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1. Introduction 

Groundwater is a precious resource that is 

accessed via wells for agriculture, home, and 

industrial use as given by Affandi and 

Watanabe (2007). As mentioned by Todd and 

Mays, the use of ground water is increasing 

because of its easy availability, low cost, and 

high quality (Todd and Mays 2005). Surface 

water accounts for 3% of the total freshwater 

while groundwater comprises as much as 30% 

of freshwater worldwide (Gleick 1993). 

Currently in Iran, 55% of water needs are 

provided via groundwater resources. The 

annual amount of aquifer recharge by rainfall 

aquifer is 35 bm3. Annual water consumption 

is estimated to be 120 ×109 m3; about 66 ×109 

m3 of it is provided by groundwater resources. 

Annual aquifer water consumption outstrips 

the annual recharge and has produced 

significant drops in water tables in 163 of 223 

plains in the country (Zia 2004). The aquifer in 

Kashan plain is one of them with a critically 

low water level. It is crucial to develop a 

systematic plan for the management and 

protection of groundwater resources. The 

available groundwater levels must be 

measured and analyzed to preserve them. 

Modeling groundwater levels will help protect 

the environment, balance the groundwater 
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In arid and semi-arid environments, groundwater plays a significant role in the ecosystem. In the last decades, 

groundwater levels have decreased due to the increasing demand for water, weak irrigation management and soil 

damage. For the effective management of groundwater, it is important to model and predict fluctuations in groundwater 

levels. In this study, groundwater table in Kashan plain aquifer forecasted using Artificial Neural Networks. MLP and 

RBF models were used to simulate the ground water table, but, because of the high number of wells studied, the 

samples were first organized into 5 clusters based on a Vard cluster analysis algorithm. The results indicated that, for all 

clusters, MLP showed good precision for predicting water depth in 37 months ahead. The correction coefficient within 

clusters 1, 2, 3, 4, and 5 were, respectively, 0.86, 0.88, 0.93, 0.55, and 0.79. The results showed that by change of data, 

education algorithm and transport function; the model can be changed into the best. In 60, 20 and 20 percent of models, 

Delta-Bar-Delta, Momentum and Levenberg-Marquardt were best Education Algorithm, respectively. In 60, 20 and 20 

percent of models hyperbolic tangent Axon, Sigmoid Axon and Linear hyperbolic tangent Axon were best transport 

function, respectively. 
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system, control groundwater level fluctuations 

and protect against land subsidence as given 

by Affandi and Watanabe (2007). A number of 

models have been used to predict groundwater 

levels, including the experimental time series 

model and physical model (Izadi et al. 2007). 

When the dynamics of a hydrologic system 

change over time, these models may not be 

powerful enough to predict water parameters 

and have not been considered appropriate 

(Bierkens 1998). 

Computer modeling of groundwater flow and 

transport has currently become a powerful tool 

for understanding and analyzing the hydrology 

of aquifers and various other aspects of 

Subsurface flow dynamics and various models 

are available for that purpose (Anderson and 

Woessner 1991, Kresic 1996, Sirhan and Koch 

2013). These models usually look for a 

numerical solution of the fundamental 

differential equations that describe the physics 

of flow and transport in a porous subsurface 

media, after the latter has been put into a 

conceptual model-form, using geological and 

hydro-geological information on the aquifer 

system. In spite of, up-to-date, uncountable 

applications of numerical groundwater 

modeling to all kind of groundwater aquifer 

systems across the world, mostly with the goal 

to forecast the behavior of groundwater- flow 

or - levels in an aquifer under time-varying 

external stresses, such as, for example, 

increased pumping or changing aquifer 

recharge due to climate change, practical 

groundwater modeling can still be a 

formidable task (Sirhan and Koch 2013). This 

is less due to an inadequate mathematical 

translation of the deterministic physical flow 

system, but more due to an inadequate 

description of  the latter itself, as geological, 

and hydro-geological data on the aquifer, as 

well as groundwater data, is often missing or 

fraught with errors (Sirhan and Koch 2013). 

To overcome some of these deficits of 

physically-based numerical models in poorly 

constrained real applications, alternative 

optimization methods have been suggested 

over the last two decades. The application of 

artificial intelligence (AI) for the analysis of 

data, especially long-series and large-scale 

data has become increasingly popular in 

different fields of engineering. Since the 

1990s, artificial neural networks (ANNs), 

which are widely known as a branch of AI, 

have been gradually used to make hydrological 

predictions, which has been used widely over 

this period to describe the behavior of dynamic 

hydrologic systems in general (Smith and Eli 

1995, Dibike et al. 1999, Govindaraju 2000, 

Maier and Dandy 2000, De Vos and Rientjes 

2005, Wang et al. 2006, Chuanpongpanich et 

al. 2012), such as the responses of surface 

water runoff or stream flow to rainfall and 

groundwater levels fluctuation, i.e. ANN have 

been used as an alternative tool to traditional 

deterministic rainfall-runoff modeling (Sirhan 

and Koch 2013) and in forecasting 

groundwater levels fluctuation (Coulibaly et 

al. 2001, Affandi and Watanabe 2007, Affandi 

et al. 2007, Daliakopoulos et al. 2005, 

Lallahem et al. 2005, Nayak et al. 2004, Feng 

et al. 2008, Chitsazan et al. 2012, Mohanty et 

al. 2013). The results of studies performed by 

researchers such as (Ioannis et al. 2011, Sethi 

et al. 2010, Jothiprakash and Sakhare 2008, 

Bhattacharjya and Datta 2005) clearly showed 

that ANN can be used to predict water table 

level fluctuation and they used various 

algorithms and transport functions. In all of the 

studies that used ANN method in forecasting, 

the most suitable architecture of the ANN was 

determined by trial and error. So, the purpose 

of this study is to forecast the groundwater 

level fluctuation using ANN method in Kashan 

aquifer. For this purpose, to investigate the 

effects of hydrological, meteorological and 

human factors on the dynamic groundwater 

levels in the Kashan aquifer, we should 

forecast the results on the basis of Multiple 

Layer Perceptron (MLP) and Radial Basis 

Function (RBF) carried out by use of various 

education algorithm and transport function 

with trial and error method. 

2. Materials and methods 

The study area (longitude: 51°32'to 51°03'E, 

latitude: 33°27'to 34°13'N) is located in 

Kashan plain, Esfahan province, Iran (Fig.1). 

The Kashan plain has an area of 1570.23 km2. 

The study area is located in a valley running 
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from northwest to southeast. In this study, 

monthly groundwater level data were obtained 

from36 monitoring wells at different locations. 

Monitoring of groundwater level was carried 

out for a period of 20 years (1990 to 2010) 

(252 month). The selection of monitoring 

wells was based on their geological 

formations, land use and land cover. Based on 

Dumbarton’s climate classification method, 

this area is a part of the arid and desert 

regions. The annual evaporation ranges from 

2100 to 3000 mm. The average of annual 

humidity is about 42 percent. Maximum and 

minimum temperatures are +48°C and -5°C, 

respectively. Annual rainfall is varied spatially 

(75 mm in the east to 300 mm in the southwest 

mountains). The Kashan aquifer experiences 

an average annual loss of about 0.57 meter and 

a critical negative budget (about -32 ×106 m3 

annual discharge). The locations of study wells 

are shown in Figure (1). In this study the 80 

percent of data were used for training, and the 

5 and 15 percent of the remained data were 

used for validation and testing of the models 

respectively.  

 
Fig. 1: Map of Piezometric and exploitation wells in the Kashan plain aquifer. 

 

2.1. Data clustering 

A statistical cluster analysis was conducted 

using all data sets of groundwater level time 

series. Cluster analysis is a statistical tool to 

classify the true groups of data according to 

their similarities to each other. Clustering 

methods (K-mean, hierarchical) commonly 

require variables that are similar in unit to be 

normalized at 0-1 (Bender et al. 2001) so that 

the clustering results are more appropriate 

(Alpaydin 2004). The hierarchy method was 

used based on Vard algorithm on the 

normalized groundwater level time series. 

These combined cluster density results were 

used to draw schematics of the approximate 

cluster size (Fig. 2). In these diagrams, the X 

axis is the number of piezometers minus one 

and the Y axis is a coefficient acquired using 

hierarchical method. Fig. 2 was used to find 

the point considered to be its land mark. The 

difference between the amount of the 
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landmark over the X-axis and the number of 

piezometers is the approximate clustercount. 

This number is entered into the K-mean 

method to determine which piezometer is 

placed in which cluster (Zare Chahuki 

2010).In this study, our data were grouped 

into 5 clusters.  

Figure (3) indicates the time series of the 

variables. The primary y-axis is including X4, 

X5, X6, X7, X8, X9 and Y, and the secondary 

y-axis is including X1, X2 and X3 that were 

used for modeling the fluctuations of the 

groundwater level.  

2.2. Artificial Neural Networks 

ANNs are combinations of parallel 

exploitations of simple elements that were 

inspired by the neural system. ANN can be 

trained to do a practical function by regulating 

the weight relations between elements. Using 

actual data guides ANN output closer to the 

determined goal output to train the artificial 

neural network (Fig.4). The networks are then 

adjusted based on the comparison between the 

network and goal outputs until they are equal 

(Tassaloti 2003). 

2.3. Models and network structures 

In this study, Multi-Layer Perceptron 

(MLP) and Radial Basis Function (RBF) 

models were used to simulate water table 

fluctuations. The hyperbolic tangent transfer 

functions, linear hyperbolic tangent and 

sigmoid were used. Also used in group 

training were the Momentum algorithm, 

Levenberg-Marquardt, Quick Prop and Delta-

Bar-Delta. 

2.4. Selecting the best network 

configuration 

The basis of teaching neural networks is 

trial and error, so the best network 

configuration is the one with a number of 

variations of hidden layers. Their neurons, 

activation functions, learning algorithms and 

replication of training are used to estimate the 

outcome parameter (Izadi et al. 2007). The 

basis of decision-making was to choose the 

best network in each implementation of mean 

square error (MSE) in Eq. (1), normalized 

mean square error (NMSE) in Eq. (2), root 

mean square error (RMSE) in Eq. (3), the 

correlation coefficient (R) and coefficient of 

determination (R2) in Eq. (4) and adjusted R2 

in Eq. (5): 
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Where n is the data count, iq
 is the number 

of observations, iqˆ  is the estimated mean 

modeling output observation ( q ) and 

calculation ( q̂ ), V is the specific output 

variance, and P the number of neurons in the 

model entrance layer. 

To simulate the quantitative status of the 

aquifer, the water depth for each cluster 

piezometer was used as an output model. 

Model entries and outputs were shown in 

table (1). About 85% of the data (213 month) 

were used to educate the network and 15% of 

the data (37 month) for the test. Afterward, 

each cluster was modeled using the MLP and 

RBF model for 48 architectures. After the best 

model was determined based on MSE, RMSE, 

NMSE, R, R2 and adjusted R2 statistical 

factors, model sensitivity to model entries was 

determined. The goal of analyzing model 

sensitivity was to create an effective model 

with fewer entries and simpler structures. 
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Table 1: Input and output parameters in groundwater level fluctuation modeling 

Factors 
Variable Range of 

Values 
 

 

 

 

Inputs 

 

Rainfall ( mm/day) 

 

Fin station (X1) 0-129 

Bonrud station (X2) 0-173.5 

Mohammad abad station (X3) 0-105.5 

stream-flow 

discharge(lit/s) 

Ghohrud station(X4) 25-741 

Bonrud tation (X5) 11-784 

Evaporation(mm/day) Mohammad abad station (X6) 1.17-603.5 

Fin station (X7) 1.17-451.9 

Spring discharge(lit/s) Cheshme Soleymanie (X8) 160-325 

Aquifer 

discharge(Mm3) 

Exploitation wells in study area(figure 1) 

(X9) 

0.03-56 

Zayanderud 

discharge(lit/s) 

The water source that transport from other 

basin (X10) 

50-280 

Outputs Groundwater depth (m) Piezometric wells in study area(figure 1) (Y) 13.5-87.28 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Initial cluster count using hierarchy analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig .3: Time series of variable which used for modeling      

 

 

 



 
48 Mirzavand, M et al. / Journal of Applied Hydrology. 1  (2)  (2014) 43-53 

  

 

 

3. Results and Discussion 

Clustering 36 piezometers resulted in 5 clusters. 

To find the best model for each cluster, 48 

architectures were analyzed using the MLP and 

RBF models. Optimum modeling for each cluster 

is shown in Table 2. 

The results of the comparison of simulated depth 

versus water depth using MLP are shown in Fig. 

5a,b,c,d,e. The result of sensitive analyze is show 

in Fig.6. The aim of the sensitive analyze is to 

find the most important parameters in modeling.     

Clustering Piezometric wells allows access to 

relatively similar societies and samples from 

water depth fluctuations. Five cluster models 

allowed modeling of 5 cluster groups instead of 

36 piezometers, decreasing the number of 

modeling needed, saving time and simplifying the 

analysis of the results. 

Fig. 4. Developed ANN Network for the present study 
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Fig. 5a, b, c, d, e :  Simulated water table depth and actual depth using MLP model for cluster 1, 2, 3, 4 and 5. 
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The initial ANN-model trials were formatted 

using all ten input variables (neurons). From 

the 252 observed water levels, 80 percent of 

data were used for training, and the 5 and 15 

percent of remind data were used for 

validation and testing of the models, 

respectively. Practically,  the  training  of  the  

network  consists  of  a  forward  propagation  

of  the  inputs  and  a backward  propagation  

of  the  error. In  the forward procedure,  the 

effect  of  an  applied activity  pattern  at  the  

input  layer  is  propagated  through  the  

network  layer  by  layer.  During network  

training,  the  data  are processed  through the 

ANN,  and  the  connection  weights  are 

adjusted adaptively, until a minimum 

acceptable error is achieved between the 

predicted and the observed output. Both, 

Multi-Layer Perceptron (MLP) and Radial 

Basis Function (RBF) ANN models were 

examined.  Many  different  models  with  

different  numbers  of  hidden  layers  and  

different transport functions were tested. To 

that advantage, an intelligent problem solver 

(IPS) was developed to determine the model 

constraints including optimization time, 

network type and the number of hidden units, 

and paying attention to the relationships 

among all input variables. Astonishingly, the 

established MLP network with a hyperbolic 

tangent Axon in clusters 1, 2 and 3, a sigmoid 

in cluster 4 and linear hyperbolic tangent Axon 

transport function turned out to be better than a 

RBF- network.  

Consequently, the latter ANN-option was not 

followed up further. In  Fig. 5a,b,c,d,e  the  

simulated  water  depth obtained  for  the  

MLP  model  in cluster 1 to 5 are  plotted 

versus the observed water depth. In addition, 

the regression between the observed and 

simulated depth were shown the good 

performance for the MLP model. The  

Adjusted R2  for cluster 1 to 5 (0.86, 0.88, 

0.93, 0.55 and 0.79), the  performance of  this 

initial ANN model can be considered as a very 

good standard (Jothiprakash and Sakhare 

2008, Affandi and Watanabe 2007, Yari 2008, 

Chitsazan et al. 2012, Mirarabi and Nakhae 

2008, Daliakopoulos et al. 2005). 

The results showed that the types of Education 

Algorithm and Transport Function are very 

important in modeling. So, in this study we use 

four Education Algorithms and Transport 

Functions, as we saw in Table 2, by change of 

data, Education Algorithm and Transport 

Function, the best model can be changed. In 

60, 20 and 20 percent of models, Delta-Bar-

Delta, Momentum and Levenberg-Marquardt 

were best Education Algorithms, respectively. 

In 60, 20 and 20 percent of models, hyperbolic 

tangent Axon, Sigmoid Axon and Linear 

hyperbolic tangent Axon were best Transport 

Function, respectively. 

 

 

Fig: 6. Model output sensitivity for input parameters in all clusters based on MLP model 
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Table. 2: Properties of the optimum models in modeling using MLP and RBF model and five clusters 
Cluster Model Number out 

of 48 

models 

Hidden 

layer 

count 

Network 

configuration 

Epoch Education 

Algorithm 

Transform 

function 

First MLP 23 2 5-4 307 Delta-Bar-

Delta 

hyperbolic 

tangent Axon RBF 23 2 5-4 1014 

Second MLP 4 2 4-4 609 Delta-Bar-

Delta 

hyperbolic 

tangent Axon RBF 23 2 5-4 818 

Third MLP 13 2 4-3 413 Momentum hyperbolic 

tangent Axon RBF 13 2 4-3 105 

Fourth MLP 30 2 7-3 172 Levenberg-

Marquardt 
 

Sigmoid Axon 
RBF 46 2 4-3 295 Delta-Bar-

Delta 

Fifth MLP 40 2 4-3 77 Delta-Bar-

Delta 
Linear 

hyperbolic 

tangent Axon RBF  44 2 5-4 473 Quick Prop 

MLP 

 

Cluster 

 

 

Train 

 

MSE 

 

 

NMSE 

 

 

R 

 

R2 

 
 

Test 

 

MSE 

 

 

NMSE 

 

 

RMSE 

 

R 

 

 

R2 

 

Adjusted 

R2 
 

First 0.03 0.12 0.93 0.87 0.006 0.12 0.07 0.94 0.88 0.86 

Second 0.01 0.11 0.94 0.89 0.001 0.10 0.03 0.95 0.90 0.88 

Third 0.04 0.13 0.93 0.86 0.004 0.05 0.06 0.97 0.94 0.93 

Fourth 0.0001 0.008 0.99 0.01 0.01 0.45 0.10 0.80 0.64 0.55 

Fifth 0.04 0.15 0.91 0.82 0.005 0.15 0.07 0.91 0.82 0.79 

RBF 

 

Cluster 
Train Test 

 

MSE 

 

 

NMSE 

 

 

R 

 

R2 

 
 

 

MSE 

 

NMSE 

 

 

RMSE 

 

R 

 

 

R2 

 

Adjusted 

R2 
 

First 0.05 0.19 0.90 0.81 0.01 0.17 0.11 0.94 0.88 0.86 

Second 0.02 0.18 0.90 0.81 0.002 0.13 0.04 0.93 0.87 0.84 

Third 0.05 0.17 0.91 0.82 0.01 0.13 0.10 0.93 0.87 0.85 

Fourth 0.05 0.67 0.57 0.32 0.01 0.65 0.12 0.62 0.38 0.30 

Fifth 0.08 0.32 0.82 0.67 0.008 0.27 0.08 0.86 0.73 0.66 

The sensitivity analysis from the different 

clusters based on the MLP model (Fig.6) 

shows that, Zayanderud transitional discharge, 

Soleimanie spring discharge, aquifer 

withdrawal discharge, Qohroud stream 

discharge, and rainfall from the Ghohrud 

watershed are the most important factors 

affecting on water depth fluctuations. Fin 

station and Bonrud rainfall had little effect on 

water depth fluctuations for area wells. 

Additionally, evaporation did not have a 

significant effect on the groundwater because 

the groundwater depth had dropped to below 5 

m in the entire study area, which was too deep 

for evaporation to have much effect. There 

was no significant effect for evaporation in the 

simulation at the Muhammadabad and Fin 

stations. The results of this study and studies 

by Jothiprakash and Sakhre (2008), Ioanis et al 

(2011), Affandi and Watanabe (2007) and 

Chitsazan et al (2013) artificial neural network 

models showed high accuracy in simulating 

and predicting groundwater level fluctuations 

4. Conclusion 

The aim of this study was to assess of the feed 

forward neural network as a possible method 

for groundwater level forecasting in Kashan 

plain aquifer, Esfahan province, in the center 

of Iran. Rainfalls, rivers, transitional water 

resources from other basin and spring 

discharges (as aquifer recharge components), 

evaporation, and aquifer discharges (borehole 
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wells) (as aquifer discharge components)  were 

taken as inputs, and the groundwater levels of 

Kashan plain aquifer  in five clusters (36 

Piezometric well) were the outputs. 

At first, the available data were divided into 

five clusters, according to hydrogeological, 

hydrological, meteorological and human 

factors on the dynamic groundwater levels 

characteristics of the Kashan plain. A back 

propagation (BP) neural network model with 

Momentum, Levenberg-Marquardt, Quick 

Prop and Delta-Bar-Delta algorithms have 

been studied in different hidden layers. The 

number of neurons on hidden layers also 

varied to optimize network. Often, the best 

results were obtained from the Delta-Bar-Delta 

and Levenberg-Marquardt algorithms. Based 

on statistical indices (R, R2, Adjusted R2, 

MSE, NMSE and RMSE), the best networks 

were determined for each hydrogeological 

cluster (Table.2). To verify the 

hydrogeological clusters and their neural 

networks, new observation data from 

September 1990 to March 2010 were 

introduced to the networks .Then, simulated 

groundwater levels were compared with actual 

groundwater of all clusters in the study area. 

The results were shown a good fit between real 

and calculated data by considering all clusters. 

Consequently, the study shows that training 

the artificial neural network with respect to 

effect of hydrological, meteorological and 

human factors on the dynamic groundwater 

levels gives good results. 
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