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coherent modules. Some applications are then given, in particular the (J-)coherence of
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M B
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is characterized whenever BM is flat.
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1. Introduction and Preliminaries

All the rings we consider will be associative rings with 1 �= 0 and all the modules
will be unital. Unless otherwise mentioned we will be working with right modules.
For any ring R, the category of right R-modules is denoted by Mod-R. Throughout
the paper, A and B will denote two (arbitrary but fixed) rings, and M stands for a
left B- right A-bimodule. We let T denote the set of formal triangular matrices of
the form

[a 0
m b

]
; a ∈ A, b ∈ B and m ∈ M , which is a ring under componentwise

addition and multiplication given by the rule:

[
a 0

m b

][
a′ 0

m′ b′

]
=

[
aa′ 0

ma′ + bm′ bb′

]
.

This ring T is known as a formal triangular matrix ring. These rings were initially
used as sources of examples in ring theory, showing unsymmetric properties, such
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as being right, but not left, hereditary. Goodearl in his book [5] constructed new
examples of nonsingular rings by means of formal triangular matrix rings, and gave
necessary and sufficient conditions for such rings to be right hereditary by first
characterizing their projective one sided ideas; see [5, Chap. 4, Sec. A]. It should
be pointed out that the formal triangular matrix rings have applications in the
subject of representing rings in matrix forms [1]. The ordinary lower triangular
matrix ring Tn(R) over a ring R is a particular case of a formal triangular matrix
ring (see the proof of Corollary 4.5), and even for the case n = 2, some interesting
questions have been raised. For example, the Auslander–Reiten question asks when
T2(R) is of finite representation type. Recall that a left and right Artinian ring with
only a finite number of isomorphism classes of indecomposable finitely generated
modules is said to be of finite representation type. The above question has been
dealt with in [14]. An associative ring with identity is called right pure semisimple
if it is left Artinian and every right module is a direct sum of modules of finite
length. It is well known that a ring R is right and left pure semisimple if and only
if R is of finite representation type. The pure semisimple conjecture asserts that a
right pure semisimple ring must be of finite representation type. Possible counter
examples to pure semisimple conjecture were investigated by Ivo Herzog [10], who
proved the following deep result: If R is a counter example, then there are division
rings F and G and a simple G–F -bimodule GBF such that the ring

(F 0
B G

)
is a

counter example. This “minimal” counter example motivated the study of purity
over triangular matrix rings, and because of its relation to the pure semisimple
conjecture, the problem of full description of indecomposable modules over potential
minimal counter examples was considered; see for example [11, 15, 16]. In this paper
we aim to complement the knowledge of purity over lower triangular matrix rings
by studying pure projective modules, pure injective modules and locally coherent
modules over a formal triangular matrix ring. To some extent, the general module
theory over T has been investigated in [2, 7–9, 12, 13].

In the rest of this introduction some notations that will remain fixed throughout
the paper are mentioned. We shall adapt the well-known description of T -modules
from [5] which is afforded by the equivalence of category Mod-T with a category
Ω, described below.

Let Ω denote the category whose objects are triples (X, Y )f where X ∈ Mod-A,
Y ∈ Mod-B and f : Y ⊗B M → X is a map in Mod-A. If (X, Y )f and (X ′, Y ′)g

are objects in Ω, the morphisms from (X, Y )f to (X ′, Y ′)g in Ω are pairs (ϕ1, ϕ2)
where ϕ1 : X → X ′ is a map in Mod-A, ϕ2 : Y → Y ′ is a map in Mod-B satisfying
the condition ϕ1f = g(ϕ2 ⊗ 1M ) where 1M denotes the identity map on M . It is
well known [6] that the category Mod-T is equivalent to the category Ω. The right
T -module corresponding to the triple (X, Y )f is the additive group X ⊕Y with the
right T -action given by

(x, y)

[
a 0

m b

]
= (xa + f(y ⊗ m), yb).
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Conversely if VT is given then by using the idempotents e1 =
[1 0
0 0

]
, e2 =

[ 0 0
0 1

]
and ring identifications e1T ≡ A and Te2 ≡ B, the triple corresponding to V is
constructed. It is (X, Y )f where X = V e1, Y = V e2 and f : V e2 ⊗B M → V e1 is
given by f(ve2 ⊗ m) = ve2

[0 0
m 0

]
= v

[0 0
m 0

]
e1.

Thus, the regular module TT corresponds to (A ⊕ M, B)f where f is the map
B⊗B M → A⊕M given by f(b⊗m) = (0, bm). It is convenient to view such triples
as T -modules, and the morphisms between them as T -homomorphisms. Often the
map f occurring in a triple will be clear from the context. This is particularly
evident for TT and its submodules. If (ϕ1, ϕ2) : (X, Y )f → (X ′, Y ′)g is a map in
Ω, then it is clear that (ϕ1, ϕ2) is injective (respectively, surjective) if and only if
ϕ1 and ϕ2 are injective (respectively, surjective). Let V = (X, Y )f be a T -module.
Any T -submodule of V corresponds to a triple (X ′, Y ′)f ′ where X ′ is a submodule
of XA, Y ′ is a submodule of YB such that f ′ = f(ι⊗ 1M) maps (Y ′⊗B M) into the
submodule X ′ where ι : Y ′ → Y is the natural inclusion. Also it is easy to verify
that (X, Y )f is a finitely generated T -module if and only if (X/Im f)A and YB are
finitely generated modules. A detailed description of the factor modules of VT is
given in [9]. We now introduce the following ideals of T :

I =

[
0 0

M B

]
; P =

[
A 0

M 0

]
.

Throughout, these ideals and the following notation will be retained. If V is a T -
module corresponding to (X, Y )f , we let: f̃ : Y → HomA(M, X); f̃(y)(m) = f(y ⊗
m) for y ∈ Y , m ∈ M . Note that f̃ is a B-homomorphism. Moreover, we often write
V M for the T -submodule V

[0 0
M 0

]
of V . It is easy to verify that V/VI � X/Im f

in Mod-A, and V/VP � Y in Mod-B.
Goodearl in [5, p. 114] has introduced some useful adjoint pairs of functors, one

of which in our notation is the following:

(J23,P3) : Mod-B → Mod-T,

J23(N) = (N ⊗B M, N)1N⊗BM , P3((X, Y )f ) = Y.

For future use we introduce two new adjoint pairs below. Define

K : Mod-A → Mod-T by K(Z) = (Z, HomA(M, Z))f ,

f(α ⊗ m) = α(m) ∀α ∈ HomA(M, Z), m ∈ M ;

and K(g) = (g, g∗)∀ g : ZA → Z ′
A, where g∗: HomA(M, Z) → HomA(M, Z ′) is the

left multiplication map by g. Also, define Γ: Mod-T → Mod-A by Γ[(X, Y )f ] = X

and Γ[(θ1, θ2)] = θ1. It is left to the reader to verify that K and Γ are functors and
the map λ(V,Z) : HomA(Γ(V ), Z) → HomT (V,K(Z)) defined by λ(V,Z)(θ) = (θ, θ∗f̃)
∀ V = (X, Y )f ∈ Mod-T , Z ∈ Mod-A, is a bijection and natural in each variable.
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Therefore, (Γ,K) is an adjoint pair. The other adjoint pair is as follows: (F, G) :
Mod-T → Mod-(A⊕B) where F [(X, Y )f ] = (X/Im f)⊕Y and G(C⊕D) = (C, D)0.
Here we have used the fact that any right module over the ring A⊕B is of the form
C ⊕ D with suitable CA and DB.

2. Pure Monomorphisms

Let R be any ring and W be an R-module. Suppose U ≤ WR. Then U is called
a pure submodule of W if for any left R-module H , the additive homomorphism
ι ⊗ 1H : U ⊗R H → W ⊗R H is one to one where ι : U → W is the inclusion
map. It is well known that U is a pure submodule of W if and only if any system
of equations

∑n
i=1 xiaij = uj ∈ U (j = 1, . . . , m, aij ∈ R) which is solvable in

W , is also solvable in U . A short exact sequence 0 → U
f→ W

g→ K → 0 is called
a pure exact sequence if Im f is a pure submodule of W . In this case f is called
a pure monomorphism. An R-module N is called pure projective (pure injective)
if it is projective (injective) relative to any pure exact sequence. For some useful
information on these concepts see [3].

Lemma 2.1. (i) If R
ε→ S is a ring homomorphism and N is a pure submodule of

some S-module L, then N is a pure R-submodule of L with R-module structure
induced by ε.

(ii) Let X ′ ≤ XA and Y ′ ≤ YB. Then X ′ and Y ′ are pure submodules of XA

and YB respectively, if and only if (X ′ ⊕ Y ′) is a pure (A ⊕ B)-submodule of
(X ⊕ Y ).

(iii) Let (X ′, Y ′)f ′
(ϕ,θ)−−−→ (X, Y )f be a homomorphism in Mod-T.

If f ′ = 0 then f̃ θ = 0. The converse is true provided that kerϕ = 0.

(iv) Let R and S be rings, NR
f→ LR be a pure monomorphism and RWS be a

bimodule. Then N ⊗R W
f⊗1−−−→ L ⊗R W is a pure monomorphism in Mod-S.

Proof. (i)–(iii) are proved by routine arguments.
(iv) Since f is pure, f ⊗ 1 is a monomorphism, and it is a pure monomorphism

by the associativity of tensors.

Proposition 2.2. Let (X ′, Y ′)f ′
(ϕ,θ)−−−→ (X, Y )f be a T -module homomorphism.

(i) If (ϕ, θ) is a pure monomorphism, then ϕ and θ are pure monomorphisms in
Mod-A and Mod-B, respectively.

(ii) Suppose f ′ = 0. If ϕ and Y ′ θ→ ker f̃ are pure monomorphisms in Mod-A and

Mod-B, respectively, then (X ′, Y ′)0
(ϕ,θ)−−−→ (X, ker f̃)0 is a pure monomorphism

in Mod-T.
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Proof. (i) Since (ϕ, θ) is one to one, ϕ and θ are so. By hypothesis the image
of ((ϕ, θ) is a pure T -submodule of (X, Y )f . Using the ring homomorphism
(a, b) → [a 0

0 b

]
from A⊕B to T and Lemma 2.1(i), we can deduce that (Imϕ⊕

Im θ) is a pure (A⊕B)-submodule of (X ⊕Y ). The proof is now completed by
Lemma 2.1(ii).

(ii) By Lemma 2.1(iii), Im θ ⊆ ker f̃ . Since f(y ⊗M) = 0 for all y ∈ ker f̃ , we have
(X ⊕ ker f̃)

[ 0 0
M 0

]
= 0. Hence, (Imϕ⊕ Im θ) is a T/M -submodule as well as an

(A ⊕ B)-submodule of (X ⊕ ker f̃). Therefore, by hypothesis (X ′, Y ′)0
(ϕ,θ)−−−→

(X, ker f̃)0 is a pure monomorphism in Mod-T/M by Lemma 2.1(ii). The proof
is completed by Lemma 2.1(i).

Proposition 2.3. Let (X, Y )f be a T -module, X ′ be a pure submodule of XA and
Im f ≤ X ′. Then (X ′, Y )f is a pure submodule of (X, Y )f .

Proof. Suppose that
∑n

j=1(xj , yj)Aij = (x′
i, vi) ∈ (X ′ ⊕ Y ) where Aij =[ aij 0

mij bij

] ∈ T and (xj , yj) ∈ (X ⊕ Y ) (i = 1, . . . , m). Then we have
∑n

j=1 xjaij +
f(yj ⊗ mij) = x′

i and
∑n

j=1 yjbij = vi (i = 1, . . . , m). Since X ′ is a pure sub-
module of X and Im f ≤ X ′, there are u1, . . . , un ∈ X ′ such that

∑n
j=1 ujaij =

x′
i −

∑n
j=1 f(yj ⊗ mij). It follows that

∑n
j=1(uj , yj)Aij = (x′

i, vi), and so (X ′, Y )f

is a pure submodule of (X, Y )f .

Corollary 2.4. Let (X, Y )f be a T -module. If either A is a regular ring or XA is
semisimple, then (Im f, Y )f is a pure T -submodule of (X, Y )f .

Proof. In any case, Im f is a pure submodule of XA. Hence the result is true by
Proposition 2.3.

3. Pure Projectivity

Following [17, 5.25] a module MR is called finitely presented if MR is finitely gen-
erated and for every exact sequence 0 → K → L → M → 0 of R-modules with L

finitely generated, KR is finitely generated. By [3, Theorem 18-2.10], a module is
pure projective if and only if it is isomorphic to a direct summand of a direct sum
of finitely presented modules. The following result contains some facts that we shall
use in the sequel.

Proposition 3.1. (i) A module MR is finitely presented if and only if it is finitely
generated pure projective, if and only if there exists an exact sequence 0 → K →
R(n) → M → 0 for some n ∈ N and K finitely generated.

(ii) Let X be an R-module and H be an ideal of R such that H is a finitely generated
right ideal and XH = 0. Then X is a finitely presented R/H-module if and
only if it is finitely presented as an R-module.
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Proof. (i) This follows by [17, 25.4 and 25.1(iii); 3, Theorem 18-2.10].
(ii) Let X be a finitely presented R/H-module. Then there exists an exact sequence

0 → K → (R/H)(n) → X → 0 in Mod-R/H such that K is a finitely generated
R/H-module. Clearly K is finitely generated as an R-module. Since now HR is
finitely generated, R/H and so (R/H)(n) are finitely presented R-modules. It
follows that XR is finitely presented [17, 25.1(i)]. The converse is true because
any finitely generated R/H-module is also a finitely generated R-module.

Let R be a ring and H be a proper ideal of R. If K
f→ L is an R-homomorphism,

we use f̄ : K/KH → L/LH for the natural R/H-homomorphism defined by f̄(k +
KH) = f(k) + LH .

Proposition 3.2. Let H be a proper ideal in the ring R.

(i) If WR is pure projective then W/WH is a pure projective R/H-module.
(ii) If H is a finitely generated right ideal and W is a pure projective R/H-module

then WR is pure projective.

Proof. (i) Let 0 → K
ϕ→ L

θ→ N → 0 be a pure exact sequence in Mod-R/H

and f : W/WH → N be an R/H-homomorphism. By Lemma 2.1(i), the above
sequence is also a pure exact sequence in Mod-R. Consider the homomorphism
fπ : WR → NR where π : W → W/WH is the natural projection. By the pure
projective condition on WR, there exists an R-homomorphism g : W → L such
that fπ = θg. Since now LH = 0, we have θḡ(w̄) = f(w̄) for all w̄ ∈ W/WH ,
proving that W/WH is a pure projective R/H-module.

(ii) This is clear by [3, Theorem 18-2.10] and Proposition 3.1.

Corollary 3.3. Suppose that H is a proper ideal in the ring R such that HR is
finitely generated and W is an R-module with WH = 0. Then W is a pure projective
R/H-module if and only if it is a pure projective R-module.

Corollary 3.4. Let V = (X, Y )f be a T -module. Then (X/Im f)A is pure pro-
jective (respectively, finitely presented) if and only if (V/VI )T is pure projective
(respectively, finitely presented).

Proof. Note that I =
[0 0
0 1

]
T is a finitely generated right ideal in T and A � T/I.

Thus, the result is obtained by Corollary 3.3, Proposition 3.1(ii) and the fact that
X/Im f � V/VI in Mod-A.

Lemma 3.5. Let V = (X, Y )f be a T -module. If f is a monomorphism in Mod-A,

then VI � (Y ⊗B M, Y )1(Y ⊗BM) in Mod-T.

Proof. Note that VI = (X, Y )
[ 0 0
M B

]
= (Im f, Y ). Now it is easy to verify that

(Im f, Y )f � (Y ⊗B M, Y )1(Y ⊗BM) in Mod-T.
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Theorem 3.6. If (X, Y )f is a pure projective module in Mod-T then YB and
(X/Im f)A are pure projective modules. The converse is true provided that f is a
pure monomorphism.

Proof. Assume V = (X, Y )f is pure projective. Applying Proposition 3.2(i) to
H = I (respectively, H = P ), we deduce that (V/VI )T/I (respectively, (V/V P )T/P )
is pure projective. It follows that (X/Im f)A and YB are pure projective modules.

Suppose now (X/Im f)A and YB are pure projective and f : Y ⊗B M →
X is a pure monomorphism in Mod-A. Since Im f is a pure A-submodule
of X , VI = (Im f, Y )f is a pure T -submodule of V by Proposition 2.3.
By Corollary 3.4, (V/VI )T is pure projective. Thus the pure exact sequence
0 → VI → V → V/VI → 0 splits. Hence, in view of [3, Theorem 18-2.10], it is
enough to show that VI is a pure projective T -module. By Lemma 3.5, we
shall show that (Y ⊗B M, Y )1(Y ⊗BM) is a pure projective T -module. Let 0 →
(X ′, Y ′)g

(ϕ1,ϕ2)−−−−−→ (X ′′, Y ′′)h
(θ1,θ2)−−−−→ (X ′′′, Y ′′′)k → 0 be a pure exact sequence

and (Y ⊗B M, Y )1(Y ⊗BM)

(α1,α2)−−−−−→ (X ′′′, Y ′′′)k be a homomorphism in Mod-T . By

Proposition 2.2, 0 → Y ′ ϕ2→ Y ′′ θ2→ Y ′′′ → 0 is a pure exact sequence in Mod-B.
Since Y

α2→ Y ′′′ is a B-homomorphism and YB is pure projective by hypothesis, there
exists Y

γ2→ Y ′′ such that θ2γ2 = α2. Define γ1 : Y ⊗B M → X ′′ by γ1 = h(γ2⊗1M ).
The map (γ1, γ2) : (Y ⊗B M, Y )1(Y ⊗BM) → (X ′′, Y ′′)h is a homomorphism in Mod-
T . Also we have the following commutative diagrams

Y ′′ ⊗B M
h−→ X ′′

θ2⊗1M ↓ ↓ θ1

Y ′′′ ⊗B M
k−→ X ′′′

Y ⊗B M
1Y ⊗BM−−−−−→ Y ⊗B M

α2⊗1M ↓ ↓ α1

Y ′′′ ⊗B M
k−→ X ′′′

Thus, θ1γ1 = θ1h(γ2⊗1M) = k(θ2⊗1M)(γ2⊗1M) = k(θ2γ2⊗1M) = k(α2⊗1M ) =
α1. Hence (θ1, θ2)(γ1, γ2) = (α1, α2), proving that VI is a pure projective T -module.
Therefore, VT is pure projective.

Corollary 3.7. Let (X, Y )f be a T -module and f be an A-isomorphism. Then
(X, Y )f is pure projective in Mod-T if and only if YB is pure projective.

Corollary 3.8. If (X, Y )f is a finitely presented T -module then (X/Im f)A and
YB are finitely presented. The converse is true provided that f is monic.

Proof. If V = (X, Y )f is finitely presented, then by Proposition 3.1, it is finitely
generated pure projective. Thus (X/Im f)A and YB are finitely presented by
Theorem 3.6.
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Conversely assume (X/Im f)A and YB are finitely presented and f is monic.
Since f is monic, the T -module VI is isomorphic to (Y ⊗B M, Y )1Y ⊗BM by
Lemma 3.5. Since now Y is a finitely generated pure projective B-module, (Y ⊗B

M, Y )1Y ⊗BM is also a finitely generated pure projective T -module by Lemma 3.7.
Thus VI is a finitely presented T -module by Proposition 3.1. On the other hand,
by hypothesis and Corollary 3.4, (V/VI )T is finitely presented. Therefore, V is a
finitely presented T -module by [17, 25.1(ii)].

Corollary 3.9. The functors J23, P3 and F preserve pure projective modules.

Proof. This is obtained by Theorem 3.6 and the fact that all modules over (A ⊕ B)
have the form X ⊕ Y for some X ∈ Mod-A, Y ∈ Mod-B with pointwise module
structure so that X ⊕ Y is pure projective if and only if XA and YB are so.

Remark 3.10. Suppose B is a right Noetherian ring and MA is not finitely gen-
erated. Then the T -module T/P that corresponds to (X, Y )f where X = 0, Y = B

and f = 0, is not finitely presented (pure projective) because PT is not finitely
generated. But clearly (X/Im f)A and YB are finitely presented (pure projective).
This shows that the converse of Theorem 3.6 is not true in general, and the functor
G does not necessarily preserve pure projective modules.

4. Locally Coherent Modules and the Coherence of T

We now investigate the coherent T -modules. Following [17, 26.1], a module NR is
called locally coherent if every finitely generated submodule of N is finitely pre-
sented. A module is called coherent if it is finitely generated and locally coherent.
A ring R is called right coherent if RR is coherent. It is well known that if a ring R

is either right Noetherian or regular, then R is a right coherent ring. If (X, Y )f is a
T -module, Y1 ≤ YB and ι : Y1 → Y is the inclusion map, then we have the natural
A-module homomorphism ι ⊗ 1M : Y1 ⊗B M → Y ⊗B M , and in this case we set
f1 = f(ι ⊗ 1M ). It is easy to verify that for any A-submodule K of X containing

Im f1, the natural map (K, Y1)f1

(1,1)−→ (X, Y )f is a monomorphism in Mod-T .

Theorem 4.1. If (X, Y )f is a locally coherent module in Mod-T then YB is
locally coherent and for every finitely generated submodule Y1 ≤ YB , the module
(X/Im f1)A is locally coherent. The converse is true provided that BM is flat and
f is monic.

Proof. Let (X, Y )f be a locally coherent T -module, Y1 be a finitely generated sub-
module of YB and K be a submodule of XA containing Im f1 such that (K/Im f1)A

is finitely generated. Then (K, Y1)f1 is a finitely generated T -submodule of (X, Y )f ,
hence (K, Y1)f1 is finitely presented by our assumption. This shows that (K/Im f1)A

and (Y1)B are finitely presented modules by Corollary 3.8, proving that (X/Im f1)A

and (Y1)B locally coherent.
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Conversely, suppose that BM is flat and f is monic and (X1, Y1)f1 is a finitely
generated T -submodule of (X, Y )f . Then (X1/Im f1) and Y1 are finitely generated
submodules of (X/Im f1)A and YB respectively, and so they are finitely presented
by our assumption. Since now BM is flat and f is monic, f1 is monic. The proof is
completed by Corollary 3.8.

Theorem 4.2. If T is a right coherent ring, then A and B are right coherent rings
and (M/LM)A is locally coherent for any finitely generated right ideal L of B. The
converse is true provided that BM is flat.

Proof. Suppose that T is a right coherent ring. Consider the T -module T =
(X, Y )θ where X = A ⊕ M , Y = B and θ : B ⊗B M → A ⊕ M defined by
θ(b⊗m) = (0, bm) is an A-homomorphism. Applying Theorem 4.1, we deduce that
B is a right coherent ring and for every finitely generated right ideal L1 of B,
(X/Im f1) � A⊕ (M/L1M) is a locally coherent A-module. For L1 = B, we deduce
that A is a right coherent ring. Hence, for every finitely generated right ideal L1

of B, (M/L1M)A is locally coherent by [17, 26.1(1)]. The converse is also obtained
by Theorem 4.1 because θ is monic.

Corollary 4.3. If A is a right Noetherian ring and B is a regular ring then T is
a right coherent ring.

Proposition 4.4. Let BM be flat and MA be finitely generated. Then T is a right
coherent ring if and only if AA, BB and MA are coherent.

Proof. Since MA is finitely generated, (LM)A is finitely generated for any finitely
generated right ideal L of B. Thus MA is locally coherent if and only if (M/LM)A

is locally coherent for any finitely generated right ideal L of B [17, 26.1]. The result
is then obtained by Theorem 4.2.

It is well known that being finitely presented, and hence being (locally) coherent
is a Morita invariant property. Thus, in view of [17, 26.6(c)], a ring R is right
coherent if and only if Matn(R) is so. In the following we observe that a similar
result holds for the lower triangular matrix ring Tn(R).

Corollary 4.5. Let R be a ring and n ≥ 1. Then R is a right coherent ring if and
only if Tn(R) is so.

Proof. We proceed by induction on n and apply Proposition 4.4 for M = R(n−1),
A = Tn−1(R) and B = R. We have BM is flat and Tn(R) � [A 0

M B

]
. By induction

assumption A is a right coherent ring. Now if q = n − 1, then M = mA where
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m = (1, 1, . . . , 1)1×q and r · annA(m) = aA where

a =



I(q−1)×(q−1) 0

...
−1 · · · −1 0




q×q

.

Hence M � A/aA is a locally coherent A-module [17, 26.1]. Thus Tn(R) is right
coherent by Proposition 4.4.

In [4] right J-coherent rings are introduced and studied (a ring R is called right
J-coherent if the Jacobson radical of R is coherent as a right R-module). Next we
use Theorem 4.1 to investigate the J-coherence of T .

Proposition 4.6. If T is a right J-coherent ring then A and B are right J-coherent
rings and (M/LM)A is coherent for any finitely generated right ideal L of B that
is contained in J(B). The converse is true provided that BM is flat.

Proof. Note that by [8, Corollary 2.2], J(T ) = (X, Y )θ1 where X = J(A) ⊕ M

and Y = J(B). Also a finite direct sum of modules is coherent if and only if each
direct summand is so. The rest of the proof is similar to that of Theorem 4.2.

Corollary 4.7. If T2(R) is a right J-coherent ring then R is right coherent.

Remark 4.8. (i) The converse of Corollary 4.7 is not true in general. For example
R =

[
Z 0
Q Z

]
is a coherent ring by Theorem 4.2, but J(R) =

[0 0
Q 0

]
is not finitely

generated. This also shows that the coherence of T does not imply that MA is
finitely generated.

(ii) The flatness of BM cannot be relaxed from the hypothesis of Theorem 4.2. Set
A = B = the coherent ring Q[x1, x2, . . .]; see [17, 26.7] and let I be the ideal
of A generated by {x1xj | j = 2, 3, . . .} and M = A/I. Then BM is not flat
and U := r · annT (

[1 0
0 x1

]
) =

[ 0 0
C/I 0

]
where C is the ideal of A generated by

{xj | j = 2, 3, . . .}. It is easy to see that (C/I)A and hence UT is not finitely
generated. This shows that T is not a right coherent ring.

Proposition 4.9. If A is a right Noetherian ring, MA finitely generated and B a
right coherent ring then T is a right coherent ring.

Proof. We use [17, 26.6(e)]. First note that if (X, Y )f is a right ideal of T , then
Y ≤ BB and X being a submodule of (A ⊕ M)A is Noetherian. Hence (X, Y )f is
a finitely generated right ideal if and only if Y is a finitely generated right ideal
of B. Second, for every t =

[a 0
m b

] ∈ T , we have r · annT (t) = (X ′, Y )θ where
Y = r · annB(b) and X ′ ≤ (A ⊕ M)A. Therefore, the right coherence of B implies
that of T .
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5. Pure Injectivity

In this section we investigate pure injective T -modules. The following Lemma is
needed and may be found in the literature, but we give a proof for completeness.

Lemma 5.1. Let R be a ring and 0 → K
f→ L

g→ N → 0 be a pure exact sequence

in Mod-R. Then 0 → K/KH
f̄→ L/LH

ḡ→ N/NH → 0 is a pure exact sequence in
Mod-R/H, for every proper ideal H of R.

Proof. It is known that the R/H-module K ⊗R R/H is naturally isomorphic to
K/KH . Now consider the following commutative diagram

K ⊗R R/H
f⊗1−→ L ⊗R R/H

‖ ‖

K/KH
f̄−→ L/LH.

By Lemma 2.1(iv), f ⊗1, and hence f̄ are pure monomorphisms in Mod-R/H . The
rest of the proof is routine.

Proposition 5.2. Let H be a proper ideal of a ring R and W be an R-module
with WH = 0. Then W is a pure injective R/H-module if and only if it is a pure
injective R-module.

Proof. (⇒) Let K
f→ L be a pure monomorphism in Mod-R and α : K → W be

an R-homomorphism. By Lemma 5.1, we have the pure monomorphism K/KH
f̄→

L/LH in Mod-R/H . Since WH = 0, we have ᾱ : K/KH → W . Now W is a pure
injective R/H-module, hence there exists an R/H-homomorphism γ : L/LE → W

such that γf̄ = ᾱ. Let β = γπ where L
π→ L/LH is the natural projection. Then

for any k ∈ K, βf(k) = γπ(f(k)) = γf̄(k̄) = ᾱ(k̄) = α(k) that is βf = α, proving
that WR is pure injective.

(⇐) By definition and Lemma 2.1(i).

Recall that a ring R is right pure semisimple if any right R-module is pure
injective. The class of right pure semisimple rings is closed under finite direct sums
and homomorphic images; see [17, 53.7(b)].

Corollary 5.3. Suppose that A and B are right pure semisimple rings and V is a
T -module. Then M, V/V M, V/V P and V/VI are pure injective T -modules.

Proof. Use Proposition 5.2 and the fact that T/M � A ⊕ B is a pure semisimple
ring.

Theorem 5.4. Let V = (X, Y )f be a T -module. If VT is pure injective then so is
XA. The converse is true provided that f̃ is an isomorphism.
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Proof. Assume that VT is pure injective. Let X1
g→ X2 be a pure monomor-

phism in Mod-A and α : X1 → X be an A-homomorphism. It is easy to

see that (X1, 0)0
(α,0)−→ (X, Y )f and (X1, 0)0

(g,0)−→ (X2, 0)0 are homomorphisms
in Mod-T . By Proposition 2.2(ii), (g, 0) is a pure monomorphism. Thus by our
assumption, there exists a T -homomorphism (β1, β2) : (X2, 0)0 → (X, Y )f such that
(β1, β2)(g, 0) = (α, 0). It follows that β1g = α, as desired.

Conversely, assume that XA is pure injective and f̃ is an isomorphism. Let

(X1, Y1)f1

(g1,g2)−−−−→ (X2, Y2)f2 be a pure monomorphism in Mod-T and (α1, α2) :
(X1, Y1)f1 → (X, Y )f be a T -homomorphism. By Proposition 2.2(i), X1

g1→ X2

is a pure monomorphism in Mod-A. Since XA is pure injective, there exists A-
homomorphism β1 : X2 → X such that β1g1 = α1. For every z ∈ Y2, define θz :
M → X by θz(m) = β1f2(z⊗m) for all m ∈ M . Then θz ∈ HomA(M, X). Since now
f̃ is an isomorphism there exists unique yz ∈ Y such that f̃(yz) = θz. Consequently,
yz is the unique element of Y that satisfies f(yz ⊗m) = β1f2(z⊗m) for all m ∈ M .
Define β2 : Y2 → Y by β2(z) = yz for all z ∈ Y2. Then we can deduce that β2 is a
B-homomorphism such that (β1, β2) : (X2, Y2)f2 → (X, Y )f is a T -homomorphism.
Since now (β1g1, β2g2) : (X1, Y1)f1 → (X, Y )f is a T -homomorphism, we have
f(β2g2 ⊗ 1M ) = (β1g1)f1. Therefore, f(β2g2 ⊗ 1M ) = α1f1 = f(α2 ⊗ 1M ). This
shows that (α2 − β2g2)(y) ∈ Ker f̃ = 0 ∀ y ∈ Y1. Thus β2g2 = α2, proving that V is
a pure injective T -module.

We have now the following result related to the adjoint pair of functors (Γ,K):
Mod-T → Mod-A introduced in Sec. 1.

Corollary 5.5. The functors K and Γ map pure injective modules to pure injective
modules.

Proof. For every XA, K(X) = (X, HomA(M, X))f such that f̃ = 1HomA(M,X).
Therefore, the result is obtained by Theorem 5.4.
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