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Abstract — The principle of a new adaptive Neuro-
Fuzzy Controller (NFC) is introduced and used for 
indirect vector control of induction motor drives. The 
proposed algorithm has advantages of neural and fuzzy 
networks and uses a supervised emotional learning 
process to train the NFC. This newly developed design 
leads to a controller with minimum hardware and 
improved dynamic performance. System implementation 
is relatively easy since it requires less calculation as 
compared with the conventional fuzzy and/or neural 
networks, used for electrical drive applications. The 
proposed controller is used for speed and torque control 
of an induction motor drive. In order to demonstrate the 
NFC ability to follow the reference speed and to reject 
undesired disturbances, its performance is simulated 
and compared with that of a conventional PID 
controller. 
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1 Introduction 
 

In an indirect vector controlled induction motor 
drive, the speed controller impacts the drive 
performance in several important ways. In 
particular, the q-axis of stator current generated by 
speed (or torque) controller not only commands the 
current regulator, but also determines the slip 
calculation. Therefore, a desired speed controller 
should not only deliver a satisfactory torque 
signals, but also generate accurate slip commands 
to guarantee the independent control of torque and 
flux. In effect, if the speed controller is 
intelligently designed, it will have the ability to 
minimize de-tuning effects and the drive 
performance will be very robust [1]. 

Traditionally, a PID controller is often used as 
the speed controller; the PID controller generally 
offers fair performance if it is well tuned. 
However, there are several drawbacks in using PID 
as the speed controller. For example a set of fixed 
PID gains cannot satisfy requirements of different 
speed commands. Moreover, tuning PID gains is 
tedious and time-consuming [2].  

Recently the intelligent algorithms have been 
used to control highly nonlinear systems complex 
models and time varying uncertainties. To get the 
advantages of both fuzzy logic and neural 
networks, it is demonstrated that the neural-fuzzy 
systems can be used. So the learning abilities of 
neural networks and fuzzy inference of fuzzy 
systems is achieved simultaneously [3-6]. 

In this paper a new adaptive neural-fuzzy 
controller is introduced and used for the vector 
control of induction motor drives. To train the 
proposed NFC, instead of the traditional back 
propagation through plant technique, the emotional 
learning procedure is used. The proposed 
controller is used for speed and torque control of 
an induction motor drive. Simulation results are 
used to show the abilities and shortcomings of the 
proposed algorithm as compared with the 
conventional PID controller. 
 
2 Neuro-Fuzzy Systems 
 

In parallel to development of the technology 
and complexity of the industrial plants, their 
modeling and control, by using the conventional 
techniques has become more difficult. Therefore, 
the conventional mathematical-model-based 
analysis techniques have become very complex or 



in rare cases they have become impossible to 
apply. On the other hand, human abilities in 
controlling the complex systems, has encouraged 
scientists to pattern from human neural network 
and decision making systems. The researches 
began in two separate fields and resulted in 
establishment of the fuzzy systems and artificial 
neural networks.  

There are primarily three concepts prevailing 
over the intelligent control: 
• Fuzzy Logic Control 
• Neural Network based Control 
• Neuro-Fuzzy Control (Hybrid Control) 

In the first concept, the controller is represented 
as a set of rules, which accepts the input in the 
form of linguistic variables and gives the output in 
the form of linguistic variables. The main 
advantages of such a controller are: 
• Approximate knowledge about the plant is 
required (unlike most optimal and adaptive 
strategies that require an accurate system model). 
• Knowledge representation and inference is 
relatively simple. 
• Implementation is fairly easy. 
The fuzzy controller is one rule-based control 
system. One of the main advantages of using a 
fuzzy approach is that the fuzzy logic provides the 
best techniques for knowledge representation that 
could possibly be devised for encoding knowledge 
about contineuos variables. Figure 1, shows the 
general model of a fuzzy system, which is 
composed of four major components [3].  

Figure 2 shows a sample of membership 
functions of input and output variables, which has 
been used in this paper. Three sets NE, ZE and PO 
represent negative, zero and positive sets, 
respectfully. More detailed descriptions of the 
concepts and definition of a fuzzy logic controller 
can be found in [3,4]. In the second concept, the 
controller is represented as a nonlinear map 
between the inputs and outputs. Depending on a 
specific plant, the map (in the form of a network) 
can be trained to implement any kind of control 
strategy. 

 
 

 
 

Figure 1: General Model of a Fuzzy System 

 
 

Figure 2: Membership Functions for the Inputs/Outputs 
 
Artificial neural networks with their massive 

parallelism and ability to learn any type of 
nonlinearity are used nowadays to address some of 
the very practical control problems. A neuro-
controller (neural networks based control system) 
performs a specific form of the adaptive control 
with the controller taking the form of a multi layer 
network and the adaptable parameters being 
defined as the adjustable weights. The main 
advantages of this controller are: 
• Parallel architecture 
• Any kind of nonlinear mapping is possible 
• Training is possible for various operating 

conditions, therefore it can be adapted to any 
desired situation. 

The simple fuzzy controller represents a good 
nonlinear controller; however, it cannot adapt its 
structure whenever the situation demands. 
Sometimes the fuzzy controllers with fix structures 
fail to stabilize the plant under wide variations in 
the operating conditions. These types of controllers 
also lack the parallelism of neural controllers. On 
the other hand the Neural Networks are very much 
adaptive to situations by adjusting their weights 
accordingly. The parallel architecture enables 
faster implementation of the control algorithm. 
However in the presence of noise and other 
uncertainties the performance may deteriorate. 
Some times in certain neural controller structures 
the model of the plant is required. But in case of 
plants whose model becomes uncertain it is 
difficult to use neural networks with fixed 
structures. To get the advantages of fuzzy and 
neural networks and to overcome their 
shortcomings, it is wised to use the combination of 
both, which leads to Neuro-Fuzzy Controllers 
(NFC). In other words the new hybrid structure can 
be named as an Adaptive Fuzzy Controller. This is 
the approach used in this paper.  

Figure 3, shows the structure of the NFC, which 
has been used for motion control. The on-line 
supervised learning algorithm performs very well 
when the training data are available on-line. In this 
paper, the error between the reference and plant 
output is used to adjust the weights. This controller 
is an Adaptive Network-based Fuzzy Inference 
System (ANFIS) [5]. 



 
Figure 3: Neuro-Fuzzy Network Structure 

 
 

2.1 Supervisory Learning in ANFIS 
 

In some situations it may be desirable to design 
an automatic controller, which mimics the action 
of the human. This has been called supervised 
control. A neural network provides one possibility 
for this. Training the network is similar in principle 
to learning a system forward model. In this case, 
however, the network input corresponds to the 
sensory input information received by the human. 
The network target outputs used for training 
correspond to the human control input to the 
system. Figure 4 shows the NFC as a supervisory 
controller. 

The Error Back Propagation Through Plant 
(EBP-TP) technique is one of the general 
approaches for training neural networks [6-7]. In  
EBP-TP technique, output error of the controller is 
passed through the plant, and updating law of the 
weights is achieved. However, this technique has 
some defects, such as sensivity to noise, 
disturbance and learning rate coefficient. To 
develop the learning, emotional learning ability 
can be added to EBP-TP algorithm. In this 
supervisory learning algorithm, one supervisor (as 
a critic) controls the network behavior and reminds 
it the correct operation. Figure 5 shows a NFC 
controller by using a critic. Therefore, critic which 
shows amount of the system stress, can be 
described like a simple PD control system as: 

 

 
Figure 4: Supervisory Controller 

 
 

Figure 5: Supervisory Controller by using one Critic 
 
 

ekekS &⋅+⋅= 21                                           (1) 
Where 1k , 2k  are critic coefficients and should be 
set suitable. For training the neuro-fuzzy system 
with linear PD critic, the criterion is selected as:  

2

2
1)( SWE i =                                       (2) 

The parameter iW  should be adjusted in the 
direction of negative gradient of E . Thus, for the 
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Therefore, the online updating law of weights is 
written as: 
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Where η  is the learning rate coefficient of the 
network. It is possible to generalize training to 
previous layers. But in the sense of practical 
remarks, it has some defects and therefore, we 
content learning only for the last layer [8].  

It is possible to use another critic in parallel to 
error critic (1’Th critic). This can limit the control 
effort. Simultaneous operation of critics makes it 
possible to lower following error and control 
effort. 
 



3 Indirect Vector Control via Rotor  
                         Flux Orientation 

 
Induction motors have been used for over a 
hundred years. Because of their simplicity, 
ruggedness, reliability, low cost, induction motors 
with a squirrel-cage rotor are the most widely used 
motors. Also because of their highly non-linear 
dynamic structure with strong dynamic 
interactions, they require more complex control 
schemes compared with DC motor control. Vector 
control can be applied to an induction motor 
supplied using VSI or CSI inverters. The vector-
controlled induction motor can achieve four-
quadrant operation with high dynamic response. In 
this section indirect vector control via rotor flux 
orientation has been briefly proposed. 

 Stator voltage equation is obtained in the 
reference frame fixed to the rotor flux-linkage 
space pharos, which rotates at the speed mrω  as: 
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By resolving Eq.11 into its real (x) and imaginary 
(y) components, the following two-axis differential 
equations are obtained for the stator currents: 
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The stator current components can be 
independently controlled if the decoupling 
rotational voltage components (defined by 
equations11-12) are added to the outputs 

)ˆ,ˆ( SySx uu of the current controllers that control 

sxi and syi respectively [2]. 

SysmRdx iLu ′−= ω                           (11) 
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We can summarize equations: 
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Figure 7: Overall Block Diagram of the proposed Indirect Vector-Controlled Induction Motor Drive 



Therefore, Sxû and Syû directly control the 

stator currents sxi and syi through a simple time 

delay element. The overall block diagram of the 
indirect vector controlled induction motor drive 
has been shown in Figure 6. In this drive system, 
the current controllers, flux controller, and torque 
controller can be designed as PID controllers, 
where as the Emotional Neuro-Fuzzy controller 
can be used to control the speed at velocity loop 
 [2, 9,10]. 

 
4 Simulation Results 
 
In this section some simulation results are used to 
explore the proposed NF controller and compare 
its performance with the conventional PID 
controller. The Critic in the neuro-fuzzy controller 
has been selected as eeS &⋅+⋅= 5051 , and the 
learning rate coefficient is set to 6.0=η . PID 
controller is assigned by 20=Pk , 5=Ik . 
Usually PID controller parameters are adjusted by 
trial and error. It should be noted that the inner 
loop controllers (current controllers) should be 
faster than outer loops. Simulations are performed 
using a three phases squirrel cage induction motor 
with KWPrated 15= . Motor nominal parameters 
are given in the appendix. In Figures 7 and 8 show 
the speed tracking with NFC and PID controllers, 
respectively. With NFC, speed follows its 
reference with better dynamic. At t=1 sec and t=3 
sec, load torque is applied to the motor and as 
expected, NFC demonstrates a better rejection 
ability as compared with the PID controller. 
Figures 9 and 10 show the developed torque and 
rotor flux tracking. In Figures 11 and 12, the x, y 
components of stator current are shown. Figure 13 
shows the stress signal of the critic. 
 
 
 

 
 

Figure 7: Speed Tracking with NFC 
 
 

 
 

Figure 9: Developed Torque with NFC 
 
 
 

 
 

Figure 8: Speed Tracking with PID controller 
 
 
 

 
 

Figure 10: Reference Rotor Flux Following 
 
 

 
 

Figure 11: Sxi (Flux Component of Stator Current) 
] 
 



 
Figure 12: Syi  (Torque Component of Stator Current) 

 

 
 

Figure 13: Stress Signal of the Critic 
 

5 Conclusion 
 

In this paper, an adaptive Neuro-Fuzzy Controller 
(NFC) based on emotional learning has been 
proposed and investigated. To improve controller 
performance a critic has been defined and used to 
supervise the learning of neural network. In addition, 
other critics are used to lower amount of control 
effort. Performance of the proposed NFC is analyzed 
and compared with the conventional PID controllers.  
  Base on the simulation results, the following main 
conclusions can be stated about the proposed NFC: 
• It enjoys the fine abilities and advantages of 
both the fuzzy and the neural networks.  
• It is more robust against the uncertainties 
compared with the PI and PID controllers. 
• Due to its non-model base, it can be used to 
control a wide range of complex and nonlinear 
systems. 
• It does not require an accurate model of the 
induction motor, its knowledge representation and 
interface description is relatively simple and 
therefore its construction and implementation is 
fairly easy.  
• It doesn’t require knowledge of expert man to 
obtain and set its rule bases since less number of 
adjustable parameters is involved (as compared with 
fuzzy and/or neural systems). 
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Appendix: Motor Parameters  

 
voltU n 380=  

KwPn 15=  

Hzf n 50=  

1.0=nomiJ  

3=PZ  

HeLm 32.32 −=  

HeLr 31.34 −=  

 HeLs 33.34 −=  

Ω= 023.0rR  

 Ω= 324.0sR  
 


