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Abstract—Smart grids, which benefit from the deployment of new 

technologies such as renewable energy sources, electric vehicles, 

SCADA and PMU systems and etc., are becoming increasingly 

complex and uncertain, that can affect security and reliability of 

these systems. Power variation in generation units and loads 

demand causes variation in buses voltage that can reach to 

collapse point and cause instability in smart grids. Therefore 

instability assessment from buses voltage point of view under 

uncertain behaviors of smart grids is necessary and important for 

operation studies of these systems. In this paper by use of cross 

entropy concept, a new method for bus voltage instability 

assessment, in which stochastic and uncertain behavior of smart 

grids had been considered, is introduced. The distance between 

operational voltage and collapse point for each bus by use of 

Kullback Libeler divergence is evaluated to calculate instability 

of system voltage under uncertain operation of system. The IEEE 

30-bus system has been analyzed by use of Monte Carlo 

simulation to evaluate the proposed method. 
 

Index Terms—Instability, Collapse Voltage, Cross Entropy, 

Uncertainty, Probabilistic Behavior, Big data, Information 

Measure, Monte Carlo Simulation.  

I. INTRODUCTION 

By use of new technologies, smart grid operation is becoming 
increasingly complex. This complexity creates different source 
of uncertainties such as renewable energy sources, electric 
vehicle charging, SCADA systems, PMU and etc., that can 
affect the smart grid operation, planning and control and makes 
new challenges for system planners and operators about the 
need for developing tools and methodologies for stability, 
security and reliability assessments [1]. One of these 
challenges, is instability issues related to bus voltage instability 
and collapse, after a disturbance in smart grids operation 
because of power variation in generation units and load 
demand [2]. Stochastic and uncertain behavior of renewable 
sources leads to variation in power generation. Also interaction 
between micro grids (such as new issues raised in competitive 
electricity markets, including the cost of electric power for 
subscribers or the reliability of power provided to subscribers 
by various manufacturing companies), for example demand 
reduction requested by subscribers from a micro grid and 
rushing to neighboring grids with better prices and reliability 

index at different hours of the day and presence of uncertain 
loads such as, electric vehicles, makes the variation in load 
demand [3, 4]. Expected energy not supplied (EENS), the 
expected load curtailment and the loss of load probability [5] 
are example of different reliability indices which are not 
suitable indices to voltage reliability assessment because they 
assess reliability of system from real power point of the view  
[6-10] and are not directly related to system operating 
conditions such as voltage, frequency and reactive power 
(which are related to stability of the bus voltage). Although a 
security based reliability approach by considering network 
constraints based on the real power balance has been presented 
in [7] and system contingency states have been classified into 
normal, alert, emergency and extreme emergency states, but 
shortage of reactive power which yields to voltage problems 
was not considered in this study. Exactly conventional 
reliability indices related to real power, such as EENS, try to 
maintain the normal voltage around ±5% of the nominal 
voltage based on the load curtailed algorithms. These indices 
could not represent distance between normal and abnormal 
operating condition such as collapse voltage index [8, 9]. Bus 
voltages that are related to system’s real and reactive power 
balance can be used to assess system operational instability 
through monitoring bus voltages in [5] operational reliability 
assessment of power systems based on bus voltage had been 
introduced.  
Also when smart grids are considered, different factors of 
uncertainties arise on voltage security. There are many 
potential sources of uncertainties in smart grid that are related 
to cyber and physical structures, such as temporal variations of 
natural resources, forecast errors pertaining to supply and 
demand, measurement and monitoring errors, and parameter 
estimation errors of physical systems [1]. In [11], the risk of 
voltage collapse is measured by considering Poisson 
probability density function (PDF) to model the probability of 
transmission line outage. In [12], voltage stability in distributed 
generation is done by considering uncertainty effects of 

renewable energy. All of these researches considered a specific 

form or source of uncertainty in power systems. Several forms 
of uncertainties in power systems have been presented in [13] 
that aleatory and epistemic are two main forms of it. The 
aleatory uncertainty represents the inherited random behavior 
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of power systems [14], that in power system reliability 
assessment, has been quantified using the sampling approach 
in the Monte Carlo simulation techniques [15]. In this paper a 
new method is introduced that can be useful for smart grid 
voltage instability assessment under different forms of 
uncertainty. As mentioned earlier, renewable sources, 
interaction between micro grids and exists of uncertain loads 
such as electric vehicles, which create aleatory uncertainty 
sources and uncertainty originated from cyber systems, when 
voltage is measured and monitored, create epistemic 
uncertainty sources (which can be arises from cyber-attacks) 
and affect load demand and bus voltage in smart grid.   
Complexity increases in smart grids creates uncertainties in 
these systems and cause growth in information (because 
devices, services, and processes in smart grid, contain a vast 
amount of information). Information and Communication 
Technology (ICT) solutions collect the big amount of data, but 
models and tools for creating knowledge from these data is 
required. Data mining methods should be used to predict the 
correct performance in smart grids. So a hybrid of data and 
probabilistic-based approaches seem to be most effective as a 
comprehensive voltage instability assessment to consider big 
amount of data and uncertainties forms and sources effects on 
smart grids operation simultaneously. There are different 
researches on voltage stability assessment which in continue 
have been reviewed.  
Voltage stability assessment divided into two sub-sections: 
1- Static assessment and 2- Dynamic assessment.  
In dynamic voltage stability assessment most methods are 
based on  dynamic model of systems and data gained from 
PMUs [16]. Methods for static voltage stability assessment are 
based on the Jacobin matrix, power flow, optimal power flow, 
steady state stability, modal analysis, PV and QV curves [17, 
18]. In voltage collapse analysis [19], different scenarios such 
as power flow methods are employed to determine load 
margins, margin to thermal limits and voltage violations.  
Probabilistic voltage stability assessment considering 
renewable sources with the help of PV and QV curves had been 
presented in [4]. Voltage stability Index (VSI)  has been 
presented in [10], to evaluate bus voltage stability, by just 
considering load level and reactive power as the voltage 
constraints in reliability assessment.  Probabilistic methods, 
VSI index and load factor have been used to voltage instability 
assessment based on the contingency analysis in [20]. For 
composite system reliability evaluation in [21], VSI index has 
implemented to select the buses for load curtailment. Indexes 
for identifying weak and sensitive bus to the voltage collapse, 
based on the catastrophe theory were used in [22, 23]. Existing 
approaches in probabilistic stability analysis of power systems 
have been reviewed in detail in [24]. Lack of data to estimate 
long-term system profiles and identification of influential 
uncertainties in power systems are examples of challenges in 
instability assessment of modern power system which 
introduced in [24]. 
In this work, probabilistic risk of voltage collapse by 
considering uncertainty in the amount of loads and by use of 
an information measure tool has been assessed. In fact, by 
defining voltage collapse PDF and weakest bus PDF, stochastic 

behavior of system voltage under different uncertainties 
sources can be modeled. Then distance between these two PDF 
has been calculated by use of Cross Entropy (Kullback Libeler 
divergence) concept as an index for measuring and mining 
information about voltage instability of system. Also 
probability approaching of this distance to 0 has been 
introduced as a new voltage instability index that is calculated 
by use of a modified Monte Carlo method. This approach has 
been used in [25] for critical infrastructure reliability 
assessment, by calculating distance between the safe 
performance measures of the system (that calculated based on 
the entropy concept) and zero level of entropy which shows the 
safe performance of the system. Cross Entropy (or Kullback 
Libeler divergence), is a fundamental idea of modern 
information theory [26, 27]. Initial applications of this concept 
in power systems can be found in [28-30].  
The main contributions of this paper may be summarized as 
follows: 1) Performing power flow in any state and determine 
the collapse point and weakest bus voltage. 2) Calculating 
distance between weakest voltage bus and collapse point based 
on Kullback Leibler divergence by considering the uncertain 
behavior of system. 3) Calculating probability of approaching 
distance between weakest voltage bus and collapse point to 0. 
Also different advantages of this new proposed method 
include: (1) Taking into account operational condition of 
system under different forms of uncertainties includes aleatory 
and epistemic uncertainties, (2) and (3) good accuracy and 
sensitivity in comparison to similar indices, (4) short 
convergence time which can be used in dynamic probabilistic 
voltage assessment, (5) weakest buses identification in 
different states.  But most important novelty of this method is 
(6) ability of it to assess voltage instability by use of the 
information theory which can be used in the artificial 
intelligence or machine learning techniques to instability 
assessment of smart grids. 
This paper is organized as follows. In section II, a new index 
based on Cross Entropy concept has been offered for Voltage 
Instability assessment. In section III, two numerical test cases 
are provided to demonstrate the effectiveness of the proposed 
method in this paper and Section IV concludes this paper. 

II. NEW INDEX FOR VOLTAGE INSTABILITY  

ASSESSMENT BASED ON CROSS ENTROPY 

METHOD 

A. Voltage stability concept 

Power system can be represented by an equivalent generator 
seen from a load bus as shown in Figure.1. 

 
Figure 1. Two Bus System 

In the steady-state condition, bus voltage magnitude V (P, Q) 
is a function of real (P) and reactive power (Q) loads that are 
presented as [31]: (X is the reactance of the line between bus 1 
and 2) 

1 2 sin  
V V

P
x

δ=  (1) 
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1 2 [cos  ]
V V V

Q
x x

δ= −  (2) 

 

By elimination of δ from (1) and (2), voltage of 2nd bus can be 
written as follows: 

�� = ����2 − �	
 ± 
� ���4�� − �	� − � ���
  (3) 

This equation has two answers for bus voltage under a 
determined power value that one of them is acceptable. With 
increasing the load bus, voltage drops, until it reaches to (Vc,Pc) 
(concave point in P-V curve). This point is collapse point of 
bus and after this point bus voltage is instable and just before 
voltage collapse is defined to represent collapse voltage Vc. 
Capability to sustain the control of bus voltage when real and 
reactive power load increases is the voltage stability of a power 
system [21]. Equation (3) can be expanded to the whole 
network. With increasing network load in all p-q buses 
simultaneously, until the power flow does not converge, 
weakest bus and collapse point of system can be identified. 
 

B. Collapse Of Voltage Probability index for voltage 

stability based on Cross Entropy concept 

B.1. Cross Entropy concept: 

There are different methods to describe information about 
experiments which are used in power system analysis as 
follow: Some of the Information theories defines the 
measurements in a random experiment via a random vector X 

= (x1,…, xn) with PDF f. Sometimes is need to describe 
information about the experiments with just a few key 
numbers, such as the expectation and the covariance matrix of 
X, which provide information about the mean measurements 
and the variability of the measurements, respectively. Also   
other informational measure comes from coding and 
communications theory, which in it Shannon entropy 
characterizes the average number of bits needed to transmit a 
message X over a (binary) communication channel [32]. 

Parameter vectorθ is key parameter in point estimation theory 

which PDF f is depended on it. Main question in estimation 

theory is how wellθ can be estimated via an outcome of X. In 

other words, how much information aboutθ is contained in the 

“data” X. Various measures for this type of information are 
associated with the maximum likelihood, and the (Fisher) 
information matrix. Finally, the amount of information in a 
random experiment can often be quantified via a distance 
concept, such as the Kullback-Leibler “distance” (divergence), 

also called the cross-entropy [33]. Let ��
� and ℎ�
� be two 
densities function on X.  The Kullback-Leibler (cross-entropy) 
between g and h is defined as:  ���, ℎ� = ��[�� ��
�ℎ�
�] = � ��
� �� ��
�ℎ�
�  �


= � ��
� �� ��
�
− � ��
� �� ℎ�
��
  

(4) 

And ���, ℎ� = 0 if and only if ��
� = ℎ�
�. 

In fact similarity level of two density function is evaluated with 
Cross Entropy concept. Whatever, the samples produced and 
the mean of the two distribution functions is more similar, 
distance or Cross Entropy between them is less. When 
behaviors of two distribution functions are quite similar, the 
distance between them is zero and they are the same.  
 
B.2. Voltage Instability Formulation Based On Cross Entropy 

Method: 

A large blackout is starting by collapse of voltage at one or 
more buses at the system after a shook. So that network 
instability can be assesses based on the distance between the 
actual and collapse point of the buses voltage in a power 
network [34]. Based on uncertain and stochastic behavior of 
smart grids in different states, for voltage collapse and 
operational voltage, two PDFs can be considered. Suppose �  �
� be voltage collapse PDF and mean of this PDF is the 

collapse point of system and �! �
� be operational voltage PDF 
for weakest bus and measured voltage of this bus after power 
flow in each state is mean of this PDF. Cross entropy concept 
in each state, can be used to measure distance between these 
two PDFs. If this distance is zero, means that, collapse of 
voltage will occur in the system.  ���  �
� , �! �
�� = �"# �$�[�� �  �
��! �
�]

= � �  �
� �� �  �
��! �
�  �

= � �  �
� �� �  �
�
− � �  �
� �� �! �
���
  

(5) 

This distance, provides very useful information for system 
operator to make a correct decision in a contingency state and 
for system planner to make an accurate planning decision to 
future programs. Therefore, we can introduce a new index for 
voltage instability assessment entailed by ''Collapse of Voltage 

Probability (COVP)''. Based on this description, COVP of the 
system can be defined as follow: 
The COVP is the probability of the distance between �  �
� and �! �
��|�  �
�, �! �
�|� approaches to zero. In this 
definition, the concept of reaching to zero is introduced based 

on limitation concept as follows: 

  

( ) 0, 0: ( , )

V Vo c

Lim COVP L D COVP LV Vo cε δ δ ε

→

= ⇔∀ > ∃ > <  − <
 (6) 

Because of stochastic behavior of the system, different 
methods based on probability concepts can be useful to 
calculate this probability, such as Monte Carlo simulation 
(MCS)-based tools [35] as follows: 

{ }
1

( ( ), ( ))
1

N
COVP I D x xV Vo cN k

ε=  ≤
=

 (7) 

In this equation, I is identity matrix, ε >0 is a very small value 

and vector X is a Bernoulli random variable that defined as: 

�) ⎩⎪⎨
⎪⎧./0: � = �!,2.4 → �) = 560��! � = 71      9.: � = �!,2.4 0      9.: � ≠ �!,2.4 ./0: � = � ,2.4 → �) = 560��  � = 71      9.: � = � ,2.4 0      9.: � ≠ � ,2.4 

 (8
) 
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 COVP can be calculated in each bus or in whole of the system. 
For calculating the COVP in whole of the system, weakest bus 
of system should be identify and then probability of the 
distance between weakest bus and collapse point (in this bus) 
to approach 0 should be calculated. Weakest bus in a power 
network is recognized as the first bus that reaches to its collapse 
point when the load of the system is increasing during a 

contingency state.  

B.2.1. Weakest bus identification: 

Identifying precise of the bus which is caused to collapse of 
system in a contingency state is a complex procedure. This bus 
has been determined based on the voltage variations from 
normal to abnormal state [5] and also is considered as a bus 
with 1) heavy load and weak links to other buses of system and 
2) lowest voltage and vulnerable behavior to further load 
increase when considering different forms of uncertainties 
[36]. For identifying weakest bus, first collapse point of system 
should be determined which this collapse point can be  
calculated by increasing the load in p-q buses simultaneously 
until power flow in the system does not converge. Math power 
tool can be used to perform this scenario. Bus w in the bus set 
ΩL is the weakest bus for contingency state i, if the distance 
(Cross Entropy) between Vw,i and Vc be the minimum, defined 

as: 

 1 :1 : ,

 ( , )   ( , )  , ,

for i L V i L

D M in D V i V cV V V Vi w i w i c

= ∀ ∈ Ω

= ⇔ =
 (9) 

In (6), L is the number of load bus in bus set ΩL. 
In the following, first, for assessment of newly introduced 
method, load level in voltage buses have been increased or 
decreased linearly with a deterministic scenario and then in the 
second scenario stochastic behavior for load buses has been 
considered. Based on these descriptions a general trend for 
Voltage instability assessment by applying Cross Entropy 
concept is expressed as follows: 
Step1: Input system data 
Step2: Apply a particular load level for load buses based on one 
of the two scenarios that are defined. 
Step 3: Perform AC power flow analysis for load level l in 
contingency state i. 
Step 4: Record the initial voltage at each bus. 
Step 5: Identify collapse point of system by use of math power 
tool. 
Step6: Identify the weakest bus based on equation (9).  
Step7: Calculate COVP based on equation (6,7). 
Step 8: If all the load levels are evaluated, save the results 
and stop the program. 

III. CASE STUDY  
In this section for new introduced method assessment, as 

mentioned earlier, two scenarios have been considered. In the 
first scenario load level in voltage buses have been increased 
linearly with a deterministic scenario. For assessment of new 
introduced method in this scenario, 6 bus system [37] and IEEE 
30-bus system [38] are analyzed. Based on general trend 
introduced in this paper for voltage instability assessment, first, 

collapse point of the system should be identified and after 
performing AC power flow analysis for a specified load level, 
based on the equation (6), weakest bus is identified, and then 
COVP will be calculated. Simulation results for normal state is 
shown in TABLE I and simulation results for different load 
level in load bus, is shown in TABLE II. As shown in these 
tables, CPU time which represent the convergence time of new 
introduced method (computations were performed using an 
Intel Core i7, 2.20-GHz processor), is very short and acceptable 
for real time studies. 

TABLE I. Six bus simulation results in normal state 

CPU 

time 

(second) 

COVP Weakest 

voltage 

magnitude 

based on 

Eq.6  

Voltage 

magnitude 

 )P.U( 

Bus 

number 

0.0037 

 

0.1618 0.9788 0.989 Bus 4 

0.9649 0.985 Bus 5 

0.9806 1.004 Bus 6 

TABLE II. Six bus simulation results in different load level 
CPU time 

(second) 

COVP 
 

Voltage 

magnitude 

)P.U( 

Bus 

number 

Load  

(P.U) 

0.001817 0.1659 

 

0.976 Bus 4 1.18 

0.969 Bus 5 

0.991 Bus 6 

0.001901 0.2073 0.963 Bus 4 1.36 

 0.950 Bus 5 

0.987 Bus 6 

0.001734 0.2660 0.948 Bus 4 1.54 

0.931 Bus 5 

0.964 Bus 6 

0.001723 0.3377 0.932 Bus 4 1.72 

0.910 Bus 5 

0.949 Bus 6 

0.001732 0.4416 0.915 Bus 4 1.9 

0.887 Bus 5 

0.933 Bus 6 

In [5], expected bus voltage drop (EBVD) index is introduced 

in a same study, which in it EBVD index for each bus is 

calculated. For a correct comparison between the new 
introduced method in this paper and [5], a same situation 
should be considered. So for calculating the COVP for each bus 

in algorithm of this paper, step 6 in general trend will be 

ignored and COVP index for each bus will be calculated. The 
results of these simulations, for 4 different buses in IEEE 30-
bus system have been shown in TABLE.III. 

 
TABLE III. EBVD & COVP index simulation results comparison in IEEE 

30-bus system 
COVP EBVD 

[5] 

Voltage 

magnitude 

)P.U( 

Bus 

number 

0.2752 0.2037 0.990 Bus 30 

0.1991 0.1966 0.996 Bus 26 

0.1963 0.1936 1.002 Bus 29 

0.1857 0.1831 1.019 Bus 19 
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Comparison of these results with [5], indicate good accuracy 
of the proposed method. As seen in TABLE III, COVP is more 
sensitive to voltage changes than EBVD. This sensitivity can 
be seen in Figure. 2 based on the voltage sensitivity analysis 
for voltage buses which shown in TABLE III. As mentioned 
before, in the second scenario for assessment of new introduced 
method in this paper, stochastic behavior of load buses has 
been considered. Normal distribution probability function with 
mean µ= ''weakest bus voltage amplitude'' and standard 

deviation 05.0=σ  is considered to generate random samples 

for voltage of weakest bus. After generating 10000 random 
samples (N=10000) for a 6 bus test system by use of normal 
distribution probability function, COVP has been calculated 
and the results are shown on Figure.3. Histogram of different 
bus voltage, collapse voltage and COVP are shown in Figure. 
3 COVP is calculated based on the distance between collapse 
voltage distribution and bus voltage distribution functions. 

PDF of bus voltage can be created from aleatory or epistemic 
uncertainties. So that this method can be considered a PDF for 
bus voltage originated from aleatory or epistemic uncertainties 
and calculates voltage instability index.  

 
Figure 2. Sensitivity of COVP compared to EBVD 

 
Figure 3. Collapse Voltage, Bus voltage and COVP Histogram. 

 

IV. CONCLUSION AND FUTURE WORKS 
This paper proposes a technique to assess instability from the 
bus voltage stability point of view under uncertain behaviors of 
smart grids based on distance between operational and collapse 
point of voltage by use of Cross Entropy concept. The system 
studies for the 6 bus test system and IEEE 30-bus show that the 
proposed technique provides a direct and simple instability 
index for bus voltage instability. In addition, a new method for 
weakest buses identification has been introduced in this paper 
by use of Cross Entropy concept which can be used in 
protection systems and algorithms. Also very short 
convergence time of method can be useful for real time studies. 
Aleatory and epistemic are two main forms of uncertainty, 
related to cyber and physical systems that affected security and 
reliability of smart grids, which effects of these uncertainties 
can be assess by use of the new proposed method in this 
research. In this paper, aleatory uncertainty has been 
considered and in future works, instability assessment of smart 
grid voltage under aleatory and epistemic uncertainty will be 

performed simultaneously for a more accurate study, especially 

when cyber-attacks are considered.  
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