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Abstract

Generalizing the concept of right bounded rings, a module MR is called bounded if annR(M/N) ≤e RR

for all N ≤e MR. The module MR is called fully bounded if (M/P) is bounded as a module over
R/annR(M/P) for any L2-prime submodule P C MR. Boundedness and right boundedness are Morita
invariant properties. Rings with all modules (fully) bounded are characterized, and it is proved that a
ring R is right Artinian if and only if RR has Krull dimension, all R-modules are fully bounded and ideals
of R are finitely generated as right ideals. For certain fully bounded L2-Noetherian modules MR, it is
shown that the Krull dimension of MR is at most equal to the classical Krull dimension of R when both
dimensions exist.
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1. Introduction

Throughout rings will have unit elements and modules will be right unitary. We use the
notations N E M, N ≤e M to denote respectively that N is a fully invariant, essential
submodule of M. Hence N Ee M means N is a fully invariant essential submodule
of M. Recall from [3] that R is a right bounded ring if for every I ≤e RR there exists
B Ee RR with B ⊆ I. The ring R is called right fully bounded if every prime factor of
R is a right bounded ring. Right fully bounded right Noetherian rings (right FBN) and
modules over them have been studied extensively and are known to have a number of
interesting properties; see, for example, [5–8]. The concept of right bounded rings has
been generalized to bounded modules by earlier authors. In [10], modules MR with
the property that R/P is a right fully bounded ring for every P ∈ Ass(MR) were called
‘bounded’ and they were studied when R is right Noetherian [10, Theorem 2.6]. In [6],
modules MR with annR(M/N)/annR(M) ≤e R/annR(M), for any N ≤e MR, were studied
and called bounded. To avoid confusion, we shall say that the latter modules are L-
bounded, while we define a bounded module MR by the condition annR(M/N) ≤e RR
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for any N ≤e MR. Our bounded modules form a class bigger than the class of L-
bounded modules. Clearly, a module MR is L-bounded if and only if M is bounded as
a module over R/annR(M).

We study bounded modules and show that they are invariant under Morita
equivalences (Theorem 3.3). It follows that L-boundedness and right boundedness
are Morita invariant properties. It is shown that all R-modules are bounded if and
only if Soc(RR) ≤e RR (Theorem 3.5) and, as a corollary, we show that right semi-
Artinian rings are precisely rings with all modules L-bounded. A module MR is called
fully bounded if (M/P)R is L-bounded for any fully invariant L2-prime submodule
P C MR in the sense of [11]. In [12] L2-prime submodules were called ‘fully prime
submodules’. The class Spec2(MR) of fully invariant L2-prime submodules of a given
module MR properly lies between the class of ‘prime’ submodules of MR in the sense
of [2] and the class of prime submodules N of MR in the sense of annR(N) = annR(M)
for any 0 , N ≤ M. A characterization of rings with all modules fully bounded is
given in Theorem 3.7 and it is shown that a ring R is right Artinian if and only if
RR has Krull dimension, all R-modules are fully bounded and ideals of R are finitely
generated as right ideals (Proposition 3.8). In the last section, we deal with bounded
modules with Krull dimension and, for a quasi projective fully boundedL2-Noetherian
module MR, it is shown that K.dim(M) ≤ Cl.K.dim(R) when the dimensions exist. A
well-known result on right FBN rings R stating that K.dim(RR) = Cl.K.dim(R) may
then be obtained by Theorem 4.1; see also [3, Theorem 15.13]. Any unexplained
terminology and all the basic results on rings and modules that are used in the sequel
can be found in [1, 3].

2. Preliminaries

We begin by recalling some definitions from [11]. An R-module M is called
L2-Noetherian if M finitely generates all of its fully invariant submodules and has
ascending chain condition (acc) on them. Some examples of L2-Noetherian modules
are Noetherian self-generator modules and modules without nonzero fully invariant
submodules. Note that the module RR is L2-Noetherian if and only if every ideal of R
is finitely generated as a right ideal. A proper submodule P of a module MR is called
L2-prime if, for every W1, W2 E MR, the condition W1 ? W2 ⊆ P implies that W1 ⊆ P
or W2 ⊆ P where W1 ? W2 = HomR(M, W1)W2. If (0) is an L2-prime submodule of
MR then M is called an L2-prime R-module. In the following we present some facts
on L2-Noetherian and L2-prime modules for later use.

L 2.1. Let MR be a nonzero module with MI = 0 for some I C R.

(i) If N E MR and Q/N E M/N, then Q E M.
(ii) If MR is quasi projective and K ≤ L E M, then L/K E M/K.
(iii) MR is L2-Noetherian if and only if MR/I is L2-Noetherian.
(iv) If MR is L2-Noetherian then M/N is an L2-Noetherian R-module for any

N E MR.
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(v) If MR is quasi projective, N C M and N ≤ P then P/N ∈ Spec2(M/N) if and only
if P ∈ Spec2(M).

(vi) If MR/I is bounded then MR is bounded. Consequently, L-bounded and fully
bounded L2-prime modules are bounded.

(vii) MR/I is fully bounded if and only if MR is fully bounded.

P. (i), (ii) and (iii) follow by routine arguments and (v) follows by part (ii).
To prove (iv), let N E MR and notice that M/N has acc on its fully invariant

submodules by part (i). On the other hand, if L/N E M/N then L E M and so M finitely
generates L by our assumption. Hence there exists an R-epimorphism f : M(n)→ L
for some positive integer n. Let ιi : M→ M(n) be the natural inclusion map for
i = 1, . . . , n. Since N E M, f ιi(N) ⊆ N. This shows that the map g : (M/N)(n)→ L/N
with g(x1 + N, . . . , xn + N) = f (x1, . . . , xn) + N is well defined. Clearly g is also
an R-epimorphism. Thus M/N finitely generates L/N, proving that M/N is an
L2-Noetherian R-module.

(vi) and (vii) follow by definitions and the fact that if J/I is an essential right ideal
of R/I then J ≤e R. �

In [4], an R-module M with S = EndR(M) was called endoprime if l.annS (N) is
zero for any 0 , N E MR. It is easy to verify that retractable endoprime modules are
L2-prime. (A module MR is retractable if HomR(M, N) , 0 for any 0 , N ≤ M.) We
will use the following result to characterize rings with all modules fully bounded.

P 2.2. The following statements are equivalent for a ring R.

(i) R is a prime ring.
(ii) EndR(F) is a prime ring for some free R-module F.
(iii) EndR(F) is a prime ring for every free R-module F.
(iv) Every free R-module is L2-prime.

P. For the equivalences (i)⇔ (ii)⇔ (iii), note that if S = CFMΓ(R), a column
finite matrix ring over R for some nonempty set Γ, and (ai j)S (bi j) = 0 for some matrices
(ai j), (bi j) ∈ S then Ekk(ai j)(EllRErr)(bi j)Ett = 0 for any k, l, r, t ∈ Γ where Exy is the
matrix with 1 as (x, y)th entry and zero elsewhere. It follows that aklRbrt = 0 for any
k, l, r, t ∈ Γ. Thus if (bi j) , 0 then we can deduce that (ai j) = 0 provided that R is prime
ring.
(iii)⇒ (iv). Apply [4, Proposition 1.3(3)] for a free R-module F. Thus FR is
endoprime and hence an L2-prime module.
(iv)⇒ (i). This is clear. �

3. The class of (fully) bounded modules

We study the class of bounded modules and show that bounded, L-bounded and
right bounded modules are Morita invariant properties. Several characterizations of
rings R with essential socles are given. In particular, semi-Artinian (respectively
Artinian) rings are characterized in terms of L-bounded (respectively fully bounded)
R-modules.
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P 3.1.

(i) The class of bounded modules is closed under taking submodules, factor modules
and finite direct sums.

(ii) If MR is a quasi projective fully bounded module, then M/N is fully bounded for
any N E M.

P. (i) Let MR be bounded and N ≤e K ≤ MR. There exists L ≤ M such that
K ⊕ L ≤e MR. Thus N ⊕ L ≤e MR. Since MR is bounded, there exists I ≤e RR such
that MI ⊆ N ⊕ L. It follows that KI ⊆ N, proving that KR is bounded.

To prove that M/K is a bounded R-module, let N/K ≤e M/K. Then N ≤e MR

and so there exists J ≤e RR such that MJ ⊆ N by our assumption. This shows that
(M/K)J ⊆ N/K.

Finally, assume that V =
⊕k

i=1 Mi where each Mi is a bounded R-module. Suppose
that N ≤e VR. It is easy to verify that N ∩ Mi ≤e Mi for each i. Thus by our assumption
on Mi, there exists Ii ≤e R such that MiIi ⊆ N. Let I =

⋂k
i=1 Ii. Then I ≤e R and VI ⊆ N,

as desired.
(ii) This follows from Lemma 2.1(v). �

C 3.2. A ring R is right (fully) bounded if and only if any finitely generated
R-module is (fully) bounded.

P. We only prove the fully bounded case. Assume that R is a right fully
bounded ring, MR is finitely generated, P ∈ Spec2(M) and I = annR(M/P). By [11,
Proposition 2.1(ii)], I is a prime ideal of R. Thus R/I is a right bounded ring by our
assumption. Since now (M/P)(R/I) is finitely generated, M/P is bounded as an R/I-
module by Proposition 3.1(i), proving that MR is fully bounded. The other direction is
clear. �

T 3.3. Boundedness is a Morita invariant property.

P. Let R and S be Morita equivalent rings with category equivalence α : Mod-R→
Mod-S . We first claim that if M is an R-module such that annR(M) ≤e RR then
annS (α(M)) ≤e S S . Let I = annR(M) and B = annS (α(R/I)). By [1, Proposition 21.11],
R/I is Morita equivalent to S/B. Since M is faithful as an R/I-module, B =

annS (α(M)) by [1, Proposition 21.6]. Then also α(R/I) is a projective generator in
Mod-S/B. Thus there exist L ∈Mod-S/B and n ≥ 1 such that (S/B) ⊕ L = [α(R/I)]n in
Mod-S/B as well as in Mod-S . Now consider the exact sequence 0→ I→ R→ R/I.
Since Morita equivalences preserve co-kernels and essential monomorphisms, α(R/I)
is a co-kernel of an essential monomorphism in Mod-S . Hence it is a singular S -
module. Therefore, (S/B)S is singular and so B ≤e S S , as claimed.

Suppose now that M is a bounded R-module. It is easy to verify that a module XR

is bounded if annR(co-ker f ) ≤e RR, for every essential monomorphism f : NR→ XR.
Thus (α(M))S is bounded by the first part, and the proof is complete. �
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C 3.4. Both L-boundedness and right boundedness are Morita invariant
properties.

P. Note that a module MR is L-bounded if and only if it is bounded as a module
over R/annR(M). Now let R and S be Morita equivalent rings with category equiva-
lence α : Mod-R→Mod-S . Suppose that MR is an L-bounded module, I = annR(M)
and B = annS (α(M)). As observed in the proof of Theorem 3.3, (R/I)

α
≈ (S/B).

Also S is isomorphic to a direct summand of a finite direct sum of copies α(R) in
Mod-S . Therefore, the result is obtained by Theorem 3.3 and Proposition 3.1(i). �

T 3.5. The following statements are equivalent for a ring R.

(i) Soc(RR) ≤e RR.
(ii) R is a right bounded ring and the class of bounded R-modules is closed under

direct sums.
(iii) Every free R-module is bounded.
(iv) Every R-module is bounded.

P. (i)⇒ (ii). Let B = Soc(RR). Since B lies in all the essential right ideals of R, the
ring R is right bounded and in R, any intersection of essential right ideals is essential.
Therefore, as observed in the proof of Proposition 3.1(i), any direct sum of bounded
modules is a bounded module.
(ii)⇒ (iii). This is clear.
(iii)⇒ (iv). Apply Proposition 3.1(i) and the fact that any R-module is a homomorphic
image of a free R-module.
(iv) ⇒ (i). Let {Iα}α∈A be the family of all essential right ideals of R. Then we have⊕

α∈A Iα ≤e R(A). By our assumption, the R-module R(A) is bounded. Thus there exists
I Ee RR such that R(A)I ⊆

⊕
α∈A Iα. This shows that I ⊆

⋂
α∈A Iα = Soc(RR). Thus (i)

holds. �

A ring R is said to be right semi-Artinian if for every I C R, the right socle of the
ring R/I is nonzero (or equivalently, every nonzero R-module has a nonzero socle).

C 3.6. A ring R is right semi-Artinian if and only if all R-modules are
L-bounded.

P. (⇒) Apply Theorem 3.5.
(⇐). Let I E R, M be an R/I-module and B = annR(M). By our assumption, MR is
L-bounded and so MR/B is bounded. It follows that MR/I is bounded by Lemma 2.1(vi).
Now apply Theorem 3.5 to deduce that the right socle of the ring R/I is an essential
right ideal. This shows that R is a right semi-Artinian ring. �

It is known that in prime rings the right and left socles coincide. We say that a
ring R is pre semi-Artinian if, for every prime ideal P of R, the socle of the ring R/P
is nonzero (or equivalently, since R/P is a prime ring, an essential (left) right ideal).
Note that for every infinite set Λ and every field F, the von Neumann regular ring
R = FΛ/F(Λ) is pre semi-Artinian but not semi-Artinian because Soc(RR) = 0.
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T 3.7. All nonzero R-modules are fully bounded if and only if R is a pre semi-
Artinian ring.

P. (⇒) Let P be a prime ideal of R and T = R/P. In view of Theorem 3.5, we
shall show that every free T -module is bounded. Let F be a free T -module. By
our assumption and Lemma 2.1(vii), FT is fully bounded. On the other hand, FT is
L2-prime by Proposition 2.2. Hence FT is bounded, as desired.
(⇐). This is clear by the definition and Theorem 3.3. �

P 3.8. A ring R is right Artinian if and only if RR has Krull dimension, ideals
in R are finitely generated as right ideals and all R-modules are fully bounded.

P. (⇒) This follows by Theorem 3.5 and the well-known result that a right
Artinian ring is right Noetherian with zero Krull dimension.
(⇐) By [11, Proposition 3.2(ii) and Theorem 3.1] and Theorem 3.5, R is right
Artinian. �

R 3.9. Proposition 3.8 does not hold if we replace ‘fully bounded’ by
‘bounded’. For example, if R =

[
Z Q
0 Q

]
then

[
0 Q
0 Q

]
= Soc(RR) ≤e RR and hence all

R-modules are bounded by Theorem 3.5. But R is not even a right semi-Artinian ring.
This example shows also that there exist bounded R-modules which are not L-bounded
by Corollary 3.6 and Theorem 3.5.

4. Fully bounded modules with Krull dimension

Let R be a ring, M an R-module. Then according to [9, Corollary 6.2.18],
K.dim(M) ≤ K.dim(RR), provided that both dimensions exist. Also it is known
that when R is right Noetherian, Cl.K.dim(R) ≤ K.dim(RR), and that the inequality
K.dim(RR) ≤ Cl.K.dim(R) holds for right FBN rings R; see [3, Theorem 15.13]. In
this section we prove a theorem which gives classical Krull dimension as an upper
bound for the Krull dimensions of certain modules, even if the base ring does not have
Krull dimension. In particular, for certain modules M over rings R with Cl.K.dim(R) <
K.dim(RR) (for example, if R = Z ⊕ A where A is the nth Weyl algebra over C),
the inequality K.dim(M) ≤ K.dim(RR) is improved by K.dim(M) ≤ Cl.K.dim(R). The
crucial inequality K.dim(RR) ≤ Cl.K.dim(R) for right FBN rings R is also a corollary
of our Theorem 4.1.

T 4.1. Let R be a ring and MR be a nonzero quasi projective fully bounded L2-
Noetherian module. Assume that Cl.K.dim(R) and K.dim(M) exist. Then K.dim(M) ≤
Cl.K.dim(R).

P. We prove the theorem by induction on Cl.K.dim(R). Since MR is L2-
Noetherian, by [11, Theorem 3.1] there exists an L2-prime submodule P E MR such
that K.dim(M) = K.dim[(M/P)R]. Let I = annR(M/P), which is a prime ideal of R.
Suppose first that Cl.K.dim(R) = 0. Hence by hypothesis, M/P is a bounded module
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over the simple ring R/I. Thus M/P is a semisimple R/I-module with Krull dimension.
This shows that K.dim(M) = 0.

Now assume that Cl.K.dim(R) = α and the theorem holds for any ring with classical
Krull dimension less than α. Let L = M/P and T = R/I. We shall show that
K.dim(LT ) ≤ α. Notice that LT is quasi projective, L2-Noetherian and fully bounded
by Lemma 2.1 and Proposition 3.1(ii). In view of [9, Lemma 6.2.8], it is enough
to prove that for all N ≤e LT , K.dim[(L/N)T ] < α. Therefore suppose that N ≤e LT .
Since MR is fully bounded, LT is bounded and so there exists B Ee TT such that
LB ⊆ N. Again (L/LB)T is L2-Noetherian and so K.dim[(L/LB)T ] = K.dim[(L/Q)T ]
for some L2-prime submodule Q/LB E L/LB. Now 0 , B ⊆ annT (L/Q) := C and
so Cl.K.dim(T/C) < Cl.K.dim(T ) because C is a nonzero prime ideal in the prime
ring T . Thus by the induction assumption, K.dim[(L/Q)T/C] ≤ Cl.K.dim(T/C) < α.
This shows that K.dim[(L/N)T ] ≤ K.dim[(L/LB)T ] < α, and the proof is complete. �

C 4.2. Over a simple ring R, every quasi-projective Noetherian self-
generator fully bounded R-module is either Artinian or does not have Krull dimension.

P. Apply Theorem 4.1. �

Let A, B be rings and M be a left B- right A-bimodule. It is easy to verify that
every prime ideal in the formal triangular matrix ring T =

[A 0
M B

]
has the form

[P 0
M B

]
or[A 0

M Q
]

for some prime ideals P E A and Q E B. It follows that T is a pre semi-Artinian
ring if and only if A and B are so. Thus, using formal triangular matrix rings, we are
able to construct examples of noncommutative pre semi-Artinian rings R which do not
have Krull dimensions; for example, suppose that R =

[F 0
M F

]
, F is a field and MF is

nonfinitely generated free. Now by a slight modification of the proof of Theorem 4.1,
the following result can be proved which gives an upper bound on the Krull dimension
of L2-Noetherian modules over pre semi-Artinian rings (even if the ring may not have
Krull dimension).

T 4.3. Let R be a pre semi-Artinian ring and MR be L2-Noetherian. Then
K.dim(M) ≤ Cl.K.dim(R) provided that both dimensions exist.

C 4.4. Let R be a pre semi-Artinian ring with classical Krull dimension α.
Then K.dim(M) ≤ α for any Noetherian self-generator module MR. In particular, if
α = 0 then every Noetherian self-generator R-module is Artinian.

P. This follows by Theorem 4.3 and the fact that self-generator Noetherian
modules are L2-Noetherian modules with Krull dimensions. �
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