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SOME NEW CONSTRUCTIONS OF LINEAR CODES
INCLUDING A WIDE FAMILY OF MDS CODES

A. RAFIEEPOUR AND M. MAZROOEI∗

Abstract. Let Zp be the finite field of integers modulo p, where
p > 3 is a prime integer. This paper presents new constructions
of linear codes over Zp. Based on our construction, linear codes of
length p − 1, including a wide family of MDS codes, and codes of
length (p−1)2 are constructed. We shall discuss the parameters of
the codes defined while describing a generator matrix for the first
family.

1. Introduction

Linear codes are an interesting area in data transmission for two rea-
sons. First, they provide a mechanism to transmit data over a noisy
channel while ensuring the data’s integrity and second, they can be used
to protect data against unwanted readers, by using them for encryption.
Linear codes, and ideas behind some of the good constructions, have
also found many exciting applications such as in complexity theory,
cryptography, pseudorandomness and explicit combinatorial construc-
tions, see for example [18, 19, 11, 3].

Linear codes are constructed over symbols from a group [22, 23], a
ring [12, 15, 9, 20, 10] or a field [21, 2, 7, 1, 5, 16], while they have a
wide range of parameters (block or constraint lenght, dimension, rate,
distance, etc).

One of the important goals in coding theory is to maximize the mini-
mum distance d for given alphabet size and number of codewords. This
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increases the number of errors that can be detected or corrected, mak-
ing the transmision more reliable. The well-known Singleton Bound
[17] says that for codes C of lenght n over any alphabet of size m,

d(C) ≤ n− logm(|C|) + 1.

Codes meeting this bound are called Maximum Distance Separable
codes (MDS codes, for short). For a linear [n, k, d]-code, de Boer [6] de-
fined s(C) = n−k+1−d as the Singleton defect, the Singleton Bound
ensures that s(C) is always non-negative. Therefore, a linear code C is
MDS when s(C) = 0, while he called a code C almost MDS (AMDS, for
short) when s(C) = 1. Unlike MDS codes, the dual code of an AMDS
code is not necessarily AMDS, codes in which s(C) = s(C⊥) = 1 is
called near MDS (NMDS) codes [8].

Due to the fact of the importance of linear codes, a wide range of
works are gone in this context, many authors have studied construction
methods of linear codes. In [7], boolean functions are employed to
construct binary linear codes, while in [3], construction of linear codes
over GF (ph) using perfect nonlinear functions is discussed. Beyond,
someone can find other constrution methods for linear codes in [2]
and [17]. In the meantime, some authors focused on the construction
methodes of MDS, AMDS and NMDS codes, see [21, 15, 1, 16, 14, 5, 17].

This paper is organized to present some new construction methods
of linear codes over the Galois field Zp, p > 3 a prime, which leads
to construct interesting families of MDS codes. For this, the paper is
structured as follows. In Section 2, we recall some preliminaries which
are needed to follow the paper. Section 3 deals with our approach
to construct a class of linear codes of length p − 1 over the field Zp,
while we will study the structure of the constructed codes. In Section
4, the minimum distance of the codes introduced in Section 3 will be
discussed. Specially, we give a sufficient condition for the codes to be
MDS. In the last section, we will generalize the process in Section 3 to
construct two-dimentional codes of length (p − 1)2 and discuss about
the dimension and the distance of them.

2. Preliminaries

Let q be a prime power and Fq denotes the Galois field of size q. A
linear code C of length n over the field Fq is just a vector subspace of
(Fq)

n, the vector space of all n-tuples over Fq. If the dimension of C,
denoted by dim(C), is k then C will be called an [n, k]q-linear code. In
this case, the (k× n)-matrix G whose rows form a basis for C is called
a generator matrix of the code C. The encoding procedure of a linear
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code can be easily done by its generator matrix. It sufficies to encode
an input vector x of length k by the codeword c = xG.

The dual code of an [n, k]q-linear code C is the [n, n− k]-linear code
defined by

C⊥ = {x ∈ (Fq)
n | < x, c >= 0, ∀c ∈ C},

where < x, c >=
n∑
i=1

xici. A generator matrix H of C⊥ is called a

parity-check matrix of the code C. This means that a word c ∈ (Fq)
n

is a codeword of C iff the syndrome of c, which is defined as the vector-
matrix product cH t, is zero. One of the most efficient decoding al-
gorithms of linear codes, called syndrome decoding, is described by
calculating the syndrome of words, See [17].

The (Hamming) distance between any words x, y ∈ (Fq)
n, denoted

by d(x, y), is the number of those positions i whose xi ̸= yi. The
minimum distance of a linear code C is defined as

d(C) = min{d(x, y) | x, y ∈ C, x ̸= y}.

It can be easily checked that d(C) = min{wt(x) | x ∈ C, x ̸= 0},
where wt(x) is the number of non-zero components of the word x.

Theorem 2.1. ([17]) Let H be a parity-check matrix for an [n, k]q-
linear code C. Then every set of s − 1 columns of H are linearly
independent (over Fq) iff C has minimum distance at least s.

It follows from the theorem that a linear code C with a parity-check
matrix H has minimum distance (exactly) d if and only if every set of
d−1 columns of H are linearly independent, and some set of d columns
are linearly dependent. Hence this theorem could be used to determine
the minimum distance of a linear code, given a parity check matrix.

3. V-codes

Throughout this section, p > 3 is a prime, n = p − 1 and n =
{1, 2, . . . , n}.

Definition 3.1. For a non-empty subset A ⊆ n, the V-code CA is the
vector subspace of (Zp)n defined by

CA = {(c1, . . . , cn) ∈ (Zp)n |
n∑
i=1

cii
a = 0, ∀a ∈ A}.
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Note that a V-code CA, A ⊆ n, is just the space of the solutions of
the system of linear equations∑

i∈n

iaxi = 0, (a ∈ A),

over the Galois field Zp with unknowns x1, . . . , xn. Since the matrix
of this system, i.e the matrix (ia)i∈n, a∈A, is of Vandermond’s type, we
have dim(CA) = n− |A|.

According to the definition of V-codes, it is clrear that the matrix
HA whose rows are the vectors (1, 2a, . . . , na), a ∈ A, is a parity-check
matrix for the code CA. Next, we are going to describe the generator
matrix of the code CA. For this, we need the following simple lemma.

Lemma 3.2. Let F be a finite field of order q and F× denotes the
multiplicative group of F . For an integer k, if q−1 ∤ k then

∑
i∈F× ik =

0.

Proof. Let F k = {ak | a ∈ F} and assume that b is a generator for the
cyclic group F×. Then bkF k = F k. Now, we have

bk
∑
i∈F×

ik =
∑
i∈F×

bkik =
∑
i∈F×

ik,

showing that (bk − 1)
∑

i∈F× ik = 0. Since q − 1 ∤ k, bk ̸= 1. Therefore,
we should have

∑
i∈F× ik = 0, as desired. □

Lemma 3.3. Let A ⊆ n. Then there exists B ⊆ n such that C⊥
A = CB.

Proof. Let B = n \ {n − a | a ∈ A}. We claim that C⊥
A = CB. First,

note that the vectors (1b, 2b, . . . , nb), b ∈ B, form a basis of C⊥
B . We

show that (1b, 2b, . . . , nb) ∈ CA for all b ∈ B. Let a ∈ A and b ∈ B.
There are two cases.

Case 1. 2 ≤ a + b ≤ 2p − 3. Since a + b ̸= n, p − 1 ∤ a + b. Thus,
by lemma 3.2, we have

∑n
i=1 i

a+b = 0.
Case 2. a + b = 2p − 2 = 2(p − 1). In this case, a = b = p − 1.

Hence,
n∑
i=1

ia+b =
n∑
i=1

i2(p−1) =
n∑
i=1

i2.

Since p− 1 ∤ 2, lemma 3.2 shows that
∑n

i=1 i
2 = 0.

So the vector (1b, 2b, . . . , nb) ∈ CA for all b ∈ B. Thus, C⊥
B ⊆ CA.

Since dim(C⊥
B ) = |B| = n−|A| = dim(CA), we have C⊥

B = CA, proving
that C⊥

A = CB. □
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Corollary 3.4. Let A ⊆ n and B ⊆ n such that C⊥
A = CB. Then

the matrix GA whose rows are the vectors (1, 2b, . . . , nb), b ∈ B, is a
generator matrix for CA.
Proof. By proposition 3.3, C⊥

A = CB where B = n \ {n − a | a ∈ A}.
Thus, the set {(1, 2b, . . . , nb) | b ∈ B} is a basis of (C⊥

A )
⊥ = CA, as

desired. □

4. Minimum Distance of S-codes

In this section, we will show that there are a wide range of MDS
codes in the family of V-codes. First, we need the following definition.

Definition 4.1. Let A ⊆ n and 1 ≤ d ≤ n. We say that A is an d-
successive set if there exists some a ∈ A in which A = {a, a+1, . . . , a+
d− 1}.

Now, we introduce an interesting family of linear MDS codes.

Theorem 4.2. Let A ⊆ n and 1 ≤ d ≤ n. If A is a d-successive set,
then CA is an MDS code.
Proof. By hypothesis, there exists a ∈ A such that A = {a, a+1, ..., a+
d− 1}. Since dim(CA) = n− d, It is enough to prove that there is no
codeword of weight t ≤ d in CA. This will be done by induction on d.

Let d = 1. Then CA = {(x1, . . . , xn) |
∑n

i=1 xii
a = 0}. If CA has a

codeword of weight 1, then we should have ia = 0 (mod p) for some
1 ≤ i ≤ n, showing that p | i, a contradiction. Hence, the statement
holds for d = 1.

Now, suppose that the statement is true for d and assume that A =
{a, a + 1, . . . , a + d} is a (d + 1)-successive set. Since CA ⊆ CA\{a+d},
by hypothesis induction, there is no codeword c ∈ CA with wt(c) ≤ d.
Now, assume that there exists c ∈ CA with exactly d + 1 nonzero
coordinates ci1 , ci2 , ..., cid+1

. This means that there is a nonzero solution
for the system of linear equations

d+1∑
j=1

xjij
z = 0 (z ∈ A),

over the field Zp. The cofficients matrix of the system is D = (ij
z),

j = 1, . . . , d+ 1, z ∈ A. Let us compute the determinant of D.∣∣∣∣∣∣∣∣
i1
a i2

a . . . id+1
a

i1
a+1 i2

a+1 . . . id+1
a+1

... ... ...
i1
d i2

d . . . id+1
d

∣∣∣∣∣∣∣∣ =
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i1
ai2

a...id+1
a

∣∣∣∣∣∣∣∣
1 1 . . . 1
i1 i2 . . . id+1
... ... ...
i1
d i2

d . . . id+1
d

∣∣∣∣∣∣∣∣ =
ia1i

a
2 . . . i

a
d+1

∏
1≤r<s≤d+1

(is − ir).

Now, it is clear that det(D) ̸= 0 (mod p). Thus, the system of linear
equations has unique zero solution, a contradiction. This completes
the proof. □
Corollary 4.3. Let A ⊆ n contains a t-successive subset. Then
d(CA) ≥ t+ 1.

5. Two-dimensional V-codes

In this section, we generalize the process described for constructing
V-codes. As before, p > 3 is a prime number, n = p − 1 and n =
{1, 2, . . . , n}. Throughout this section, Matr,s(Zp) denotes the set of
all (r × s)-matrices over Zp. In the case of r = s, we simply use the
notation Matr(Zp).

Definition 5.1. Let U ⊆ n × n be a non-empty set. we define the
2-dimensional V-code CU to be the set of all matrices X = (xij) ∈
Matn(Zp) whose

∑
i,j xiji

ajb = 0 for all (a, b) ∈ U.

Note that, by definition, for any subset U ⊆ n× n, we obtain a code
whose elements are matrices, that can be viewed as vectors of length
n2, by reading them column by column.

A simple way of describing the 2-dimensional V-code CU is as follows.
Let H(U) denote the matrix whose rows and columns are labeled by the
pairs (a, b) ∈ U and (i, j) ∈ n× n respectively and H(U)(a,b),(i,j) = iajb.
Then the code CU is just the set of all vectors X ∈ (Zp)n

2 in which
H(U)XT = 0.

For U ⊆ n× n, let
π1(U) = {α ∈ n | ∃β ∈ n, (α, β) ∈ U},
π2(U) = {β ∈ n | ∃α ∈ n, (α, β) ∈ U}.

For any α ∈ π1(U), let ψ(α) = {β ∈ π2(U) | (α, β) ∈ U} and define
the (|π1(U)| × n)-matrix Aα to be the matrix whose rows and columns
are labeled by the sets π1(U) and n respectively, and (Aα)ij = δiαj

α,
where δ is the Kronecker delta function. Beyond, define the (|π2(U)| ×
n)-matrix Bα to be the matrix whose rows and columns are indexed



SHORT TITLE OF THE PAPER SHOULD APPEAR HERE 297

by the sets π2(U) and n respectively, and (Bα)ij = χψ(α)(i)j
i, where

χψ(α)(i) is 1 if i ∈ ψ(α) and is zero elsewhere.
Now, consider the linear transformation

Tα : Matn(Zp) → Mat|π1(U)|,|π2(U)|(Zp)

defined by Tα(X) = AαXB
t
α, where Bt

α denotes the transpose of the
matrix Bα. Then, we will have

Tα(X)ij =
n∑
k=1

(AαX)ik(B
t
α)kj

=
n∑
k=1

(
n∑
l=1

(Aα)ilXlk)(Bα)jk

=
∑
k

∑
l

δiαl
αXlkχψ(α)(j)k

j

= δiαχψ(α)(j)
∑
k,l

Xlkl
αkj,

for all i ∈ π1(U), j ∈ π2(U) and X ∈ Matn(Zp).
Now, for all X ∈ Matn(Zp), let T (X) =

∑
α∈π1(U) Tα(X). Then, for

all i ∈ π1(U) and j ∈ π2(U), we have

T (X)ij =
∑

α∈π1(U)

δiαχψ(α)(j)(
∑
k,l

Xlkl
αkj)

= χψ(α)(j)
∑
k,l

Xlkl
ikj

=


0 (i, j) /∈ U∑

k,lXlkl
ikj (i, j) ∈ U.

This implies the following lemma.

Lemma 5.2. For U ⊆ n× n, X ∈ CU iff T (X) = 0.

Proof. Just note that T (X) = 0 iff for all (i, j) ∈ U,
∑

k,lXlkl
ikj = 0

iff X ∈ CU. □

Theorem 5.3. Let U ⊆ n× n. Then

n2 −
∑

α∈π1(U)

|ψ(α)| ≤ dim(CU) ≤ n2 − |π1(U)||π2(U)|.

Proof. It’s easy to see that rank(Tα) = rank(Aα)rank(Bα) = |ψ(α)|.
Since T =

∑
α∈π1(U) Tα, rank(T ) ≤

∑
α∈π1(U) rank(Tα) =

∑
α∈π1(U) |ψ(α)|.
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Hence,
dim(CU) = n2 − rank(T ) ≥ n2 −

∑
α∈π1(U)

|ψ(α)|.

On the other hand, CU ⊆ Cπ1(U)×π2(U). Hence,
dimCU) ≤ dim(Cπ1(U)×π2(U)).

Let C ∈ Mat|π1(U)|×n(Zp) and D ∈ Matn×|π2(U)|(Zp) denote the matrices
(ia)a,n and (jb)b,j, a ∈ π1(U), b ∈ π2(U) and 1 ≤ i, j ≤ n, respectively.
As mentioned before, It is easy to see that the rank of the linear trans-
form S : Matn(Zp) → Mat|π1(U)|×|π2(U)|(Zp), defined by S(X) = CXD
is equal to rank(C)rank(D). This shows that the dimension of the
kernel of S is n2 − rank(C)rank(D) = n2 − |π1(U)||π2(U)|. Thus, the
code Cπ1(U)×π2(U) has dimension n2 − |π1(U)||π2(U)|. This implies that
dim(CU) ≤ n2 − |π1(U)||π2(U)|, as claimed. □

Theorem 5.4. For U ⊆ n× n, we have

min{d(Cπ1(U)), d(Cπ2(U))} ≤ d(CU) ≤ (
∑

α∈π1(U)

|ψ(α)|) + 1.

Proof. By singleton bound, and thanks to theorem 5.3, we have d(C) ≤
(
∑

α∈π1(U) |ψ(α)|) + 1.
Now, let 0 ̸= X ∈ CU. Then,

∑
i,j Xiji

αjβ = 0 for all (α, β) ∈ U. This
means that, for α ∈ π1(U),

∑
j(
∑

i i
αxij)j

β = 0 for all β ∈ ψ(α). There-
fore, for each α ∈ π1(U), the vectote wα = (

∑
i i
αXi1, . . . ,

∑
i i
αXin) lies

in the v-code Cψ(α). Now, there are 2 cases.
Case 1. wα = 0 for all α ∈ π1(U). In this case, for any 1 ≤ j ≤ n,

the vector vj = (X1j, . . . , Xnj) ∈ Cπ1(U). Since 0 ̸= X, there exists
1 ≤ j ≤ n such that vj ̸= 0. Thus, wt(vj) ≥ d(Cπ1(U)) which implies
wt(X) ≥ d(Cπ1(U)).

Case 2. There exists α ∈ π1(U) such that wα ≠ 0. Since wα ∈ Cψ(α),
wt(wα) ≥ d(Cψ(α)) := dα. This means that there are 1 ≤ j1, . . . , jdα ≤
n such that

∑
i i
αXijr ̸= 0, r = 1, . . . , dα, which implies wt(X) ≥ dα ≥

d(Cπ2(U)).
Thus, the cases discusses above show that

d(CU) ≥ min{d(Cπ1(U)), d(Cπ2(U))},

as desired. □
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