
networks, applied data tables were extracted to enable the 
users to bend a tube with a specific bending angle and cur-
vature radius with the least ovality, the least thickening and 
the least forming energy consumption. As a potential future 
direction, this work can be further extended to provide com-
plete data tables.
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Fig. 19   Laser forming method of a stainless steel 304 tube (45° arc) 
using Table 12 data. The number of scan passes was set to 9 for this 
model
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