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A GENERAL CONSTRUCTION OF REED-SOLOMON CODES BASED ON

GENERALIZED DISCRETE FOURIER TRANSFORM

NAJME SAHAMI AND MAJID MAZROOEI

Abstract. In this paper, we employ the concept of the Generalized Discrete Fourier Trans-

form, which in turn relies on the Hasse derivative of polynomials, to give a general construction

of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the

length of the code. The constructed linear codes enjoy nice algebraic properties just as the

classic one.

1. Introduction

In 1960, I.S. Reed and G. Solomon introduced a family of error-correcting cyclic codes that

are doubly blessed [8]. In the decades since their discovery, Reed-Solomon codes (RS codes,

for short) have enjoyed countless applications, from data retrieval of bar codes and QR codes

in our daily lives to sending data to and from spacecrafts launched in deep-space missions.

RS codes can be arranged in the class of Maximum Distance Separable (MDS) codes [1], thus

reaching the Singleton bound. Their main advantage lies in two facts: high capability of

correcting both random and burst errors; and existence of efficient decoding algorithms for
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them [2,4]. A breakthrough has been made by M. Sudan in 1997 about the list decoding of

RS codes [10] and further improved by V. Guruswami and M. Sudan [3,10].

Beside trying to find new decoding algorithms for RS codes, there are growing appeals

for generalizing the algebraic construction of RS codes. In [7], Quintin, Barbier and Chabot

introduce a generalization of RS codes over (not necessarily commutative) rings with unity.

They showed that the main results about RS codes (over finite fields) still hold in this more

general situation. Another generalization of RS codes is given by Shokrollahi [9]. Instead of

looking at consecutive powers for constructing an RS code, the author constructs p codes of

length n/p in a similar manner as an RS code, and then apply a Fourier transform of length

p componentwise on the vectors of these constituent codes. As a result, Shokrollahi showed

that if the initial constituent codes are chosen appropriately, then the resulting code is MDS;

in fact, it is a generalized RS code equivalent to a code obtained by evaluating polynomials of

degree less than k on the desired set of roots.

A common feature in almost all generalized Reed-Solomon codes is that the length of the

generalized code is coprime to the characteristic of the base field. This means that, for a

base field of order q = pa, p a prime number and a ≥ 1 an integer, the constructed code has

length q − 1. This problem motivated us to give a more general description of Reed-Solomon

codes in which more lengths can be included. For our work, the main tool is the generalized

discrete Fourier transform, which in turn relies on the Hasse derivative of polynomials. Our

method leads to construct a family of linear cyclic codes of length n = pam, where p is the

characteristic of the finite field Fq and (m, p) = 1 (thus the blocklength of the code is not

neccessarily coprime to p), including RS codes as a special case.

2. Preliminaries

A linear [n, k]-code C, n ≥ k ≥ 1, over the Galois field Fq, q a prime power, is a k-dimensional

vector subspace of Fn
q . An element of C is called a codeword of C. The (Hamming) weight of a

vector c ∈ Fn
q is the number of its nonzero coordinates which is denoted by w(c). For a linear

code C, the distance d := d(C) is defined as the minimum weight of all nonzero codewords.

The distance of a code C is important to determine the error correction capability of C (that is,

the number of errors can be coorected) and the error detection capability (that is, the number

of errors can be detected). For an [n, k, d]-linear code C, it is well-known that d ≤ n− k + 1.

A linear code achieving this bound is called maximum distance separable (MDS). These codes

have been under study extensively due to their error correcting ability. The dual code of a

linear code C, denoted by C⊥, is defined as

C⊥ = {v ∈ Fn
q | ⟨v,u⟩ = 0, ∀ u ∈ C},
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where ⟨x,y⟩ denotes the inner product of the vectors x and y which is defined as
n−1∑
i=0

xiyi (mod q). The dual code C⊥ has dimension n − k if the code C has dimension k.

A linear code C is called cyclic if the cyclic shift of every codeword is also a codeword, i.e.,

(c0, ..., cn−1) ∈ C → (cn−1, c0, ..., cn−2) ∈ C.

To describe the algebraic properties of a cyclic codes, a ring theoretic structure of cyclic

codes is introduced. Consider the univariate polynomial ring Fq[x] and the ideal I = ⟨xn− 1⟩.
If we denote the ring Fq[x]/I by R, then there exists a bijective correspondence between the

vectors of Fn
q and the residue classes of polynomials in R:

v = (v0, ..., vn−1)←→ v0 + v1x+ . . .+ vn−1x
n−1.

We can view linear codes as subsets of the ring R, thanks to the correspondence above. A

linear [n, k, d]-code C is cyclic if and only if C is an ideal of R. Since R is a principal ideal

ring, if C is not trivial, then there exists a unique monic polynomial g that generates C. The

polynomial g is called the generator polynomial of C. Note that g divides xn − 1 in Fq[x]. If

the dimension of the code C is k then the generator polynomial has degree n−k. Linear codes

are widely studied because of their algebraic structure, which makes them easier to describe

than non-linear codes.

One of the most important families of cyclic MDS codes is Reed-Solomon (RS, for short).

An RS code of length n and dimension k over the Galois field Fq is defined as the vector space

of polynomials f such that f(β) = 0 for all β in the set Z = {αm0 , αm0+1, . . . , αm0+n−k−1}.
Here α can be any element in Fq of multiplicative order at least n where n is a divisor of q−1.

Another interesting method for constructing Reed-Solomon codes is the discrete Fourier

transform (DFT, for short) approach [1, Section 6]. Let ω be an n-th root of unity in (a

sufficiently large) extension of the Galois field Fq, where q is a prime power pa and n is

coprime with p. The discrete Fourier transform of an n-bit vector v = (v0, v1, . . . , vn−1) is

defined as follows:

F{(v0, v1, . . . , vn−1)} = (V0, V1, . . . , Vn−1),

where Vj =
n−1∑
i=0

viω
ij , j = 0, . . . , n − 1. The vector V = F{v} is called the frequency-domain

function or the spectrum of v. The vector v is related to its spectrum V by

vi =
1

n

n−1∑
j=0

Vjω
−ij ,

where n is interpreted as an integer of the field. Now, a Reed-Solomon code C of length n

over Fq, with n a divisor of q − 1, and designed minimum distance d is defined as the set of
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all words over Fq of length n whose discrete Fourier transform is equal to zero in a specified

block of d− 1 consecutive components, see [1, chap. 6].

The operator discrete fourier transform can be introduced in more general case using the

concept of Hasse derivative. Let Fq be a finite field. For j = 0, 1, 2, . . . and f(x) =
n∑

i=0

aix
i ∈

Fq[x], the jth Hasse derivative of f is defined as

f [j](x) =

n∑
i=0

(
i

j

)
aix

i−j .

Here we use a standard convention for binomial cofficients:
(
i
j

)
= 0 for all j > i, which

guarantees that the jth Hasse derivative be again a polynomial over Fq. Also, by
(
i
j

)
, i a

negative integer, we mean
(
((i))
j

)
where ((i)) stands for i modulo n.

Just as in the case of formal derivatives in the fields with characteristic 0, Hasse derivatives

in any field are related to repeated factors of a polynomial, as the following proposition states.

Proposition 2.1. [5, Lemma 6.51]. Let f be a polynomial over the finite field Fq. Suppose

c ∈ Fq is a root of f [j] for j = 0, 1, . . . ,M − 1. Then (x− c)M divides f(x).

3. Generalized Discrete Fourier Transform

Let n = pam, where (m, p) = 1. When a ≥ 1, n is no longer relatively prime to p. Thus n

is not a nonzero element of the field Fq with characteristic p and the inverse discrete Fourier

transform does not exist. So the classical theory of discrete Fourier transform does not apply to

Fq[x]/⟨xn−1⟩. However, a generalized discrete Fourier transform (GDFT) has been introduced

in the literature that deals with this situation [6].

Let c =

n−1∑
i=0

cix
i ∈ Fq[x], and let ζ be a primitive m-th root of unity in some (sufficiently

large) extension of Fq. For each 0 ≤ g ≤ pa − 1 and 0 ≤ h ≤ m− 1, let

ĉg,h =

n−1∑
i=0

(
i

g

)
ciζ

h(i−g).

Note that ĉg,h = c[g](ζh). Then, the generalized Discrete Fourier transform of c can be

described in terms of a matrix

ĉ = [ĉg,h] =


ĉ0,0 ĉ0,1 . . . ĉ0,m−1

ĉ1,0 ĉ1,1 . . . ĉ1,m−1

...

ĉpa−1,0 ĉpa−1,1 . . . ĉpa−1,m−1

 .

We say that c and ĉ is a GDFT pair and write c↔ ĉ. Just as DFT, the GDFT has many

strong propertis [6]. One we need later, is the following proposition.
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Proposition 3.1. If c =
n−1∑
i=0

cix
i ↔ ĉ = [ĉg,h] is a GDFT pair, then the following are also

GDFT pairs:

n−1∑
i=0

ζilcix
i ↔ [ζglĉg,((l+h))],

n−1∑
i=0

c((i−l))x
i ↔ [

l∑
k=0

(
l

k

)
ζ((l−k))hĉ((g−k)),h],

where l ≥ 0 is an integer and the double parentheses indicate modulo appropriate b (b ∈
{n,m, pa}).

Proof. Let u =
n−1∑
i=0

ζilcix
i. Then,

ûg,h =
n−1∑
i=0

(
i

g

)
ζilciζ

h(i−g)

= ζgl
n−1∑
i=0

(
i

g

)
ciζ

((h+l))(i−g)

= ζglĉg,((h+l)),

which proves the first property. Next, let v =

n−1∑
i=0

c((i−l))x
i. Then,

v̂g,h =

n−1∑
i=0

(
i

g

)
c((i−l))ζ

h(i−g)

=
n−1∑
i=0

(
g∑

k=0

(
l

k

)(
i− l

g − k

))
c((i−l))ζ

h(i−g)

=

g∑
k=0

(
l

k

)( n−l−1∑
j=−l

(
((j))

g − k

)
cjζ

h(((j))+l−g)

)

=

g∑
k=0

(
l

k

)( n−1∑
t=0

(
t

g − k

)
ctζ

h(t−(g−k))

)
ζh(l−k)

=

g∑
k=0

(
l

k

)
ζh((l−k))ĉ((g−k)),h,

which shows that the second property holds. �
Let u = (u0, . . . , un−1) and v = (v0, . . . , vn−1) be vectors over Fq. The convolution vector

u ⋆ v is defined as a vector w ∈ Fn
q whose wi =

n−1∑
j=0

u((i−j))vj for each 0 ≤ i ≤ n − 1 (here,

double parantheses means module n). The following theorem will be needed later.
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Theorem 3.2. If u↔ û = [ûg,h] and v↔ v̂ = [v̂g,h] are GDFT pairs, then w = u⋆v↔ ŵ =

[ŵg,h] is a GDFT pair, where for each 0 ≤ g ≤ pa − 1 and 0 ≤ h ≤ m− 1:

ŵg,h =

g∑
k=0

ûg−k,hv̂k,h.

Proof. By definition, we have

ŵg,h =
n−1∑
i=0

(
i

g

)
wiζ

h(i−g)

=

n−1∑
i=0

(
i

g

)( n−1∑
j=0

u((i−j))vj

)
ζh(i−g)

=
n−1∑
i=0

n−1∑
j=0

(
i

g

)
u((i−j))vjζ

h(i−g)

=

n−1∑
j=0

n−1∑
i=0

(
i

g

)
u((i−j))ζ

h(i−g)vj

=
n−1∑
j=0

n−1∑
i=0

(
g∑

k=0

(
j

k

)(
i− j

g − k

))
u((i−j))ζ

h(i−g)vj

=

n−1∑
j=0

g∑
k=0

(
j

k

)( n−1∑
i=0

(
i− j

g − k

)
u((i−j))ζ

h(i−j−g+k)

)
ζh(j−k)vj

=
n−1∑
j=0

g∑
k=0

(
j

k

)( n−j−1∑
t=−j

(
((t))

g − k

)
u((t))ζ

h(((t))−g+k)

)
ζh(j−k)vj

=

n−1∑
j=0

g∑
k=0

(
j

k

)
ûg−k,hζ

h(j−k)vj

=

g∑
k=0

ûg−k,h

(
n−1∑
j=0

(
j

k

)
ζh(j−k)vj

)

=

g∑
k=0

ûg−k,hv̂k,h,

as we claimed. �
Description of the inverse GDFT is somewhat more involved than that of the classical

DFT. As an explicit description of the inverse GDFT is necessary for obtaining the minimum

distance of the generalized RS codes (which will be introduced in the next section), we recall

some details of the inverse GDFT here.

For each 0 ≤ i ≤ pa − 1, let

c(i)(x) = ci + ci+pax+ . . .+ ci+(m−1)pax
m−1.
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Let β = ζp
a
, so that β is again a primitive mth root of unity. By the classical DFT (with

β as the chosen mth root of unity), one sees readily that

ci+jpa =
1

m

m−1∑
i=0

c(i)(β
h)(β−j)h.

Let H(x) be the pa× pa matrix whose (i, j)th entry is
(
j
i

)
xj−i, where the rows and columns

are labelled from 0 to pa − 1 (this is the ith Hasse derivative of the monomial xj in Fq[x]). It

is known that the inverse of H(x) is H(−x) (cf. [6, Lemma 6]). In particular, when q is even,

H(x) is self-inverse. It can then be verified (cf. [6, Eq. (4)]) that
c(0)(β

h)

c(1)(β
h)

...

c(pa−1)(β
h)

 = H(−ζh)


ĉ0,h

ĉ1,h
...

ĉpa−1,h

 .

Consequently,

ci+jpa =
1

m

m−1∑
h=0

(
pa−1∑
g=0

(
g

i

)
(−ζh)g−iĉg,h

)
(β−j)h.

Hence the GDFT is invertible.

4. Generalized Reed-Solomon Codes

Recall that a Reed-Solomon code C of length n over Fq, with n a divisor of q−1 (and hence

(n, q) = 1), and designed distance d is an [n, n−d+1, d]-cyclic code which is defined as the set

of all words over Fq of length n whose discrete Fourier transform is equal to zero in a specified

block of d− 1 consecutive components.

In this section, we introduce a generalization of Reed-Solomon codes of length n not nec-

cessarily coprime to q.

Definition 4.1. Let d ≥ 2 and n = pam where a ≥ 0 is an integer and (m, p) = 1. A

generalized Reed-Solomon code with parameters n and d over Fq, denoted GRSn,d, is the set

of all words over Fq of length n whose generalized discrete Fourier transform is equal to zero

in a specified block of d− 1 consecutive columns, denoted {j0, j0 + 1, . . . , j0 + d− 2}, i.e

GRSn,d = {c | ĉg,h = 0, ∀ 0 ≤ g ≤ pa − 1, ∀ j0 ≤ h ≤ j0 + d− 2}.

By definition, it is easy to see that GRSn,d is an [n, n− pa(d− 1)]-linear code.
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Example 4.2. Let q = 9, n = 6 and d = 2. Using ζ = 2 ∈ F9 as a 2th root of unity, the

GDFT of a vector c ∈ (F9)
6 is given by the (3× 2)-matrix ĉ such that

ĉg,h =

5∑
i=0

(
i

g

)
ci2

h(i−g).

Now, GRS6,2 consists of all words c ∈ (F9)
6 whose the first column of ĉ is zero, i.e. ĉ0,0 =

ĉ1,0 = ĉ2,0 = 0. Thus, 
c0 + c1 + c2 + c3 + c4 + c5 = 0

c1 + 2(c2 + c5) + c4 = 0

c2 + c5 = 0

,

which shows

c0 + c1 + c2 + c3 + c4 + c5 = c2 + c5 = c1 + c4 = 0.

This code has dimension k = 3 and d(GRS6,2) = 2.

As we mentioned, classical RS codes are cyclic. The following proposition states a similar

result for GRS codes.

Proposition 4.3. All generalized Reed-Solomon codes GRSn,d are cyclic.

Proof. Suppose that c =

n−1∑
i=0

cix
i is a word of GRSn,d. Hence, ĉg,h = 0 for all g and for each

j0 ≤ h ≤ j0 + d− 2. Thus

l∑
k=0

(
l

k

)
ζ((l−k))hĉ((g−k)),h = 0 (0 ≤ g ≤ pa− 1, j0 ≤ h ≤ j0 + d− 2).

Therefore, by proposition 3.1, the GDFT of the vector

n−1∑
i=0

c((i−l))x
i is equal to zero in the

columns j0, j0 +1, . . . , j0 + d− 2, proving that

n−1∑
i=0

c((i−l))x
i is a word of GRSn,d, as desired. �

Because a generalized Reed-Solomon code is a cyclic code, it has a generator polynomial,

gn,d(x), that can be calculated.

Proposition 4.4. Let

gn,d(x) = (x− ζj0)p
a
(x− ζj0+1)p

a
. . . (x− ζj0+d−2)p

a
.

Then gn,d(x) is the generator polynomial of the code GRSn,d.

Proof. First, note that g
[j]
n,d(ζ

h) = 0 for each 0 ≤ j ≤ pa − 1 and j0 ≤ h ≤ j0 + d − 2.

Hence gn,d(x) ∈ GRSn,d. On the other hand, if c =

n−1∑
i=0

cix
i ∈ GRSn,d then c[j](ζh) = 0

(j = 0, . . . , pa − 1, h = j0, . . . , j0 + d − 2). By proposition 2.1, (x − ζh)p
a
divides c(x) for
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h = j0, . . . , j0 + d − 2. Thus gn,d(x) divides c(x). These arguments shows that gn,d(x) is the

generator polynomial of the code GRSn,d. �

Next, we are going to discuss the minimum distance of the code GRSn,d.

Theorem 4.5. The minimum distance of the code GRSn,d, d(GRSn,d), satisfies

d ≤ d(GRSn,d) ≤ pa(d− 1) + 1.

Proof. Without loss of generality, we may assume that j0 = m− d+ 1, i.e GRSn,d is the set

of all words over Fq of length n whose generalized discrete Fourier transform is equal to zero

in the last d− 1 columns. For any 0 ≤ i ≤ pa − 1, let

C(i)(x) =

m−1∑
j=0

c(i)(β
j)xj ,

where c(i) and β are defined as in the section 2.3. Recall that

c(i)(β
h) =

pa−1∑
j=0

(
j

i

)
(−ζh)j−iĉj,h.

On the other hand, ĉj,h = 0 for all 0 ≤ j ≤ pa − 1 and m− d+ 1 ≤ h ≤ m− 1, showing that

c(i)(β
h) = 0 for h = m−d+1, . . . ,m−1. Therefore the polynomial C(i)(x) is either zero or has

degree at most m − d. The corresponding codeword c has components ci+jpa = 1
mC(i)(β

−j).

Because C(i)(x) is a polynomial of degree at mostm−d, it can have at mostm−d zeros. Hence,

unless it is identically zero, there will be at least d index j such that ci+jpa ̸= 0. Consequently,

d(GRSn,d) ≥ td where t is the number of those i whose Ci(x) ̸= 0. Thus d(GRSn,d) ≥ d. On

the other hand, d(GRSn,d) ≤ n− k + 1 = pa(d− 1) + 1. This completes the proof. �
The following theorem shows that the dual code of a generalized Reed-Solomon code is a

generalized Reed-Solomon code.

Theorem 4.6. The dual code of GRSn,d is a generalized Reed-Solomon code.

Proof. Without loss of generality, we may assume that j0 = 0. We show that

GRS⊥n,d = {u ∈ Fn
q | ûg,h = 0, g = 0, . . . , pa − 1, h = d− 1, . . . ,m− 1}.

Note that the right hand of the above equality is just GRSn,m−d+2. Let v ∈ GRS⊥n,d and

u ∈ GRSn,d. Then, for each 0 ≤ i ≤ n − 1,

n−1∑
j=0

u((i−j))vj = 0 because v ∈ GRS⊥n,d and

x = (u((i−j))) ∈ C (recall that C is a cyclic code). This shows that u ⋆ v = 0, and hence, for

each 0 ≤ g ≤ pa − 1 and 0 ≤ h ≤ m− 1,

g∑
k=0

ûg−k,hv̂k,h = 0 (see proposition 3.2). Let E(a, b)
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denote the (pa×m)-matrix whose only nonzero entry is 1 in the ath row and bth column and let

u(a, b) = GDFT−1(E(a, b)). Then for each d−1 ≤ h ≤ m−1 we have u(0, h) ∈ GRSn,d. Thus,

for each 0 ≤ g ≤ pa−1 and d−1 ≤ h ≤ m−1, 0 =

g∑
k=0

(û(0, h))g−k,hv̂k,h =

g∑
k=0

E(0, h)g−k,hv̂k,h =

v̂g,h. Therefore, v ∈ GRSn,m−d+2. So, we proved that GRS⊥n,d ⊆ GRSn,m−d+2. But both

GRS⊥n,d and GRSn,m−d+2 have dimension pa(d − 1) which implies GRS⊥n,d = GRSn,m−d+2, as

desired. �
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