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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A novel optimal probabilistic planning 
for hydrogen-based microgrids. 

• Considering the reliability constraints in 
the proposed stochastic method. 

• Studying the proposed method in 
various climates. 

• Investigating the EVs and HVs impacts 
on the optimal planning of MGs. 

• More than 4.66% accuracy improve-
ment by applying the proposed method.  
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A B S T R A C T   

Much attention has been paid to the deployment of Hydrogen storage systems (HSSs) and Hydrogen vehicles 
(HVs) in the modernized energy system. However, a research gap exists in the literature about optimal proba-
bilistic planning of microgrids (MGs) equipped with HSS, considering the uncertainties of renewable energy 
resources and electric vehicle (EV) and HV owners’ behaviors. The main purpose of this research is to fill such a 
gap by developing a new probabilistic optimization problem to determine the capacity of Hydrogen-based MGs’ 
sub-systems. Another contribution is to consider the reliability constraints and loss of energy cost (LOEC) in the 
MGs’ total net present cost (TNPC). The Monte Carlo simulation (MCS) and Flower Pollination Algorithm (FPA) 
are used to model stochastic behaviors and solve the proposed probabilistic optimization problem. This paper 
studies different actual climates of Iran based on historical data, while various coordinated/uncoordinated 
charging modes of EVs and HVs are examined. Test results infer that a significant inaccuracy (more than 4.66% 
depends on the climate conditions and vehicle scenarios) occurs due to neglecting the uncertainties. The 
sensitivity analyses imply that the reliability constraints, LOEC, and their interactions might affect the MGs’ 
optimal design.  
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Nomenclature 

Variables and Parameters 
SCI Hourly solar clearness index 
ηINV Inverter efficiency 
E Expected value function 
PINV-load Inverter output power (kW) 
PPV Photovoltaic (PV) output power (kW) 
μDD Mean value of driving distance 
t Time step (hour) 
δDD Standard deviation of driving distance 
NPV Number of PV panels 
μAT Mean value of the arrival time 
IPV PV output current (A) 
δAT Standard deviation of arrival time 
VPV PV output voltage (V) 
μDT Mean departure time 
cws Shape parameter of Weibull cumulative density function 

(CDF) 
kws Scale parameter of Weibull cumulative density function 

(CDF) 
Nv Total number of vehicles 
δDT Standard deviation of departure time 
ni,F Number of faulty components of the i-th type of elements 
G/G0 Solar irradiance/standard solar irradiance (kW/m2) 
u Uniform distributed random number 
p A threshold for the switch probability variables 
ws Wind speed 
nv Vehicle number 
wsco Cut-off speed (m/s) 
wsci Cut-in speed (m/s) 
PWT Wind turbine (WT) output power (kW) 
PRES Available output power of the renewable energy sources 

(kW) 
wsrated Rated wind speed (m/s) 
NWT Number of wind turbines 
PRated

WT Wind turbine rated power (kW) 
Ai Availability of the i-th type of elements 
Tc/Ta Solar cell/ambient temperature (◦C) 
ηPV PV efficiency 
μTa 

Mean value of the solar ambient temperature 
IS Inverter state 
σTa Standard deviation of ambient temperature 
TNPC Total net present cost (USD) 
α/β Parameters of the Beta probability distribution 
NPCCom Net present cost for system components (USD) 
PDF Probability density function 
NPCLOEE Net present cost of loss of load (USD) 
CDF Cumulative density function 
CI Total investment cost (IC) (USD) 
NOT Nominal operating temperature of PV cells (◦C) 
CO&M Total operation and maintenance (O&M) cost (USD) 
KI Current-temperature coefficient (A/◦C) 
Ci

O&M Operation and maintenance cost of the i-th type of 
elements (USD) 

Isc PV short-circuit current (A) 
CRep Total replacement cost (RC) (USD) 
V/Voc Output voltage and open-circuit voltage of PV modules (V) 
Ci

Rep Replacement cost of the i-th type of elements (USD) 
KV Voltage temperature coefficient (V/◦C) 
LOEE Loss of energy expected 
η Efficiency 
LOEEmax Maximum allowed loss of energy expected 
ηEL Electrolyzer efficiency 

LC Load curtailment 
ηI Electric current efficiency 
PFLOEE Loss of load penalty factor 
ηV Voltage efficiency 
FPAI Iteration number of the flower pollination algorithm 
PEL-HT Electrolyzer output power to hydrogen tank (HT) (kW) 
ENSC Energy not-supplied cost (USD/kWh) 
PRES-EL Renewable source output power to electrolyzer (kW) 
PWA Capital annual recovery factor 
EHT Stored energy in HT (kWh) 
Ni Number of the i-th component 
PHT-FC HT output power to the fuel cell (FC) (kW) 
ir Real interest rate 
EHV Load demand of hydrogen vehicle (HV) (kW) 
irnom Nominal interest rate 
mHT Stored hydrogen mass (kg) 
f Annual inflation rate 
HHV High heat value (kWh/m3) 
y Number of replacements 
Δt Time interval (hour) 
L Useful lifetime (year) 
PFC-INV FC output power to the inverter (kW) 
Г Gamma function 
ηFC FC efficiency 
g* The best solution of any iteration of the flower pollination 

algorithm 
PRES-INV Renewable source output power to the inverter (kW) 
ε A random variable with the uniform distribution in [0,1] 

for applying the local pollination 
γ Scale coefficient 
xFPAI

l The l-the decision variable at the FPAI-the iteration of the 
flower pollination algorithm 

L(λ) Stair size 
LOLE Loss of load expected 
MCSI Iteration number of the Monte Carlo simulation 
Pr Probability function 
nWT,F Number of failed WT units 
nPV,F Number of the failed PV units 
AWT Availability of WT units 
APV Availability of PV units 
NMCS Maximum number of MCS iterations 
AINV Availability of the inverter units 
CPVs Investment cost of PV units (USD) 
CWTs Investment cost of WT units (USD) 
CEL Investment cost of the electrolyzer (USD) 
CHT Investment cost of the Hydrogen tank (USD) 
CFC Investment cost of the fuel cell (USD) 
CINV Investment cost of the inverter (USD) 
CPVs

O&M Annual operation and maintenance cost of PV units 
CWTs

O&M Annual operation and maintenance cost of WT units 
CEL

O&M Annual operation and maintenance cost of the electrolyzer 
CHT

O&M Annual operation and maintenance cost of the Hydrogen 
tank 

CFC
O&M Annual operation and maintenance cost of the fuel cell 

CINV
O&M Annual operation and maintenance cost of the inverter 

CPVs
Rep Replace cost of PV units 

CWTs
Rep Replace cost of WT units 

CEL
Rep Replace cost of the electrolyzer 

CHT
Rep Replace cost of the Hydrogen tank 

CFC
Rep Replace cost of the fuel cell 

CINV
Rep Replace cost of the inverter 

yPV Total number of PV replacements 
yWT Total number of WT replacements 
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1. Introduction 

1.1. Motivation and incitement 

The global energy demand is steadily increasing worldwide, and it 
has been reported that the energy sector would be one of the essential 
economic contributors to investments and job positions [1,2]. Also, 
exhausting fossil fuel-based energy generation technologies has received 
much attention [3–5]. Hence, a great deal of attention has been paid to 
sustainable developments in the field of energy systems [6–8]. The 
deployment of new technologies, such as Hydrogen-based energy sys-
tems [4,9], and Hydrogen and electric vehicles [10,11], besides the 
renewable energy resources in microgrid (MG) frameworks, have been 
reported to improve energy system costs and efficiency. On the other 
hand, reliability concerns of energy systems have been highlighted in 
recent years [12,13]. 

Several studies have tried to respond to microgrids (MGs) optimal 
planning challenges, including Hydrogen-based energy systems, 
Hydrogen vehicles (HVs), and electric vehicles (EVs) [14,15]. However, 

there is a research gap in the MGs’ optimal reliability-based planning, 
considering the uncertainties of renewable energy resources and vehi-
cles due to stochastic behaviors of vehicle owners, besides the unavail-
ability of sub-systems under various climatic conditions. This paper aims 
to fill the discussed gap, which is helpful to overcome the negative im-
pacts of uncertain parts on the MGs’ optimal design and planning. 

The proposed optimal reliability-based planning of the MGs under 
various climatic conditions would be helpful to decide about suitable 
techno-economic decisions about the non-fossil fuel-based vehicles and 
other energy sources. 

1.2. Literature review 

1.2.1. MGs’ optimal planning without reliability constraints 
Much attention has been paid to the optimal planning/designing of 

energy systems, MGs, and smart grids, including renewable energy 
sources, new technologies, and energy storage systems (ESSs) [16–18]. 

In [19], several stand-alone energy systems supplying the intensive 
energy demand for seawater desalination sites have been investigated to 

yEL Total number of electrolyzer replacements 
yHT Total number of Hydrogen tank replacements 
yFC Total number of fuel cell replacements 
yINV Total number of inverter replacements 
LPV Lifetime of PV units 
LWT Lifetime of WT units 
LEL Lifetime of the electrolyzer 
LHT Lifetime of the Hydrogen tank 
LFC Lifetime of the fuel cell 
LINV Lifetime of the inverter 
nH2 Amount of produced Hydrogen 
V0

EL Reversible potential 
FEL Faraday constant 
VOhm

EL Ohmic voltage 
JEL Current density 
VAct,a

EL Activation overpotential of anode 
VEL Overpotential 
VAct,c

EL Activation overpotential of cathode 
Eelec

EL Required electricity for Hydrogen production 

Abbreviations 
PV Photovoltaic 
WT Wind Turbine 
EL Electrolyzer 
HT Hydrogen Tank 
FC Fuel Cell 
TNPC Total Net Present Cost 
PSO Particle Swarm Optimization 
WM Worst Month 
HSS Hydrogen Storage System 
RO Robust Optimization 
LPSP Loss of Power Supply Probability 
ESS Energy Storage System 
PHS Pumped Hydro Storage 
HEV Hybrid Electric Vehicles 
SC Supercapacitor 
DP Dynamic Programming 
ES Energy Storage 
AI Artificial Intelligence 
MILP Mixed-Integer Linear Programming 
DD Driving Distance 
AT Arrival Time 
O&M Operation and Maintenance 

LOEC Loss of Energy Cost 
LOLE Loss of Load Expected 
LOEE Loss of Energy Expected 
PHEV Plug-in Hybrid Electric Vehicle 
SCI Solar Clearness Index 
PEME Polymer Electrolyte Membrane Electrolyzer 
ANN Artificial Neural Network 
CFD Computational Fluid Dynamics 
OF Objective Function 
NPC Net Present Cost 
EV Electric Vehicle 
HV Hydrogen Vehicle 
MG Micro Grid 
GHG Greenhouse Gas 
DEG Distributed Energy Generation 
RES Renewable Energy Sources 
GWO Grey Wolf Optimizer 
YAM Yearly Average Month 
DPR Demand Response Program 
GAMS General Algebraic Modeling System 
GT Game Theory 
MGO Micro Grid Operator 
HFC Hydrogen Fuel Cell 
COE Cost of Energy 
V2G Vehicle to Grid 
FCHEV Fuel Cell Hybrid Electric Vehicle 
RET Region Elimination Technique 
TLBO Teaching-Learning Based Optimization 
FPA Flower Pollination Algorithm 
DT Departure Time 
IC Investment Cost 
RC Replacement Cost 
MCS Monte Carlo Simulation 
ENSC Energy Not Supplied Cost 
PEMFC Proton Exchange Membrane Fuel Cell 
PDF Probability Density Function 
CDF Cumulative Density Function 
PHSS Pumped Hydro Storage System 
MINLP Mixed-Integer Nonlinear Programming 
GA Genetic Algorithm 
SOE State of Energy 
ABC Artificial Bee Colony  
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find the most cost-effective solutions. The optimal sizing, minimizing 
the total net present cost (TNPC), and CO2 emissions reduction have 
been concerned. The simulations were carried out using HOMER Pro 
software, and the results showed that the energy system, including 
photovoltaic (PV)/wind turbine (WT)/diesel/battery, was the optimum 
solution for such an application. Elmaadawy et al. [19] concluded that 
the system TNPC could be reduced up to 81.5% by the suggested opti-
mum solution. However, renewable energy sources’ reliability and 
probabilistic behaviors have not been concerned in this reference. 
Gomez-Gonzalez et al. [12] reported a new algorithm to optimize the 
energy management and sub-system sizing of household hybrid 
PV-based systems, including ESSs. Although it has been noted in 
Ref. [12] that the system reliability is guaranteed by minimizing the cost 
of the frequency containment reserve-energy not served, the reliability 
indices have not been used. The optimum techno-economic sizing for a 
hybrid MG, including PV units, biomass units, and battery storage sys-
tem based on the dependency on diesel generators, has been introduced 
in Ref. [20], while the reliability concerns have not been considered 
directly. 

In none of the discussed references in this sub-section, the reliability 
aspects have not been concerned with the developed objective function 
and constraints of the introduced optimization problem. Hence, the 
MG’s reliability requirements might not be met within the results of this 
type of optimal sizing. Moreover, new aspects, such as Hydrogen-based 
systems and non-electric vehicles, have not been studied in this category 
of the available research works. 

1.2.2. Optimal reliability-based planning for MGs 
The reliability aspects play a crucial role in optimizing energy sys-

tems and MGs’ optimal planning and operation. Thus, in various studies, 
reliability-oriented optimization problems have been reported. Anoune 
et al. [21] tried to introduce a deterministic approach for reducing the 

investment cost (IC) of hybrid renewable-based energy systems while 
maintaining a constant temperature for bitumen storage was concerned. 
It has been reported that obtained results improved the system reliability 
in Ref. [21], but no discussion was presented about the details in system 
reliability. Also, the probabilistic behaviors of MG’s sub-systems have 
not been studied. Heidar et al. [22] have studied optimal TNPC-based 
strategies for MGs, considering weather changes. Reliability-based 
deterministic and stochastic optimization results in Ref. [22] showed 
that optimal configuration, including PV/battery/hydropower with 
optimal capacities, could significantly improve emissions. New optimal 
planning for a hybrid MG, including PV/WT/diesel/battery, has been 
investigated by Karrich et al. [23]. The TNPC, CO2 emissions, and 
penalty cost for greenhouse gas (GHG) subject to loss of power supply 
probability (LPSP) constraint, as one of the reliability indices, have been 
concerned in Ref. [23]. Hybrid and off-grid renewable-based energy 
systems have been studied, besides weather forecasting by artificial 
neural networks (ANNs) by Ref. [24], while the TNPC, LPSP, and other 
reliability constraints have been considered. Barakat et al. [25] pre-
sented LPSP, the energy expense, and the renewable energy fraction to 
reduce the GHG emissions for the proposed energy management system 
of an on-grid rural energy system. 

Although different research works have been done in the field of 
MG’s reliability-based optimal sizing of elements and designing, the new 
energy technologies, like the Hydrogen-based systems and non-electric 
vehicles, have not been studied. This category of research works in the 
literature could be extended by adding the discussed new technologies, 
besides the probabilistic approaches to concern the stochastic behaviors. 

1.2.3. Optimal planning for MGs, including hydrogen-based energy systems 
Many works of the literature have studied hydrogen-based energy 

systems [26,27]. In Ref. [28], the game theory (GT) and robust opti-
mization method have been utilized for MGs’ optimal energy 

Table 1 
Summary of the literature about optimal energy management system of MGs.  

Ref. Year EV HV Reliability 
constraints 

Metaheuristic optimization 
algorithms 

Various climatic 
conditions 

EL/HT/FC 
system 

Sensitivity 
analyses 

Hybrid 
RES 

Probabilistic 
modeling of RES 

[22] 2020 – – * – – – * * * 
[32] 2018 – – – * – – * * – 
[42] 2020 * – – * – * – – – 
[41] 2021 – * – – – – – – – 
[29] 2020 – – – – * – * * – 
[19] 2020 – – * – – – – * – 
[44] 2019 – – * * – – * * – 
[30] 2019 – – – – – * – * – 
[24] 2019 – – * * – * – * – 
[25] 2020 – – * * – – – * – 
[31] 2020 – – – – – * * * – 
[45] 2019 – – * – – * – * – 
[46] 2019 * * – – – * * – * 
[39] 2020 * * – – – * * – * 
[40] 2020 * * – – – – – – * 
[35] 2019 * – – – – – * – – 
[47] 2017 * – * – – – * * * 
[48] 2018 – – * – – * – * – 
[37] 2016 * – – * – – – * – 
[49] 2019 – – * * – * – * – 
[50] 2021 – – * * – – – * – 
[51] 2021 – – * – – – * * – 
[52] 2021 – – * – – – – * – 
[53] 2021 – – * * – – – * * 
[54] 2021 – – * * – – * * – 
[23] 2021 – – * * – – * * – 
[55] 2021 – – – – – – * * – 
[56] 2021 – – * – – – – * – 
[57] 2021 – – – – – – * * * 
[58] 2021 – – * * – – – * – 
[59] 2021 – – * * – * * * – 
[20] 2021 – – – – – – – * – 
Proposed 

Study 
* * * * * * * * *  
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Fig. 1. Structure of the proposed method; (a) architecture of the understudy energy system, (b) conceptual schematic of the working cycle of EVs, (c) conceptual 
schematic of the working cycle of HVs, (d) flowchart of the simulation process of EVs/HVs integrated charging load by the MCS [97]. 
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management schemes, considering the electricity price uncertainties. In 
Ref. [29], stand-alone energy systems powered by photovoltaic (PV) and 
wind turbine (WT) units have been studied. The ESSs have been 
considered by Rad et al. [29] to supply the energy and water for the 
residential sector under various climatic conditions. Studying 
Hydrogen-based systems is one of the advantages of this research. 
However, the uncertainties of renewable energy resources and reli-
ability constraints have not been concerned, and the reliability con-
straints were not considered. In Ref. [30], an off-grid energy system has 
been studied, while the system was equipped with PV panels as its pri-
mary power source. Moreover, the hydrogen tank (HT), fuel cell (FC), 
and electrolyzer (EL) were considered as both ESSs and secondary power 
sources. In Ref. [31], some optimization problems have been reported to 
improve the reliability of hybrid renewable-based energy systems using 
multiple ESS scenarios, e.g., without any ESS, pumped hydro storage 
system (PHSS), Hydrogen fuel cell (HFC), and hybrid PHSS/HFC ESS. 
Abdelshafy et al. [32] have studied an off-grid hybrid energy system, 
including a reverse osmosis desalination system to provide both power 
and potable water for residential applications. The PV and WT units 
have been considered the primary source of power, while diesel gener-
ators and hydrogen/battery storage systems have been considered the 
secondary power sources. In Ref. [33], the demand response program 
(DRP) has been studied in HSS-based MGs. A bi-objective scheduling 
framework based on economic and environmental aspects has been re-
ported in Ref. [33]. Hadidian et al. [34] introduced a method for MGs, 
including Hydrogen-based energy system, considering the reliability 
and uncertainties of MGs’ sub-system. However, the EVs, HVs, and im-
pacts of various climates on the advantages of EVs and HVs based on the 
environmental conditions have not been concerned. 

The discussed references in this category are useful to determine how 
the Hydrogen-based energy systems can improve the optimal planning 
of MGs. However, some concerns should be added to these available 
research works, such as studying the impacts of various climates on the 
effectiveness of Hydrogen-based energy systems, probabilistic modeling, 
and other new technologies, e.g., HVs and EVs. 

1.2.4. Optimal planning for MGs, including HVs and EVs 
It has been reported that one of the most effective solutions to 

mitigate the fossil fuel challenges is to replace conventional fossil fuel- 
based vehicles with electric vehicles (EVs), plug-in hybrid electric ve-
hicles (PHEVs), and HVs [35,36]. Many countries have encouraged such 
pollution-free transportation systems [37]. In Ref. [38], an energy sys-
tem, including EV and PV, was investigated in both grid-connected and 
islanded operation modes to support a large number of EVs. Xu et al. 
[39] introduced a new stochastic optimization method to design an 
optimal MG that is capable of selling electricity and Hydrogen to EVs 
and HVs. In Ref. [40], the robust non-stochastic programming method 
has been presented for MGs, which simultaneously supply electricity 
and Hydrogen for EVs and HVs. İnci et al. [41] have developed 
cost-effective FC vehicles by vehicle to grid (V2G) mode. In Ref. [42], 
various energy management strategies and optimum structural designs 
have been reported to optimize the output power of FC in HVs to in-
crease their operational efficiency and lifetime. Fathabadi [43] pre-
sented a fuel cell hybrid electric vehicle (FCHEV), while FC and 
supercapacitor (SC) hybrid power source was proposed to be used in 
FCHEV. 

The literature review shows that several research works have been 
done in the areas of EVs and HVs, besides other MGs’ aspects. However, 
the reliability-based optimal planning for MGs, focusing on HVs, under 
stochastic conditions and various climates, has received less attention. 

1.2.5. Literature overview 
In Table 1, a brief comparative overview of the literature review has 

been presented. As seen, although several research works have been 
done in optimal energy management and planning of the MGs, including 
RESs, ESSs, EVs, and HVs, a research gap exists about the reliability- 

based optimal planning of MGs based on the deployment of EVs and 
HVs under various climates, which considers the probabilistic behaviors 
simultaneously. 

1.3. Contributions and paper organization 

This research tries to respond to discussed research gap in the liter-
ature by investigating the impacts of the environmental and climatic 
conditions on the reliability-oriented optimum designs and structures 
for MGs. Another major contribution is simultaneous stochastic 
consideration of EVs and HVs, besides other MGs’ uncertainties. The 
proposed optimization problem is solved using the Flower Pollination 
Algorithm (FPA), and an actual test system has been selected from Iran 
to illustrate the advantages of the proposed research. The essential 
contributions of this research could be listed as follows: 

- Optimal reliability-based probabilistic design and energy manage-
ment of the MGs, including the EVs and HVs under various climatic 
conditions;  

- Determining the best solution based on the selection of EVs or HVs 
for specific climatic conditions; 

- Comprehensive probabilistic simulation of EV and HV owners’ be-
haviors, such as arrival time (AT), driving distance (DD), and de-
parture time (DT), besides other system uncertainties. 

Other technical features of the proposed study could be itemized as 
follows to highlight the advantages of this research compared to avail-
able references:  

- Optimal sizing of the PV, WT, EL, HT, and FC units considering the 
RESs’ uncertainties;  

- Examination of the proposed method by studying an MG based on 
actual historical data of different climates in Iran;  

- Investigating the optimal schemes for the studied MG under four 
climatic conditions;  

- Studying the impacts of managed and unmanaged charging of EVs on 
the MG’s energy management system;  

- Considering the availability and unavailability of MG’s elements;  
- Considering the TNPC and reliability constraints in the proposed 

optimal schemes;  
- Sensitivity analyses to evaluate the effects of different loss of energy 

costs (LOECs)/energy not-supplied cost (ENSC) on the optimal sys-
tem’s TNPC and optimal sizing of MG’s elements;  

- Sensitivity analyses to get insight into the impacts of the maximum 
allowed loss of load expected (LOLEmax) and the maximum allowed 
loss of energy expected (LOEEmax) on the optimal TNPC and design 
variables. 

The remainder of this manuscript is structured as follows. In Section 
2, the architecture of the understudy hydrogen-based MG is presented. 
Section 3 consists of the mathematical modeling of the proposed opti-
mization problem. The optimization results, sensitivity analyses, and 
discussions are given in Section 4. Finally, Section 5 presents the 
conclusion. 

2. Architecture of the understudy MG 

The architecture of the understudy MG, including the EVs and HVs, is 
shown in Fig. 1(a). As seen, the understudy MG includes the PV panels 
and WTs as its primary sources of power, while the HSS (FC, EL, and HT) 
works as a backup power supply. The PV and WT units are connected to 
a DC bus by DC/DC and AC/DC converters, respectively. RES units and 
FC output power is transformed to AC power using an inverter. 

The rules of the proposed energy management system could be 
described as follows: 

M. Aslani et al.                                                                                                                                                                                                                                  
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- The RESs are considered the primary power sources. The HSS would 
be in the standby mode if the RESs could supply the MG’s loads;  

- The surplus energy generated by PV and WT units is stored in the HT 
using the EL. The constraints of the HT and EL should be considered 
besides the available energy.  

- When the power generated by RESs is insufficient to supply the load 
demand, the FC starts consuming Hydrogen to generate electrical 
power. If the output power of the RESs and the available output 
power of FC could meet the power balance conditions, there is no 
load curtailment. Otherwise, the MG experiences an interruption. 

3. Methods 

3.1. Methods for PV units’ modeling 

The probabilistic behaviors of RESs, such as the output energy of PV 
units, should be included in the studies [60,61]. This paper uses the 
Monte Carlo simulation (MCS) to simulate the probabilistic behaviors 
for solar irradiance and solar clearness index (SCI). A suitable proba-
bility distribution should be assigned based on the historical data and 
statistical analyses. The Beta distribution is an appropriate probability 
distribution, which could precisely show the probabilistic behaviors of 
SCI data [62]. A random variable with uniform distribution in the range 
of [0 1] should be generated in MCS. Then, the inverse of the Beta cu-
mulative density function (CDF) is applied to simulate the SCI, as 
mathematically expressed in (1) [63,64]. Also, the ambient temperature 
is another stochastic parameter affecting the output energy of the PV 
units [65,66]. The Normal distribution can represent the statistical be-
haviors of the ambient temperature [67]. Hence, it is necessary to 
simulate the temperature values by the MCS using (2-3). 

SCI(t)= Inverse
∫SCI

0

Γ(α + β)
Γ(α)Γ(β) uα− 1 (1 − u)β− 1 (1)  

PDF(Ta)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

Ta

√ exp

(

−

(
Ta − μTa

)2

2σ2
Ta

)

(2)  

Ta(t)= Inverse
∫Ta

0

PDF(Ta, u) (3) 

The PVs output is a function of solar irradiation/clearness index [68, 
69]. The output energy of the PV modules could be identified based on 
(4-8) [70]. 

G(t)= SCI(t) × G0 (4)  

Tc(t)= Ta(t) +
(

G(t)×
(NOT − 20)

800

)

(5)  

IPV (t) = SCI(t) × (Isc +(Tc(t) − Ta(t)) ×KI) (6)  

VPV (t) =Voc − KV × Tc(t) (7)  

PPV (t) =NPV × IPV(t) × VPV(t) × ηPV (8)  

3.2. Methods for WTs’ modeling 

The WTs’ output is probabilistic and depends on the wind speed as 
one of the environmental parameters [71,72]. The Weibull probability 
distribution has been reported for modeling the statistical behaviors of 
wind speed in various researches [73]. The wind speed could be simu-
lated by the MCS based on Weibull CDF inverse and generated random 
variable, as presented in (9) [74]. 

ws= − cws ln(u)
1

kws (9) 

Afterward, the WT output should be determined based on its tech-
nical specifications and simulated wind speed by (10) [75]. 

PWT(ws)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ ws < wsci

PRated
WT ×

(ws − wsci)

(wsrated − wsci)
wsci ≤ ws < wsrated

PRated
WT wsrated ≤ ws ≤ wsco

0 ws > wsco

(10) 

Besides the simplified model of the WTs output power, it is possible 
to use more accurate and detailed models for the WT, as demonstrated in 
(11). 

PWT(ws)=

⎧
⎨

⎩

PWT− rated ×
(
A + B × ws + C × ws2) wsci ≤ ws < wsrated

PWT− rated wsrated ≤ ws ≤ wsco 
0 Otherwise.

(11) 

The parameters defined in (11), namely A, B, and C, are formulated 
according to (12)–(14) [76]: 

A=
1

(wsci − wsrated)
2 ×

⎡

⎢
⎣

wsco × (  wsci + wsrated)

− 4 × wsrated × wsci

(
wsci + wsrated

2 × wsrated

)3

⎤

⎥
⎦ (12)  

B=
1

(wsci − wsrated)
2 ×

⎡

⎢
⎣

4 × (wsci + wsrated) ×

(
wsci + wsrated

2 × wsrated

)3

− (3 × wsci + wsrated)

⎤

⎥
⎦ (13)  

C=
1

(wsci − wsrated)
2 ×

[

2 − 4×
(

wsci + wsrated

2 × wsrated

)3
]

(14) 

It is evident that when the wind speed is between the rated and cut- 
off speed, the generated power is valued equal to the rated power. The 
generated power is valued at zero when the wind speed is more than the 
cut-off or less than the cut-in speeds. Moreover, when the wind speed is 
between the rated value and the cut-in speeds, there is a second-order 
polynomial function between the output generation and wind speed. 

Both simplified modeling of WT (as shown in (10)) and the more 
accurate one (as expressed in (11)) can be used. However, the impacts of 
simplifying the models should be examined. 

3.3. Methods for EL’s modeling 

The EL charges the HT if the generated power by PV and WT units’ 
exceeds the load demand. The EL consumes the electrical power and 
transforms the water into Hydrogen and Oxygen [77]. In this study, the 
polymer electrolyte membrane electrolyzer (PEME) [78] has been 
assumed to be used, and its mathematical modeling is shown in (15-16) 
[48]. 

PEL− HT =PRES− EL × ηEL (15)  

ηEL = ηI × ηV (16) 

The ηEL, ηI, and ηV represent the efficiency of EL, electric current’s 
efficiency, and voltage efficiency, respectively. In the above-discussed 
modeling, instead of EL’s electrical energy demand, the power con-
sumption by the EL in hourly steps according to (15). The amount of 
produced Hydrogen rate (nH2 ) can be shown as (17), where FEL and JEL 

represent the Faraday constant and the current density, respectively 
[48]. 

nH2 =
JEL

2FEL
(17) 

The required electricity to produce Hydrogen could be formulated as 
(18) [79]. 
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Eelec
EL = JEL × VEL (18) 

In (18), VEL represents the overpotential, and it is achieved through 
(19), where VOhm

EL , V0
EL, VAct,c

EL , and VAct,a
EL denote the ohmic voltage, 

reversible potential, and the activation overpotential of cathode and 
anode, respectively [80,81]. 

VEL =VOhm
EL + V0

EL + VAct,c
EL + VAct,a

EL (19) 

The supplementary explanations and mathematical modeling of pa-
rameters and variables in (19) could be found in Refs. [82,83]. Thus, the 
amount of produced Hydrogen could be distinguished according to its 
High Heat Value (HHV), based on the Faraday constant and the current 
density. The introduced modeling for the EL is not simplified, and some 
essential formulas just have been presented. 

3.4. Methods for HT’s modeling 

The amount of Hydrogen stored in the HT could be determined using 
(20) [84]. In (20), ηHT represents the efficiency of the Hydrogen storage 
process regarding losses and leakages. Also, Δt denotes simulation time 
interval. In the simulations, it is necessary to consider that the final 
stored Hydrogen in the HT should be more than or equal to the initial 
value, as presented in (21). Moreover, the equivalent mass for stored 
Hydrogen is calculated using Hydrogen’s high heat value based on (22) 
[85]. 

EHT(t) =EHT(t − 1)+PEL− HT(t) ×Δt − PHT− FC(t)×Δt× ηHT − EHV (20)  

EHT(t= t0) ≤ EHT(t= t0 + 24) (21)  

mHT(t)=
EHT(t)
HHVH2

(22) 

The introduced mathematical model for the HT considers the leakage 
while the HVs are charged and the losses during the charge/discharge of 
HT interconnecting EL and FC processes. A proper coefficient (ηHT) is 
used in mathematical modeling for the HT. Due to the power-related 
nature of the proposed objective function and components’ modelings, 
all of the equations have been presented based on either electrical en-
ergy or power. However, the first issue with HT that might be concerned 
is its storage system and internal pressure and temperature. The tem-
perature and pressure of stored Hydrogen must be considered in both HV 
and gas stations [86], which this research has not considered. 

In addition, the fueling process and the hydrogen pressure during the 
fueling are other aspects that could be concerned with the more accurate 
modeling of the HT. The Computational Fluid Dynamics (CFD) 
modeling, like the model presented in Ref. [87], can be used to examine 
the impacts of simplified models on the outputs and optimum solutions. 

3.5. Methods for FC’s modeling 

As discussed in the structure of the understudy MG, the FC supplies 
the loads if the output power of PV and WT units is not sufficient. 
Indeed, the FC consumes the Hydrogen from the HT, and the electrical 
power is provided. The proton exchange membrane fuel cell (PEMFC) 
[88,89] has been considered in this study. In (23), the mathematical 
modeling of the FC has been described. 

PFC− INV =PHT − FC × ηFC (23)  

3.6. Methods for Inverter’s modeling 

The inverter transforms the DC electricity into AC one. The efficiency 
of the energy conversion by the inverter should be considered using 
(24). 

PINV− load =(PFC− INV +PRES− INV) × ηINV (24)  

3.7. Efficiency modeling of sub-systems and elements 

It should be noted that the efficiency of components and sub-systems 
has been assumed to be fixed and constant in this article. However, this 
assumption itself can cause some levels of uncertainty. In practical cases, 
the efficiency of elements and sub-systems depends on various opera-
tional aspects, such as temperature, electrical outputs, non-electrical 
outputs, and degradation impacts [90,91]. Hence, further future 
research works are suggested to examine the changes in the efficiency of 
elements and sub-systems on the optimum solutions. 

3.8. Methods for EVs and HVs’ modeling 

The understudy MG consists of EVs and HVs. The probabilistic be-
haviors of vehicle owners affect the charging load demand of EVs and 
HVs. Hence, it is not possible to precisely study the MG energy man-
agement and optimal design without considering the EVs and HVs’ 
uncertainties [92,93]. Furthermore, the stochastic charging load of HVs 
influences the HT modeling similar to the electrical charging load of EVs 
[94]. In this paper, the MCS is utilized to concern the uncertainties of 
AT, DD, and DT for EVs and HVs. 

3.8.1. EVs and HVs’ DD 
By assigning the Log-Normal probability distribution to DD data, it is 

possible to model the statistical behaviors precisely, as shown in (25) 
[54]. Hence, the DD could be simulated using the MCS based on CDF 
inverse and a random variable with uniform distribution, as mathe-
matically expressed in (26). 

PDF(DD)=
1

̅̅̅̅̅
2π

√
δDDDD

exp

(

−
(ln DD − μDD)

2

2δ2
DD

)

(25)  

DD=CDF− 1(μDD, δDD, u) (26)  

3.8.2. EVs and HVs’ AT 
The home arrival time of EVs and HVs is one of the essential prob-

abilistic parameters affecting the vehicle charging’s loads and the MG 
design and energy management system. The Normal probability distri-
bution is a common alternative for modeling the vehicles’ AT, as shown 
in (27) [95]. The AT should be simulated according to the CDF inverse 
based on historical data by MCS, as presented in (28). 

PDF(AT)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
̅̅̅̅̅
2π

√
δAT

exp

(

−
(AT + 24 − μAT )

2

2δ2
AT

)

0 < AT ≤ μAT − 12

1
̅̅̅̅̅
2π

√
δAT

exp

(

−
(AT − μAT)

2

2δ2
AT

)

μAT − 12 < AT ≤ 24

(27)  

AT =CDF− 1(μAT , δAT , u) (28)  

3.8.3. EVs and HVs’ DT 
The Normal probability distribution function could represent the 

statistical behaviors of vehicles’ DT, as given in (29) [95]. Similar to 
other stochastic parameters, the MCS should simulate the DT using the 
CDF inverse and random variables according to (30). 

PDF(DT)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
̅̅̅̅̅
2π

√
δDT

exp

(

−
(DT − μDT)

2

2δ2
DT

)

0 < DT ≤ μDT + 12

1
̅̅̅̅̅
2π

√
δDT

exp

(

−
(DT − 24 − μDT)

2

2δ2
DT

)

μDT + 12 < DT ≤ 24

(29)  

DT =CDF− 1(μDT , δDT , u) (30) 
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3.8.4. Integrated charging load of vehicles 
Since the behaviors of vehicles are independent, it is possible to 

simulate the AT, DD, DT, and charging load demand of each vehicle by 
the MCS. Finally, the charging load of all EVs and HVs could be inte-
grated based on separate charging load demands. In Fig. 1(b), the con-
ceptual schematics of EVs’ probabilistic behaviors and their charging are 
depicted. Fig. 1(c) shows this schematic for HVs’ modeling. As seen, the 
working cycles of EVs and HVs might be different. In addition, the 
flowchart of the procedure to integrate the stochastic charging loads of 
EVs using the MCS is shown in Fig. 1(d). 

As depicted in Fig. 1(b)–(c), the charging period and charging 
mechanism of EVs and HVs would be different due to differences be-
tween the battery storage system of EVs and the Hydrogen storage sys-
tem of HVs. The charging period of EVs would be longer than HVs [96]. 
Moreover, home charging is possible for EVs, while home charging for 
HVs is not possible. The HVs could be charged between the DT and AT. 
In this paper, it has been assumed that the HVs would be charged at the 
parking lots (around 1 h after home departure). 

3.9. Methods for reliability modeling of energy resources 

In addition to uncertainties of the RES output power, the availability 
of power sources and power converters influences the MG planning and 
operation decisions [98]. Considering the reliability modeling of energy 
resources and converters is one of the most contributions of this study. If 
it is assumed that all PV and WT units are ideal, the available output 
power of RES units could be determined using (31), while in realistic 
conditions, some RES units might be out-of-service. 

PRES(t)=NWT × PWT(t) + NPV × PPV(t) (31) 

The availability and unavailability of each PV unit and WT unit 
should be distinguished based on historical data. The available output 
power of RES could be updated by (32) considering the eventual failures 
of RES units. In (32), the number of unavailable units has been con-
cerned with updating the available output power. 

PRES(t)=
(
NWT − nWT,F(t)

)
×PWT(t) +

(
NPV − nPV,F(t)

)
× PPV(t) (32) 

The Binominal is a suitable probability distribution for modeling the 
availability/unavailability of RES units [99]. The probability of each 
state based on the specific outage of RES units could be calculated by 
(33). 

Pr
(
nWT,F(t), nPV,F(t)

)
=

⎡

⎢
⎢
⎣

(NWT

nWT,F(t)

)

× A(
NWT − nWT,F (t))

WT

×(1 − AWT)
nWT,F (t)

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

(NPV

nPV,F(t)

)

× A(
NPV − nPV ,F (t))

PV

×(1 − APV)
nPV,F (t)

⎤

⎥
⎥
⎦ (33) 

Moreover, the failure of inverter units might adversely affect the 
available energy. Hence, in this study, the failures and unavailability of 
inverters have also been concerned. In (34), the inverters state would be 
a Boolean variable, which it’s one value that represents the availability 

of the inverter, and it’s zero value means that the inverter is out-of- 
service. Accordingly, the RES output power could not be delivered to 
loads if the inverter is unavailable. In addition, the probability of system 
states based on availability and unavailability of RES and inverter is 
determined according to (35). 

PRES(t) = IS(t) ×
[ (

NWT − nWT,F(t)
)
× PWT(t)

+
(
NPV − nPV,F(t)

)
× PPV(t)

]

(34)     

3.10. Proposed objective function (OF) 

In this paper, the TNPC, including the cost of MG elements, energy 
not-supplied cost (ENSC), has been considered for MG’s optimal plan-
ning and design as presented in (36). The size and capacity of PV units, 
WT units, EL, HT, and FC, are decision variables in the proposed opti-
mization problems. 

Min{TNPC=NPCCom +NPCLOEE} (36) 

As demonstrated in (37), the component costs consist of investment, 
maintenance, and replacement costs (RCs). 

NPCCom =CI + CO&M + CRep (37) 

The IC should be evaluated using (38). The NPC corresponding to 
operation and maintenance (O&M) costs is also determined by (39-41). 

CI =CPVs + CWTs + CEL + CHT + CFC + CINV (38)  

CO&M =PWA ×

⎛

⎜
⎜
⎝

CPVs
O&M + CWTs

O&M

+CEL
O&M + CHT

O&M

+CFC
O&M + CINV

O&M

⎞

⎟
⎟
⎠ (39)  

ir=
irnom − f

1 + f
(40)  

PWA(ir,R)=
(1 + ir)R

− 1
ir(1 + ir)R (41) 

In (42), the net present cost corresponding to RCs has been shown. 

CRep =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

CPVs
Rep ×

∑yPV

n=1

(
1

(1 + ir)n.LPV

)

+ CWTs
Rep ×

∑yWT

n=1

(
1

(1 + ir)n.LWT

)

+CEL
Rep ×

∑yEL

n=1

(
1

(1 + ir)n.LEL

)

+ CHT
Rep ×

∑yHT

n=1

(
1

(1 + ir)n.LHT

)

+CFC
Rep ×

∑yFC

n=1

(
1

(1 + ir)n.LFC

)

+ CINV
Rep ×

∑yINV

n=1

(
1

(1 + ir)n.LINV

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(42) 

In (43-45), the mathematical expression for calculating the LC’s NPC 
has been shown. Also, the coefficient of the present value of the annual 
payment regarding the LC has been given in (46-47) [100]. 

Pr
(
nWT,F(t), nPV,F(t), IS(t)

)

=

⎡

⎢
⎢
⎣

(NWT

nWT,F(t)

)

× A(
NWT − nWT,F (t))

WT

×(1 − AWT)
nWT,F (t)

⎤

⎥
⎥
⎦×

⎡

⎢
⎢
⎣

(NPV

nPV,F(t)

)

× A(
NPV − nPV,F (t))

PV

×(1 − APV)
nPV,F (t)

⎤

⎥
⎥
⎦×

[
AINV

IS(t)

×(1 − AINV)
(1− IS(t))

] (35)   
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Fig. 2. FPA optimization algorithm; (a) Conceptual schematic of the flower pollination and (b) Flowchart of solving the proposed optimization problem using 
the FPA. 
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LOEE =E

(
∑

t
LC(t)

)

(43)  

LOEE ≤ LOEEmax (44)  

NPCLOEE =(LOEE ×ENSC) × PWA(ir,R) (45)  

ir =
irnom − f

1 + f
(46)  

PWA(ir,R)=
(1 + ir)R

− 1
ir(1 + ir)R (47) 

The other lower and upper limits for the capacity of MGs and tech-
nical constraints should be concerned in solving the proposed optimi-
zation problem. 

3.11. Optimization problem solving by Flower Pollination Algorithm 
(FPA) 

The FPA has been selected to solve the proposed optimization 
problem in this paper. However, it is possible to solve the proposed 
optimization problem with other algorithms. In Fig. 2(a), the conceptual 
diagram of natural Flower Pollination has been shown. Also, Fig. 2(b) 
shows the procedure of solving the optimization problem using FPA. 

As seen in Fig. 2(a), a flower’s reproduction is carried away by its 
pollination procedure. A flowering plant spreads its pollens using wind 
or flying insects in pollination. Self-pollination and cross-pollination are 
two types of pollination. Cross-pollination occurs between two different 
flowers where the pollen gets carried from one to another via wind or 
some insects. In self-pollination, the pollen from one of the flowers in the 
plant goes to the other flower of the same plant. 

The FPA has been developed based on the optimal natural behavior 
of pollination, while the pollens represent decision variables. As shown 
in Fig. 2, the population of decision variables (pollens) are generated, 
and the best value of the objective function is determined by applying 
the local and global pollination based on the switch probability function. 
The global pollination could be formulated using (48). Also, the math-
ematical expression of the local pollination is presented in (49). The i-th 
and j-th variables are generated randomly, and the ε is selected from a 
uniform distribution in [0,1] [101]. 

xFPAI+1
l = xFPAI

l + γL(λ)
(
g* − xFPAI

l

)
(48)  

xFPAI+1
l = xFPAI

l + ε
(

xFPAI
i − xFPAI+1

j

)
(49) 

Since the introduction of the FPA in 2012, it has been used to opti-
mize a wide variety of optimization problems, such as mixed-integer 
linear programming (MILP) and mixed-integer nonlinear programming 
(MINLP) problems based on different OFs and constraints [102–104]. 
The comparative test results and studies showed that the FPA might 
have better performance than other optimization algorithms depending 

on the nature of optimization problems, particularly in MGs’ optimiza-
tion problems. This paper has only focused on the technical features of 
the proposed optimization problem. However, the performance of 
solving the optimization problem by other metaheuristic algorithms, e. 
g., genetic algorithm (GA), Artificial Bee Colony (ABC), and particle 
swarm optimization (PSO), could be examined in future works. 

4. Test results and discussions 

The proposed method for optimal stochastic planning of MGs is 
applied to a typical test system. The structure of the understudy MG is 
shown in Fig. 1(a). 

In Table 2, the specification of the WT has been demonstrated. The 
technical and economic specifications for WTs have been extracted from 
Refs. [105,106]. In addition, the information of PV units has been 

Table 2 
WT characteristics [105,106].  

Item Parameter Value 

1 Type/Model BWC Excel R/48 
2 Rated output power (kW) 7.5 
3 IC (USD/unit) 19400 
4 O&M cost (USD/unit-year) 75 
5 RC (USD/unit) 15000 
6 Life-time (year) 20 
7 Cut-in speed (m/s) 3 
8 Rated speed (m/s) 13 
9 Cut-out speed (m/s) 25 
10 Maximum number of WTs 300 
11 Availability (%) 96  

Table 3 
PV characteristics [49,107].  

Item Parameter Value 

1 Rated output power (kW) 1 
2 Tracking system Fixed 
3 IC (USD/unit) 7000 
4 O&M cost (USD/unit-year) 20 
5 RC (USD/unit) 6000 
6 Life-time (year) 20 
7 Maximum number of PV units 700 
8 Availability (%) 96  

Table 4 
Converter characteristics [49,106].  

Item Parameter Value 

1 IC (USD/unit) 800 
2 O&M cost (USD/unit-year) 8 
3 RC (USD/unit) 750 
4 Converter efficiency (%) 90 
5 Life-time (year) 15 
6 Rated output power (kW) 1 
7 AC output frequency (Hz) 50 
8 AC voltage (V) 400 
9 DC voltage (V) 48 
10 Availability (%) 99.89  

Table 5 
Hydrogen system’s characteristics [49,106].  

Item Unit Parameter Value 

1 EL IC (USD/unit) 2000 
2 O&M cost (USD/unit-year) 25 
3 RC (USD/unit) 1500 
4 Efficiency (%) 75 
5 Life-time (year) 20 
6 Rated output power (kW) 1 
7 Availability (%) 100 
8 Maximum capacity (kW) 1000 
9 HT IC (USD/unit) 1300 
10 O&M cost (USD/unit-year) 15 
11 RC (USD/unit) 1200 
12 Efficiency (%) 95 
13 Life-time (year) 20 
14 Availability (%) 100 
15 Maximum capacity (kWh) 2000 
16 FC IC (USD/unit) 3000 
17 O&M cost (USD/unit-year) 175 
18 RC (USD/unit) 2500 
19 Efficiency (%) 50 
20 Life-time (year) 5 
21 Rated output power (kW) 1 
22 Availability (%) 100 
23 Maximum capacity (kW) 100  
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presented in Table 3 based on [49,107]. 
The converter is another essential element of the understudy MG, 

which its characteristics have been shown in Table 4. 
The characteristics of the hydrogen system, including the HT, EL, and 

FC units, have been presented in Table 5. 
The technical and economic characteristics of EVs and HVs have 

been described in Table 6. Moreover, the statistical data for modeling 
the stochastic behaviors of vehicle owners has been shown. Fig. 3 shows 
the PDF of vehicle owners’ probabilistic behaviors based on historical 
data. The number of vehicles in the studied MG has been assumed to be 
50. 

Furthermore, the IEEE RTS load profile with a 50 kW peak value has 
been considered in this study [109,110]. 

The proposed optimal planning of the MG, including the EVs and 
HVs, is studied in the following cases:  

- Case No. 1: Desert climate condition  
- Case No. 2: Tropical humid climate condition  
- Case No. 3: Temperate climate condition  
- Case No. 4: Highland climate condition 

The historical environmental data of four zones located in Iran with 
the above climate conditions have been used in this paper. Meibod, 
Delvar, Nahavand, and Langerood cities have been selected for the 
desert, tropical humid, highland, and temperate climates, respectively. 
It should be noted that Iran has six different climates, while desert, 
tropical humid, highland, and temperate climate zones cover over 94% 
of its lands. The realistic measured 10-min environmental records [111], 
which have been transformed into 60-min data, have been used to 
extract the statistical values for MCS. Iran’s Renewable Energy and 
Energy Efficiency Organization (SATBA) has collected the selected data, 
which is responsible for renewable energy resources studies and projects 
in the Iran power ministry. The seasonal statistical values (mean values 
and standard deviations) for solar irradiance and wind speed in under-
study climate conditions have been shown in Figs. 4 and 5, respectively. 

Besides investigating four climate conditions, four scenarios based 
on the deployment of EVs and HVs are studied:  

- Scenario No. 1: MG without any EV/HV (like the studies of [34])  
- Scenario No. 2: EVs’ coordinated charging  
- Scenario No. 3: EVs’ uncoordinated charging  
- Scenario No. 4: HVs’ uncoordinated charging 

In Scenario 1, it has been assumed that the understudy MG does not 
consist of EVs/HVs, like the studies of [34]. In Scenarios 2 and 3, the MG 
should supply the charging loads of EVs under the coordinated and 
uncoordinated charging modes. Finally, the MG, including HVs, is 
studied under Scenario 4. It has been assumed that HVs are 

uncoordinatedly charged because the HVs’ home charging would not be 
possible. Scenario 1 is used to compare with other scenarios to investi-
gate the impacts of EVs/HVs on the MG’s TNPC and its optimal sizing 
and design. Moreover, the effects of coordinated charging and 

Table 6 
Specifications of vehicles and their owners’ behaviors [94,96,108].  

Item Parameter Value 

1 Total capacity of EV battery (kWh) 30 
2 EV electricity consumption (kWh/km) 0.15 
3 Min/Max allowable stored electricity in the EV battery (kWh) 3/30 
4 Maximum charging/discharging rate of EV (kW) 5 
5 Charging/discharging efficiency of EV battery 0.9 
6 HV fueling flow rating (kg/min) 1 
7 HV fueling/charging time (min) 5 
8 HHVH2 (kWh/m3) 39.8 
9 HV gasoline equivalent for driving at city (mile/kg) 51 
10 Mean of AT (hour) 17.6 
11 Variance of AT (hour) 3.4 
12 Mean of DT (hour) 8.92 
13 Variance of DT (hour) 3.24 
14 Mean of DD (km) 3.2 
15 Variance of DD (km) 0.88  

Fig. 3. PDF of probabilistic behaviors of vehicle owners; (a) AT, (b), DT, and 
(c) DD. 
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uncoordinated charging modes are distinguished under Scenarios 2 and 
3. 

The interest, inflation, and nominal interest rates have been assumed 
to be 6%, 3%, and 9%, respectively [34]. 

In this study, ENSC has been considered to be 5.6 USD/kWh, while 
1% is considered for the maximum LOLE and LOEE. The proposed 
method has been implemented in the MATLAB environment. 

In Table 7, the optimal results using the deterministic assumptions 
based on available references like [112,113] have been presented under 
various cases and scenarios. In addition, the optimal results considering 
uncertainties of MG parameters by applying the proposed method have 
been given in Table 8. 

The first result that can be concluded from comparing Tables 7 and 8 
is that regardless of the cases and scenarios, simplifying assumptions 
regarding the system uncertainties leads to considerable errors in TNPC. 
The importance of probabilistic optimal sizing of MGs has been high-
lighted by comparing the obtained test results. 

In Case 1 (desert climate condition), the TNPC’s comparisons of 
considering and neglecting the uncertainties in Tables 7 and 8 show 
6.07, 14.71, 12.70, and 14.4% inaccuracies in Scenarios 1, 2, 3, and 4, 
respectively. The comparative test results illustrate the impacts of sto-
chastic behaviors of MGs’ parameters on TNPC. 

As revealed by the test result, if the MG does not consist of EVs or 
HVs, the impacts of uncertainties would be decreased. The minimum 
inaccuracy in MG’s TNPC due to neglecting the system uncertainties has 
occurred under Scenario 1 (without EVs and HVs). Also, the negative 
impact of unmanaged charging of EVs on MG’s TNPC is another issue, 
which has been highlighted by comparing test results in Scenarios 2 and 
3. Around 10.49% increase in TNPC has occurred due to unmanaged 
charging of EVs in Case 1. Also, the obtained solutions under Scenarios 2 
and 4 infer that the EVs by managed charging strategies could be more 
economical than HVs for the desert climate zones. If the required in-
frastructures for coordinating the EVs charging are not available, 
replacing the EVs with HVs might improve conditions. The TNPC of the 

Fig. 4. Seasonal statistical data of solar irradiance in various cases based on historical data of [111].  
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MG equipped with HVs is 1.25% less than Scenario 3 (unmanaged 
charging of EVs). Moreover, the analysis of Case 1 implies that regard-
less of the vehicle scenarios, the PV units would be more suitable than 
WTs for desert climates. 

The obtained results for Case 1 and comparing the TNPC under 
Scenario 1 with other scenarios illustrate the significant effects of EVs/ 
HVs charging loads. About 54.27, 70.47, and 68.34 TNPC increments 
have appeared in Scenarios 2, 3, and 4 compared to Scenario 1 (without 
considering the EVs/HVs like the studies of [34]). The TNPC increasing 
under Scenario 3 (unmanaged charging mode of EVs) is expected 
compared to Scenario 2 (managed charging mode of EVs). The advan-
tages of implementing the charging management strategies for EVs are 
highlighted based on test results. Moreover, for desert climate condi-
tions, the EVs might have less lead to less energy system cost than HVs. 

The TNPC error for neglecting the MG sub-systems’ stochastic be-
haviors in Case 2 would be 4.66%, 9.00, 9.72, and 8.92% for Scenarios 1, 
2, 3, and 4, respectively. The impacts of uncertainties in Case 2 (Tropical 

humid climate condition) are less than in Case 1 (desert climate condi-
tion). However, the advantages of the proposed method considering MG 
uncertainties are also approved in Case 2. Another result highlighted 
based on the comparison of various scenarios is that adding the EVs and 
HVs to the MGs intensify the impacts of uncertainties on MGs’ TNPC. 
Test results in Case 2 illustrate the negative impacts of uncoordinated 
charging of EVs under Scenario 2 compared to Scenario 1 (managed 
mode for EVs charging). It is concluded that about 10.35% improvement 
in TNPC would be achievable by coordinating the EVs charging. How-
ever, the EVs (under the managed and unmanaged charging modes) 
would be more appropriate for tropical humid climate zones than HVs. 
The deployment of more WTs in Case 2 compared to Case 1 is another 
important conclusion. The comparison of Cases 1 and 2 under various 
scenarios shows that the TNPC in Case 1 (desert climate condition) could 
be less than in Case 2 (tropical humid climate condition). It is also 
concluded that the optimum capacity of HT in Case 2 would be less than 
other climate cases. 

Fig. 5. Seasonal statistical data of wind speed in various cases based on historical data of [111].  
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In Case 2 (tropical humid climate condition), the TNPC increment 
due to the EVs by the managed charging mode (Scenario 2), unmanaged 
charging mode of EVs (Scenario 3), and HVs (Scenario 4) compared to 
Scenario 1 (without considering the EVs/HVs) are 50.62, 66.209, and 
68.014%, respectively. The negative impacts of adding the EVs to the 
MGs in Case 2 for managed and unmanaged charging modes are less 
than in Case 1, while they are still significant. There is no considerable 
difference between the negative impacts of HVs on TNPC in Cases 1 and 
2. 

Around 20.158, 11.02, 8.58, and 8.67% errors might happen due to 
neglecting the uncertainties in Case 3 under Scenarios 1, 2, 3, and 3, 
respectively. The maximum deployment of WTs has been suggested in 
Case 3 compared to other climate cases. In addition, a similar conclusion 
about the EVs and HVs has been appeared in Case 3, that the managed 
charging of EVs leads to a better techno-economic situation. The MG’s 
TNPC in Case 3 (temperate climate condition) would be higher than 
Cases 1 and 2. The maximum capacity for the WTs has been assigned in 
Case 3. It is approved that the optimal sizing and combination of PV and 
WT units are affected due to environmental conditions. 

The comparison of test results in Case 3 under various scenarios 
shows that the managed EVs would be a better solution than HVs for 
highland climate conditions. 

In highland conditions (Case 4), the TNPC would be higher than 
others. As revealed by test results, much more PV units have been sug-
gested in the optimal planning of the understudy MG in Case 4. Test 
results show that the maximum TNPC occurs in Case 4 and Scenario 3 
(highland climate condition and the deployment of HVs), while the 
minimum TNPC is achievable in Case 2 and Scenario 1 (Tropical humid 

climate condition and managed charging of EVs). 
Regardless of the climate conditions, the significant impacts of the 

EVs/HVs on the obtained results for the optimal sizing of MGs (based on 
the comparison of test results under Scenarios 2, 3, and 4 with scenario 
1) highlight the advantages of the proposed method in comparison with 
available studies like the studies of [34], which did not consider the 
EVs/HVs. 

The difference between optimum TNPC for the understudy MGs 
under various climate conditions is one of the major conclusions of this 
study. Moreover, test results emphasize that this difference between the 
TNPC due to climate conditions is highlighted in the presence of EVS/ 
HVs. Test results illustrate that different strategies for optimal sizing of 
the MGs and the deployment of EVs/HVs should be selected for different 
climate zones. 

Fig. 6 shows the annual load profile, typical charging load of EVs in 
coordinated and uncoordinated charging modes, and the charging 
power of HVs. Moreover, the state of energy (SOE) of the HT in various 
climates under Scenario 4 (using the HVs) is shown in Fig. 6. As seen, the 
capacity of HT for various climates would be different, while the HT’s 
participation in supplying the loads depends on the climate conditions. 
Other annual profiles for the demand and supply side could be studied 
similar to the results shown in Fig. 6. 

Considering the reliability constraints is one of the most contribu-
tions of this study. Hence, the LOLE and LOEE of a typical one-year 
period in various cases under different vehicle charging scenarios have 
been shown in Fig. 7. 

As shown in Fig. 7, in Case 1, the most interruptions and in-
adequacies happened in winter regardless of the vehicle scenarios. This 

Table 7 
Optimal results using the deterministic assumptions, like [112,113], under various cases and scenarios.  

Case No. Scenario No. TNPC (USD) NWT NPV PEL (kW) MHT (kg) PFC (kW) PINV (kW) 

1 1 3,213,110 0 302 143.29 67.72 44.67 46.5 
2 4,501,139 0 452 200.56 83.55 51.82 49.5 
3 5,091,335 0 513 218.73 86.79 72.30 97.34 
4 4,929,142 0 506 228.97 102.76 50.22 49.5 

2 1 3,495,885 0 334 163.88 85.61 49.24 49.5 
2 5,021,973 0 526 194.15 87.6 51.72 49.49 
3 5,502,473 0 566 211.06 102.82 71.72 64.55 
4 5,556,708 1 577 217.01 95.28 52.32 99.41 

3 1 3,579,273 0 352 154.97 82.78 48.5 49.99 
2 6,016,290 1 656 207.94 92.05 52.33 49.51 
3 6,761,954 0 700 229.19 303.98 67.92 62.52 
4 6,832,705 0 700 230.84 445.61 48.46 100 

4 1 3,897,673 0 338 166.87 90.35 49.12 48.5 
2 6,331,248 0 699 215.71 89.34 52.32 49.21 
3 7,395,802 1 700 217.38 752.32 67.95 62.19 
4 7,505,367 0 700 217.43 969.82 48.76 48.10  

Table 8 
Optimal results of the proposed method considering uncertainties under various cases and scenarios.  

Case No. Scenario No. TNPC (USD) NWT NPV PEL (kW) MHT (kg) PFC (kW) PINV (kW) 

1 1 3,421,015 0 298 175.72 161.54 50.76 49.99 
2 5,277,900 0 544 245.07 170.76 49.19 49.21 
3 5,831,823 0 585 262.66 192.59 67.6 62.52 
4 5,758,910 0 582 263.6 273.83 48.22 67.56 

2 1 3,667,091 5 337 174.68 155.48 47.6 48.57 
2 5,523,523 29 504 213.02 74.6 51.28 99.99 
3 6,095,064 29 555 236.76 88.91 70.22 73.77 
4 6,101,246 46 538 220.05 85.77 50.76 96.91 

3 1 4,482,977 4 417 225.19 193.33 49.22 49.99 
2 6,762,031 75 498 222.16 291.49 53.41 73.64 
3 7,396,868 82 536 240.82 309.33 71.95 70.16 
4 7,481,432 87 555 279.29 315.46 51.19 49.99 

4 1 4,848,659 3 446 262.2 254.22 48.25 92.7 
2 7,417,324 39 697 294.4 157.15 54.44 49.59 
3 8,327,179 58 700 308.05 429.22 66.12 100 
4 8,358,612 59 698 306.75 586.67 47.3 83.03  
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Fig. 6. Load profile, charging load of EVs/HVs, and HT’s SOE in various cases under Scenario 4.  

M. Aslani et al.                                                                                                                                                                                                                                  



Journal of Power Sources 525 (2022) 231100

17

Fig. 7. Hourly LOEE and LOLE in various cases and scenarios, while 1% has been assigned for the maximum allowed LOLE and LOEE.  
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is mainly because of solar irradiance conditions and load patterns in 
winter. The maximum hourly load curtailment has occurred under 
Scenario 3 (uncoordinated charging mode for EVs). In Case 2, the 
maximum hourly LOEE is approximately similar under various vehicle 
scenarios. Most of the load interruptions have also appeared in winter 
for Case 2. Test results of hourly reliability indices in Cases 3 and 4 are 
also presented in Fig. 7. 

The comparative test results of Scenario 1 (without considering the 
EVs/HVs charging loads like the studies of [34]) with other scenarios 
shown in Fig. 7 infer that adding the EVs/HVs without considering the 
required infrastructures and required energy supplied threats the MG’s 
reliability. In addition, the effectiveness and importance of the proposed 
reliability-based method to optimize the MGs’ element sizing and 
planning are highlighted in the presence of EVs/HVs. 

The ENSC is one of the most important reliability parameters influ-
encing MGs’ optimized planning and design. Hence, sensitivity analyses 
have been performed to study the impacts of different ENSC values on 
the MG’s TNPC. In Fig. 8, the sensitivity analyses for different upper 
bounds of LOEE and LOLE in Case 1 under Scenarios 2, 3, and 4 
(including EVs/HVs), as a sample, have been presented. Case 1 has been 
selected for further discussion because the coverage of this climate is 
over than others in Iran. However, it is possible to perform similar 
studies for other cases. As revealed by Fig. 8(a), the impacts of ENSC 
value on TNPC under Scenario 2 would be less than other scenarios, 
while 1% has been considered for the maximum allowed LOEE and 
LOLE. Moreover, regardless of the vehicle scenarios, the changes in 
TNPC are not significant via changes in the ENSC from 6 USD/kWh to 10 

USD/kWh, while the maximum allowed LOEE and LOLE is 1%. 
Furthermore, test results in another condition, while the maximum 

permitted LOEE and LOLE is 5%, as depicted in Fig. 8(b), show that the 
impacts of ENSC on the MG’s TNPC would be intensified for higher 
upper bounds for reliability indices. It means that the maximum allowed 
LOEE and LOLE limit the load curtailment, and the reliability costs 
would not be increased. On the contrary, while the upper bounds for 
reliability indices are significant, the TNPC and the optimal designs for 
the MG are affected by the ENSC value. In this condition, the trade-off 
between the capital and reliability costs due to load curtailments de-
termines the optimum solution. 

Fig. 8(c) and (d) show the sensitivity analyses of TNPC via the 
changes in the upper bounds for LOEE and LOLE in Case 1. Test results 
illustrate that the TNPC could be decreased if it is possible to increase the 
upper bounds for reliability indices. It means that much more cost is 
expected to obtain a more reliable system, particularly for low values of 
ENSC. However, test results imply that the maximum allowed LOEE and 
LOLE increment might not affect the TNPC, while the ENSC value is 
significant. The different behaviors of MG’s TNPC via the changes in the 
maximum allowed LOEE and LOLE for significant ENSC and without 
considering the ENSC have been presented in Fig. 8. 

Another crucial issue is examining the impacts of simplifications in 
MG’s sub-system modeling. Hence, the supplementary studies have been 
done using the more accurate model for WTs (as shown in (11)) instead 
of the simplified one (as presented in (10)). Test results inferred that less 
than 0.709% inaccuracy appears due to simplifying the WT model in the 
worst case. Similar studies are suggested in further research to 

Fig. 8. Sensitivity analyses of TNPC against changes in both ENSC values and the maximum allowed LOEE and LOLE under various scenarios in Case 1.  
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determine the sensitive sub-systems that their accurate models improve 
the calculations and results. 

5. Conclusion 

The literature showed a research gap in optimizing the probabilistic 
designing of MGs, including the RESs, EVs, and HVs in various climate 
conditions. This research aimed to fill such a gap by reporting a prob-
abilistic reliability-based method, considering the MG uncertainties in 
the optimal planning of MGs. Considering the EVs and HVs’ impacts on 
the optimal design of the MGs is one of the main contributions. By 
applying the proposed method, it is possible to determine the best so-
lution between the EVs and HVs for a specified climate zone. The MCS 
has been used to simulate the stochastic behaviors of vehicle owners and 
RESs’ output power. Also, the proposed optimization problem has been 
solved using the FPA in the MATLAB environment. The proposed 
method has been studied under various climates and vehicle charging 
scenarios. The comparative test results of the proposed probabilistic 
method and available deterministic ones illustrated that significant in-
accuracy occurs due to neglecting the probabilistic behaviors in MGs. It 
has been concluded that the negative impacts of neglecting the un-
certainties of MGs would be highlighted in the uncoordinated charging 
mode of EVs. However, at least 4.66% of TNPC inaccuracy is inevitable 
without applying the probabilistic method. In addition, the proposed 
method, considering the EVs and HVs, has been compared to existing 
ones, which have not concerned the EVs and HVs. It has been implied 
that around 50–70% TNPC increment happens due to adding the EVs/ 
HVs to the MG. The maximum TNPC increment belonged to the unco-
ordinated charging mode of EVs. Furthermore, the sensitivity analyses 
inferred that the reliability constraints and parameters, e.g., ENSC rate 
and maximum allowed LOEE and LOLE, might affect the optimized 
planning of MGs based on their interactions. 

The most essential suggested future works to extend this study could 
be listed as follows:  

- Developing the clustering-based and analytical approaches to extend 
the proposed probabilistic method to improve the computation time 
of solving the introduced optimization problem; 

- Considering the future integrated multi-carrier energy systems (en-
ergy hubs), including the heat, cooling, and power to find the 
optimal planning and design using the proposed reliability-based 
probabilistic method;  

- Studying the grid-connected operation mode, besides the islanded 
mode of the MG;  

- Considering the supplementary objectives in MGs’ proposed optimal 
design and planning, such as customer comfort criteria and envi-
ronmental and pollution concerns;  

- Studying power market-based supportive incentives to apply the 
obtained optimum solutions in practical applications. 
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[26] J. Charvát, P. Mazúr, J. Pocedič, P. Richtr, J. Mrlík, J. Kosek, J. Akrman, L. Kubáč, 
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