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This paper proposes the design of sensorless induction motor drive based on direct power control (DPC) technique. It is shown
that DPC technique enjoys all advantages of pervious methods such as fast dynamic and ease of implementation, without having
their problems. To reduce the cost of drive and enhance the reliability, an effective sensorless strategy based on artificial neural
network (ANN) is developed to estimate rotor’s position and speed of induction motor. Developed sensorless scheme is a new
model reference adaptive system (MRAS) speed observer for direct power control induction motor drives. The proposed MRAS
speed observer uses the current model as an adaptive model. The neural network has been then designed and trained online by
employing a back propagation network (BPN) algorithm.The estimator was designed and simulated in Simulink. Some simulations
are carried out for the closed-loop speed control systems under various load conditions to verify the proposedmethods. Simulation
results confirm the performance of ANN based sensorless DPC induction motor drive in various conditions.

1. Introduction

The electrical drive system is used to control the position,
speed, and torque of the electric motors. Many works have
been done on power converter topologies, control scheme of
the electric drive systems, and the motor types in order to
enhance and improve the performance of the electric motors
so as to exactly perform and dowhat is required [1]. Induction
motors (IMs) are widely used in industrial, commercial, and
domestic applications as they are simple, rugged, and easy
to maintain and of low cost. Since IMs demand well control
performances, precise and quick torque and flux response,
large torque at low speed, and wide speed range, the drive
control system is necessary for IMs [2].

Control of induction motors can be done using vari-
ous techniques. Most common techniques are (a) constant
voltage/frequency control (V/F), (b) field orientation control
(FOC), and (c) direct torque control (DTC). The first one is
considered as scalar control since it adjusts only magnitude
and frequency of the voltage or current with no concern
about the instantaneous values of motor quantities. It does
not require knowledge of parameters of the motor, and it is

an open-loop control.Thus, it is a low cost simple solution for
low performance applications such as fans and pumps. The
other two methods are in the space vector control category
because they utilize both magnitude and angular position of
space vectors of motor variables, such as the voltage and flux.
They are employed in high performance applications, such as
positioning drives or electric vehicles [3, 4].

Direct power control is a control method that directly
selects output voltage vector states based on the power and
flux errors using hysteresis controllers and without using
current loops. In this respect, it is similar to the well-
known direct torque control (DTC) method described in the
literatures for various AC motors [5]. What is in common
among these applications is that they all are power output
devices needed to provide real power to the load. DPC
technique has been basically applied to the generators, but
it is tried to use it for control of electrical motors instead
of DTC technique, due to the problems of torque estimation
and dependency on the motor’s parameters. Therefore, DPC
technique enjoys all advantages of DTC such as fast dynamic
and ease of implementation, without having the DTC’s
problems. However, publications about direct power control
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Figure 1: The equivalent circuit of IM in the stationary reference
frame.

are mainly aimed at either rectifiers [6], converters [7, 8],
dual-fed induction generators (DFIG) [9, 10], or permanent
magnet synchronous generators (PMSG) [11, 12], and there is
no research on using the DPC technique for inductionmotor.

Recently, many researches have been carried on the
design of speed-sensorless control schemes of induction
motor drives. The main reasons for the development of sen-
sorless drives are reduction of complex hardware and hence
cost; increase in mechanical robustness and hence overall
ruggedness; working under hostile environment; higher reli-
ability; reduced maintenance; and so forth. Techniques range
from open-loop, low performance strategy to closed-loop,
high performance over the past decades [13–17].

Speed estimator employing artificial neural network
(ANN) is an improvement over the classical mathematical
model based approaches [18–23]. It is a major advantage
of ANN based techniques that they do not require any
mathematical model of the motor under consideration and
the drive development time can be substantially reduced. In
this study, a speed estimator, based on ANN based model
reference adaptive system (MRAS), has been studied and
analyzed. For ANN, the back propagation network (BPN)
algorithm is used for online training to estimate the motor
speed. The paper is organized as follows. Section 2 gives
the dynamic model of induction motor. Section 3 proposes
the original DPC strategy and employs it for induction
motor. Speed estimation technique using neural network is
presented in Section 4. Simulation results are presented in
Section 5, and the conclusion is given in Section 6.

2. Model of Induction Motor

Neglecting the motor core loss, the saturation, the slot effect,
and so forth, the equivalent circuit of the IM in stationary
reference frame is shown in Figure 1.

The mathematical model in stationary reference frame
can be derived from the equivalent circuit, as follows:
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The electromagnetic torque produced in the motor is
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where 𝑝 is number of motor pole pairs and ∗ is conjugate
operator.

The induction motor model in the 𝛼 − 𝛽 fixed reference
frame can be described by the following equations:
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where the subscripts 𝑠 and 𝑟 stand for stator and rotor
quantities; 𝑢 and 𝑖 denote voltage and current, respectively;
𝑅 denotes resistance and 𝜔

𝑟
is the rotor speed; 𝜓 denotes flux

linkage.

3. Direct Power and Flux Control of
Induction Motors

The direct power control methods discussed in this paper
bear certain similarity to the direct torque control (DTC).
Therefore, DPC is actually direct power and flux control,
with two parameters involved in the control strategy, so
it is also named as direct power and flux control (DPFC)
in some publications [24]. Direct power and flux control
(DPFC) of IMs is a controlmethod that directly selects output
voltage vector states based on the power and flux errors using
hysteresis controllers. Figure 2 shows the block diagram of a
general open-loop DPFC system.
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Figure 2: General block diagram of direct power and flux control
system.

3.1. Flux Control Principles. Fixed linkage flux can provide
enough electromagnetic torque and avoid magnetizing cur-
rent saturation in the iron core of the IM.Therefore, in direct
torque and flux control, as well as in the proposed direct
power and flux controls in the subsequent chapters, the flux
is maintained constant [25]. In the stator stationary reference
frame, the frame rotation speed is zero and the rotor voltage
is zero as well (for squirrel-cage IMs). Thus
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With neglecting the small voltage drop across the stator
resistance, we have
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Integrating (7) and writing it in a discrete form, we obtain
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within a switching interval Δ𝑡, the increase of stator flux is
proportional to the stator voltage space vector. This is the
principle of direct flux control in DPC.

3.2. Power Control Principles. From the power flow charts in
induction motor, it is evident that real output power is the
part that produces the torque and is what the user of the
system is mostly interested in. The output real power is given
by
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Figure 3: Generating the output power reference obtained from
speed loop.

Substituting the torque in (10) with (11), the output power
becomes
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Since the magnitude of the stator flux is kept constant
and the rotor flux does not change much due to its inertia,
the rotor speed and angle can be considered constant too.
The formula above shows that the change of output power
depends only on the change of stator flux angle. The stator
voltage vector that can increase the stator angle needs to
be raised in order to increase the output power. The real
output power equation obtained above is only valid for
explanation of the principles of power control. However, it
is not appropriate for the purpose of estimating the actual
power in simulations.

3.3. Output Power Reference. The output power reference is
the command value, or set point, for the power control. In a
closed-loop speed control system, the reference of the power
controller is obtained from the output of the PI-type speed
controller (see Figure 3). The speed error is defined as the
difference of the reference speed and the estimated actual
speed:
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The continuous standard form above can also be expressed in
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for the digital implementation:

𝑇

∗

𝑒
(𝑡
𝑛+1

) = 𝑇

∗

𝑒
(𝑡
𝑛
) + 𝐾
𝑝
[Δ𝜔
𝑚

(𝑡
𝑛
) − Δ𝜔

𝑚
(𝑡
𝑛−1

)]

+ 𝐾
𝑖
Δ𝑇Δ𝜔

𝑚
(𝑡
𝑛
) .

(15)

The subscript (𝑛) denotes the current sampling instant, (𝑛−1)
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Table 1: Combination of the power and flux controller outputs.

𝑏
𝑝
= −1 𝑏

𝑝
= 0 𝑏

𝑝
= 1

1 2 3
4 5 6

The process of obtaining the output power reference from the
speed reference is illustrated in Figure 3. For simulations, the
actual motor speed 𝜔

𝑚
can be obtained as

𝜔
𝑚

=

1

𝐽

∫ (𝑇
𝑒
− 𝑇
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In practice the speed is either measured directly or estimated
from the current and voltage signals. The magnitude of the
stator flux is kept constant in the simulation; thus the flux
reference 𝜆

∗

𝑠
is a constant. The error of the stator flux is

Δ𝜆
𝑠
= 𝜆

∗

𝑠
− 𝜆
𝑠
. (18)

3.4. Power and Flux Hysteresis Controllers. Both the output
power and the stator flux controllers are of hysteresis type.
Depending on the control error, the output of the controller
is set to two or three discrete values. The power controller
has a three-level output [24, 26]. The values are 1, 0, and
−1, representing an increase, no change, and a decrease of
the controlled variable, respectively. The number of flux
controller output levels is two, with 1 and 0 meaning increase
and decrease commands, respectively. Figure 4 illustrates
characteristics of these two controllers.

3.5. Switching Table. The task of the state selector in the
direct power control is to combine the outputs of the power
controller and flux controller to select the values of the
switching variables a, b, and c. These variables describe the
required voltage vectors of the inverter. To make it easier to
implement, the combination of the two controller outputs can
be expressed as follows:

𝑏 = 3𝑏
𝜆
+ 𝑏
𝑝
+ 2. (19)

In the above equation, variable 𝑏 = 1, 2, 3, 4, 5, 6, while 𝑏
𝜆

=

(0, 1) and 𝑏
𝑝
= (−1, 0, 1).

Alternatively, (19) can also be represented by Table 1.
A whole stator flux cycle of 360∘ is divided equally into

6 sectors, each one spanning 60∘. Combining with the sector
numbers from 1 through 6 produces lookup Table 2 for the
state selection [24].The concept of state selection is illustrated
in Figure 5.

Note that the stator flux angle 𝜃
𝑠
must be converted to a

sector number from 1 through 6 for the use of Table 2 for state
selection.

3.6. Estimation of Stator Flux and Output Power. The estima-
tion of flux is implemented by integration of (5):
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Table 2: State selection lookup table.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6
Sector 1 1 0 2 5 7 6
Sector 2 5 7 6 4 0 2
Sector 3 4 0 1 6 7 3
Sector 4 6 7 5 2 0 1
Sector 5 2 0 4 3 7 5
Sector 6 3 7 6 1 0 4

That output power can be calculated from (10). Figure 6
illustrates the estimation of actual output power and flux from
stator voltage and current together with mechanical angular
speed.These estimated values are the feedback for the output
power and stator flux controls.

4. Speed Estimation Using Neural Network

In MRAS technique, some state variables, 𝑋
𝑑
and 𝑋

𝑞
(e.g.,

rotor flux linkage components, 𝜓
𝑑𝑟

and 𝜓
𝑞𝑟
, or back-EMF

components, 𝑒
𝑑
, 𝑒
𝑞
, etc.), of the inductionmachine (which are

obtained by using measured quantities, e.g., stator voltages
and currents) are estimated in a reference model and are
then compared with state variables ̂

𝑋
𝑑
and ̂

𝑋
𝑞
estimated by

using an adaptive model. The difference between these state
variables is then formulated into a speed tuning signal (𝜀),
which is then an input into an adaptation mechanism, which
outputs the estimated rotor speed (�̂�).

Speed estimator using ANN is a part of a model reference
adaptive system (MRAS), where ANN takes the role of the
adaptive model. ANN contains the adjustable and constant
weights and the adjustable weights are proportional to the
rotor speed. The adjustable weights are changed by using
the error between the outputs of the reference and adaptive
model. Figure 7 shows the MRAS-based speed estimation
scheme, which contains an ANN with BPN adaptation
technique [17].

The outputs of the reference model are the rotor flux
linkage components in stationary reference frame, given by
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These two equations do not contain the rotor speed and
describe the reference model. The equations of adaptive
model are given by
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It is possible to implement (22) by a two-layer ANN contain-
ing weights 𝑊

1
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are sampling time and rotor time
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Figure 10: Simulation results DPC of induction motor: (a) electromagnetic power and (b) rotor speed.
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constant. The variable ANN weight𝑊
2
is proportional to the

rotor speed. By using the backward difference method, the
equation of adaptive model is given below:

�̂�
𝑑𝑟

(𝑘) = 𝑊
1
�̂�
𝑑𝑟

(𝑘 − 1) − 𝑊
2
�̂�
𝑞𝑟

(𝑘 − 1) + 𝑊
3
𝑖
𝑑𝑠

(𝑘 − 1)

�̂�
𝑞𝑟
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1
�̂�
𝑞𝑟

(𝑘 − 1) − 𝑊
2
�̂�
𝑑𝑟

(𝑘 − 1) + 𝑊
3
𝑖
𝑞𝑠

(𝑘 − 1)

(23)

which gives the value of rotor flux at the𝐾th sampling instant.
These equations can be visualized by the very simple two-
layer ANN shown in Figure 8.

After taking learning factor 𝜂 andmomentum term 𝛼 into
account, the estimated rotor speed is given below:

�̂�
𝑟
(𝑘)

= �̂�
𝑟
(𝑘 − 1)

+

𝜂

𝑇

{

− [𝜓
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𝑑𝑟

(𝑘)] �̂�
𝑞𝑟

(𝑘 − 1)

+ [𝜓
𝑞𝑟

(𝑘) − �̂�
𝑞𝑟

(𝑘)] �̂�
𝑑𝑟

(𝑘 − 1)

}

+

𝛼

𝑇

Δ𝑤
2
(𝑘 − 1) .

(24)

If the value of learning rate (𝜂) is chosen high, it may lead to
oscillations in the outputs of ANN, and 𝛼 is chosen in range
between 0.1 and 0.8. The inclusion of momentum term into
the weight adjustment mechanism can significantly increase
the convergence, which is extremely useful when the ANN
shown in Figure 8 is used to estimate in real time [13].
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Figure 13: Simulation results of DPC based on ANN of induction motor: (a) electromagnetic power and (b) rotor speed.

Table 3: Induction motor parameter.

Parameter Value
𝑃
𝑛

2 hp
𝜔rated 1500 [rpm]
𝑉 300 [V]
𝐼
𝑛

2.1 [A]
𝐽 0.004 [kg⋅m2]
𝑝 2
𝑅
𝑠

10 [Ω]
𝐿
𝑚

330 [mH]
𝐿
𝑙𝑠
, 𝐿
𝑙𝑟

0.4 [mH]
𝐵 0.002 [N⋅m/(rad/sec)]

5. Simulation Results

5.1. Direct Power Control. The simulation is carried out using
MATLAB. The whole system setup is shown in Figure 9. It
contains the power and flux controllers as inner loops and
the speed loop as outer loop.

The sampling frequency is chosen as 50 kHz. The hys-
teresis tolerance for both power and flux controller is 1% of
respective reference values. For the PI speed controller (see
(14)), the proportional gain is tuned to 𝑘

𝑝
= 90; the overall

coefficient of the integral part is set to 0.1, which yielded
an integral gain 𝑘

𝑖
= 5000 at the 50 kHz sampling rate.

The reference speed profile is set in which the speed always
remains below the rated speed to avoid field weakening. The
parameters of IM used in the simulations are listed in Table 3.
The simulation results are shown in Figure 10.

5.2. Speed Estimator Based onANN. Implementation ofANN
based speed estimator is carried out in MATLAB/Simulink,
as shown in Figure 11.

The response of ANN based speed estimator is compared
with actual machine which is shown in Figure 12.

5.3. Direct PowerControl withANN. Theresult ofANNbased
speed estimator with DPC controller is shown in Figure 13.

6. Conclusion

This paper studies the possibility of direct power control
for speed control of induction motor. It has been shown
that DPC is basically derived from direct torque control
(DTC) method, and the simulation results show that this
control scheme for IMsmotor has all the advantages of direct
torque control method. One of the major advantages of DPC
method compared to DTC method is the easier calculation
of actual power. Moreover, this paper proposes a new MRAS
speed observer for DPC controlled induction motor drives
using neural networks for speed estimation. The simulation
results show that the proposed two-layers neural network
can identify and track the motor speed accurately during
the whole operating region. Structure and algorithm are also
simple. Overall, the dynamic response of this scheme of speed
estimation shows a good performance.
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