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A B S T R A C T  
 

 

In this paper, we address the challenges of energy and throughput management in a Wireless Body Area 

Network (WBAN) with a focus on a heart rate sensor. Our approach utilizes the sleep and wake-up 
method to minimize sensor energy consumption while harnessing Radio Frequency (RF) waves and 

human activities (running, walking, and relaxing) as Energy Harvesting (EH) sources to supplement 

battery power. Bluetooth Low Energy 5 (BLE5) technology is employed for wireless information and 
energy transfer. Our goal is to strike a balance between throughput and battery residual energy. The 

advantages of using 𝒬-learning for action selection in comparison to Random Action (RA) selection are 

demonstrated through simulations. The results reveal that the reward function in 𝒬-learning, 

incorporating a balancing parameter, effectively achieves a compromise between throughput and battery 

residual energy. Additionally, our 𝒬-learning method improves system throughput by 43% compared to 

RA selection. In addition, we compare the performance of the 𝒬-learning and State- Action- Reward- 

State- Action (SARSA) algorithms using the same reward function to evaluate their respective abilities 

in managing system throughput and battery residual energy. These findings have significant implications 

for developing energy-efficient WBANs, enabling prolonged operation and reliable data transmission. 
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NOMENCLATURE 

𝑃0
𝑑𝐵 Received power reference Ps Periods between each measurement 

n Characteristic of path loss Nb Number of sampled data 

𝒫𝑐  Power consumption of coordinator Ts Sampling time 

𝑑0 Reference distance Tt Transmission time 

d Distance from the sensor to the coordinator Greek Symbols  

hdB Channel gain between the sensor and the coordinator 𝛼 Learning rate 

E0 Initial energy 𝛾 Discount factor 

𝐸𝑟(𝑡) Battery residual energy at time t 𝜇 Mean 

𝐸𝐻(𝑡) Harvested energy at time t 𝜎 Variance 
|ℎ𝐿𝑁|2 Lognormal channel gain between sensor and coordinator ε Probability of randomly selecting an action  
|ℎ𝑃𝐿|2 Path-loss channel gain between sensor and coordinator 𝜂 Conversion efficiency 

𝐸𝑐(𝑡) Energy consumption at time t β Balancing parameter 

𝑁 Epochs/Episodes   

 

 

1. INTRODUCTION 
 

In recent years, there has been a growing emphasis in 

engineering on the integration of telemedicine with the 

Internet of Things (IoT), leading to the increasing 

prevalence of IoT-enabled structures, environments, and 

systems (1, 2). Wireless Sensor Networks (WSNs), 

which have been rapidly growing over the past decade 

primarily due to their efficiency, comprise many sensor 

nodes and are widely deployed in sensor environments 

for data collection and evaluation (3). The WSNs have 

sparked significant interest in both academia and industry 

due to their application in health monitoring. 

Specifically, WSNs leverage Wireless Body Area 

Networks (WBANs) as a crucial component of the 

emerging IoT. WBANs have attracted significant 

attention in recent years, highlighting their importance 

and potential in various fields (4, 5). WBANs typically 

comprise multiple sensor nodes that are located on or 

inside the human body. These sensors periodically 

transmit physiological and multimedia data to the source, 

which can then be shared with healthcare providers, 

emergency services, or family members to monitor the 

patient's vital signs, take prompt action in case of an 

emergency, stay informed about the patient's condition, 

and update medical records accordingly (6, 7). As the 

most widely adopted protocol in consumer products, 

Bluetooth Low Energy (BLE) is crucial in facilitating 

IoT applications and is frequently used for transmitting 

data from wearable devices. The BLE5, has been 

designed to meet the diverse needs of IoT use cases and 

can transfer the same volume of data in less time than 

previous versions (8, 9).  

WBANs are primarily used for data collection, 

storage, processing, and transmission. Replacing 

batteries frequently can be highly inconvenient, 

particularly for implanted devices, and the limitations of 

both size and battery power in a WBAN can have a 

notable impact on its usability and user satisfaction. To 

address this issue, Energy Harvesting (EH) technology 

has emerged as a popular area of research (10).  

EH involves gathering energy from the surrounding 

environment and converting it into electrical power. The 

development of EH technology holds the potential to 

substantially extend the lifetime of wireless networks 

(11, 12). Wireless Power Transfer (WPT) can be 

combined with Wireless Information Transfer (WIT) to 

utilize radio waves for both communication and energy 

transfer. A unified Wireless Information and Power 

Transfer (WIPT) design could leverage the Radio 

Frequency (RF) spectrum and network infrastructure for 

efficient communication and power delivery, enabling 

greater patient mobility (13, 14). 

Reinforcement learning (RL) involves the dynamic 

learning process of adjusting actions based on continuous 

feedback from the environment to maximize a reward 

(15). RL algorithms have gained traction in recent years 

for managing energy and throughput. These algorithms 

adjust a node's behavior by incentivizing good decisions 

through a reward function. Since RL is designed to make 

decisions in uncertain environments, it is well-suited for 

energy management in systems that utilize EH 

technologies (16).  

Energy efficiency is a critical consideration in 

designing WBANs, and many studies are currently 

focused on optimizing energy consumption. 

To prolong the lifespan of sensor nodes in WBANs, 

various energy management methods have been 

developed, such as EH, sleep and wake-up mechanism. 

Gupta and Chaurasiya (17) presented an energy 

management system based on RL algorithms and 

explored health surveillance in WBANs. The paper 

investigates several EH models, including vibration, 

solar, and thermal energy sources, to enhance energy 

efficiency. Implementing a sleep and wake-up 

mechanism can help conserve energy by allowing the 

sensor to access data only when necessary. In this 

mechanism, the sensor transitions to a wake-up state 

when data transmission is required, and returns to a sleep 

state after transmitting the data (17). Also, Wang et al. 

(18) introduced the blood pressure sensor node that 

reduces energy consumption by switching between sleep 

and wake-up modes to optimize the duty cycle. Xu et al. 

(19) proposed an EH technology as a solution to address 

the issue of energy efficiency, with the ability to collect 
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energy from surrounding or environmental sources using 

RL algorithms. 

In RL methods, the agent strives to acquire the 

optimal policy by engaging with the environment and 

gaining experience through iterative experimentation. 

Using EH-WBAN networks, Mohammadi and 

Shirmohammadi (20) proposed a 𝒬-learning-based sleep 

and wake-up scheduling method. This method enhanced 

energy efficiency, reduced network delay, and 

maintained network connectivity. Rioual et al. (21) 

proposed a method of supplying energy to sensor nodes 

using the body's biomechanical energy sources, 

specifically piezoelectric energy. Various reward 

functions have been developed for the sensor node to 

evaluate its efficiency in determining the optimal duty 

cycle. This approach enables the sensor node to learn and 

adapt to uncertain EH conditions (21, 22). Rioual et al. 

(22) investigated various reward functions to identify the 

most appropriate variables for achieving the desired 

performance. Experimental results were obtained by 

comparing the different functions, highlighting the 

impact of reward functions on energy consumption and 

their potential to optimize energy management. 

Only a limited number of papers within the field of 

WBANs  have explored the combination of EH and RL 

techniques for effectively managing throughput across 

the entire network node. Ge et al. (23) proposed a 

dynamic clustering protocol for WSNs that incorporates 

considerations of both the remaining energy of sensor 

nodes and the predicted levels of harvestable energy in 

each iteration to create several uneven nodes. To enhance 

throughput in a clustered network, the Cooperative 𝒬-

Learning and State- Action- Reward- State- Action 

(SARSA) algorithm is employed. To achieve this goal, 

the Cooperative Reinforcement Learning (CRL) 

algorithm is utilized to ascertain the ideal quantity of 

packets to transmit from each sensor at every time step. 

This approach aims to maximize the throughput of the 

network. Roy et al. (24) proposed an EH protocol based 

on RL, which is designed to optimize resource allocation 

and maximize throughput while minimizing delay. 

In this paper, a one-tier WBAN is considered with a 

sensor node and a coordinator node. The sensor node 

transmits essential data extracted from the body to the 

coordinator node. The required energy for the sensor is 

provided with the help of the WIPT technique, and 

harvesting wireless energy from RF sources and body 

energy sources. The paper brings four several key 

contributions, which can be outlined as follows: 

i. The wireless information transfer from the sensor 

to the coordinator and the wireless energy transfer 

from the coordinator to the sensor is done with 

BLE5. 

ii. The energy consumption of node components in 

the sleep and wake-up modes for energy 

efficiency is calculated and considered in RL. 

iii. Selecting an appropriate reward function is a 

complex task. As the system's behavior is 

determined by this function, it becomes crucial for 

system designers to make this choice carefully. 

Therefore, in this research, we have investigated 

the impact of various reward functions employed 

in a widely used RL algorithm, namely 𝒬-

learning. 

iv. Three distinct reward functions (ℛ1– ℛ3) are 

compared and evaluated to identify the optimal 

variables for designing a function that effectively 

balances management between system battery 

residual energy and throughput. 

v. Finally, the 𝒬-learning algorithm is compared to 

the SARSA algorithm. 

The subsequent sections of the paper are organized as 

follows. Section 2 presents our use case, and section 3 

introduces the RL mechanism. Section 4 presents our 

simulation results wherein, three reward functions are 

compared and evaluated. Finally, section 5 provides a 

summary and concludes the paper. 

 

 

2. SYSTEM MODEL 
 
The system model in Figure 1, is a one-tier WBAN, 

comprising a sensor node (S) and a coordinator node (C). 

The sensor node is positioned on the chest of a human to 

observe heart activity and incorporates a heart rate 

detection sensor, a low-power microcontroller unit 

(MCU), a BLE5 transceiver, and a battery. Additionally, 

as illustrated in Figure 1, the coordinator is positioned on 

the body's waist, specifically on the right side. The power 

consumption of each component is summarized in Table 

1. Once the data related to heart rate is collected, it is 

transmitted promptly to the coordinator for processing. 

    In addition to a battery-powered sensor, the sensor is 

equipped with RF and Body Energy Harvesting (BEH) 

system. Although their values are not large, they still can 

extend the node’s lifespan. 

 

2. 1. The Process of Information and Energy 
Transfer in The System Model         According to 

Table 2, the wireless transfer of both information and 

energy occurs in two phases, namely WIT and Wireless 

Energy Transfer (WET). The sensor is awake in the WIT 

phase, and it measures and stores heart rate information 

and then sends it to the coordinator node. During the 

WET phase, the sensor is asleep and it receives an RF 

energy signal from the coordinator node. Also, the sensor 

extracts energy from the body to power the sensor during 

periods of both activity and sleep. In Figure 1 the solid 

line represents the transmission of information from the 

sensor to the coordinator (𝑠 → 𝑐), and the dashed line 

represents the transmission of RF energy from the 

coordinator to the sensor (𝑐 → 𝑠). 
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2. 2. Problem Formulation       For the channel model 

being discussed, a Lognormal distribution is assumed to 

describe the link between the sensor and coordinator. The 

Lognormal distribution is defined by its mean value, 

denoted by 𝜇, and its variance, represented by 𝜎 

(Equation 1). These parameters are used to characterize 

the channel gain between the sensor and the coordinator 

(25). 

ℎ
𝑑𝐵~ 𝒩(𝜇, 𝜎)  (1) 

In addition to the Lognormal distribution, we also utilize 

the channel path loss model between the sensor and the 

coordinator (Equation 2). In this equation, d is the 

distance from the sensor to the coordinator, n is 

characteristic of the path loss, and P0
dB is the received 

power reference at distance d0 (26). 

𝑃𝑑𝐵 = 𝑃0
𝑑𝐵 − 10𝑛 log10(

𝑑

𝑑0
)  (2) 

 

 

 
Figure 1. System model 

 

 
TABLE 1. The power consumption of sensor components (9, 

22) 

Sleep mode Wake-up mode Sensor components 

0.396 mW 

0 mW 

0.00257 mW 

5.28 mW 

29 W 

1.7 mW 

Heart rate monitor sensor 

BLE5 

MCU 

 

 
TABLE 2. The process of information and energy transfer 

 Wake-up Sleep 

WIT 

WET 

BEH 

𝑆 → 𝐶 

 

√ 

 

𝐶 → 𝑆 

√ 

The amount of sensor energy is initially considered 

equal to 𝐸0, which is equal to the initial energy of the 

battery as follows: 

𝐸𝑟(0) = 𝐸0  (3) 

Battery residual energy at time t (𝐸𝑟(𝑡)) is calculated 

according to Equation 4: 

𝐸𝑟(𝑡) =  𝐸𝑟(𝑡 − 1) + 𝐸𝐻(𝑡)−𝐸𝑐(𝑡),  (4) 

where the harvested energy (𝐸𝐻(𝑡)) includes BEH and 

the harvested RF signal energy in time t, given by: 

𝐸𝐻(𝑡) = (60 ∗ 𝒫𝐸𝐻(𝓈𝓉) ) +
(𝜂 𝒫𝑐 |ℎ𝐿𝑁|2|ℎ𝑃𝐿|2 ∗  𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 (𝒶𝓉)),  

(5) 

𝒫𝐸𝐻(𝓈𝓉) is the power harvested from the body by the 

heart node, and its amount depends on the state or activity 

of the person at time t. Since we have the BEH during all 

times of sleep and wake-up, and the amount of battery 

residual energy is calculated for every minute, the 

harvested power is multiplied by 60. |ℎ𝐿𝑁|2 is Lognormal 

channel gain, and |ℎ𝑃𝐿|2 is path-loss channel gain 

between sensor and coordinator. 𝜂 is the efficiency of 

energy conversion and, 𝒫𝑐 denotes the power consumed 

by the coordinator to transmit the RF energy signal. Also, 

𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 (𝒶𝓉) represents the sleep time duration 

during which the sensor receives RF energy, and its 

quantity depends on the action at time t, i.e., 𝒶𝓉. 

The energy consumption (𝐸𝑐(𝑡)) includes  the energy 

consumed by the sensor components during sleep and 

wake-up time as follows: 

𝐸𝑐(𝑡) = 𝐸𝐸𝐶𝐺
𝑊  (𝒶𝓉) + 𝐸𝐵𝐿𝐸 

𝑊 (𝒶𝓉) +
 𝐸𝑀𝐶𝑈

𝑊 (𝒶𝓉) + 𝐸𝐸𝐶𝐺
𝑆 (𝒶𝓉) +  𝐸𝑀𝐶𝑈

𝑆 (𝒶𝓉)  
(6) 

where 𝐸𝐸𝐶𝐺
𝑊  (𝒶𝓉) and 𝐸𝐸𝐶𝐺

𝑆 (𝒶𝓉) are energy consumed by 

the heart rate sensor during wake-up and sleep time 

respectively, 𝐸𝑀𝐶𝑈
𝑊 (𝒶𝓉)  and 𝐸𝑀𝐶𝑈

𝑆 (𝒶𝓉)  are energy 

consumed by the MCU during wake-up and sleep time 

respectively, and 𝐸𝐵𝐿𝐸 
𝑊 (𝒶𝓉) is the energy consumed by 

BLE5 in wake-up time. All of these consumed energies 

depend on the action at that specific time. Since BLE5 is 

not active during sleep time, its energy consumption is 

considered zero, hence not included in the formula. 
 
 

3. REINFORCEMENT LEARNING 
 
RL algorithms (𝒬-learning and SARSA) possess the 

capability to learn the optimal policy for interacting with 

an environment by utilizing rewards. In each step, the 

agent selects the best possible action based on a policy, 

given the current state. This action leads to a change in 

the environment's state, and the agent receives an 

immediate reward signal in an ideal scenario (Figure 2). 

Despite lacking prior knowledge of the environment, the 

agent acquires an optimal policy, which is a mapping 

from states to actions. The policy is learned through a 

process of trial and error, or exploration and exploitation, 
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where the agent explores different actions to determine 

the best course of action in a given state. In general, The 

primary objective of the agent is to maximize its 

cumulative reward over an extended period (27). 

In RL, there is a trade-off between exploration and 

exploitation. Exploration involves randomly selecting an 

action to investigate the usefulness of that action. On the 

other hand, exploitation involves using actions that were 

previously learned to be useful based on their utility (28).  

The epsilon-greedy method is a strategy employed to 

strike a balance between exploration and exploitation 

while training RL policies. For instance, when utilizing 

the epsilon greedy method, the parameter ε determines 

the probability of randomly selecting an action from the 

action space. With a probability of 1-ε, the output action 

is chosen greedily based on the argmax (𝒬) function. A 

variant of the epsilon-greedy method that exhibits 

improvement is known as the decayed-epsilon-greedy 

method. In this approach, for instance, during the training 

process consisting of N epochs/episodes (depending on 

the specific problem), the algorithm begins by setting ε = 

pinit. Subsequently, throughout nstep training 

epochs/episodes, ε gradually decreases until it reaches ε 

= pend. In the initial stages of the training process, the 

model is given greater freedom to explore with a high 

probability. Subsequently, the value of ε is gradually 

reduced with a rate 𝜁 (Equation 7) over successive 

training epochs/episodes, as described in Equation 8 

(29): 

𝜁 = max (
𝑁−𝑛𝑠𝑡𝑒𝑝

𝑁
, 0)  (7) 

𝜀 = (𝑝𝑖𝑛𝑖𝑡 − 𝑝𝑒𝑛𝑑)𝜁 + 𝑝𝑒𝑛𝑑  (8) 

By adopting this more adaptable approach, 

particularly when the exploration probability reaches the 

low threshold value pend after nstep, the training process 

can prioritize exploitation (i.e., greedy) while still 

maintaining a minimal capacity for exploration. After 

selecting the action, the next state and the corresponding 

reward function are obtained, and the current state 𝒬(s, a) 

in the 𝒬-Table of 𝒬-learning algorithm is updated as: 

𝒬(𝓈𝑡 , 𝒶𝑡) =  𝒬(𝓈𝑡 , 𝒶𝑡) +

 α [𝑟𝑡+1𝛾 max
𝒶

𝒬(𝓈𝑡+1, 𝒶𝑡+1) −  𝒬(𝓈𝑡 , 𝒶𝑡)],  
(9) 

and the current state 𝒬(s, a) in the 𝒬-Table of the SARSA 

algorithm is updated as: 

𝒬(𝓈𝑡 , 𝒶𝑡) =  𝒬(𝓈𝑡 , 𝒶𝑡) +  α[𝑟𝑡+1 +
𝛾 𝒬(𝓈𝑡+1, 𝒶𝑡+1) −  𝒬(𝓈𝑡 , 𝒶𝑡)],  

(10) 

where 𝒬(𝓈𝑡 , 𝒶𝑡) denotes the estimated 𝒬-value of taking 

action 𝒶 in state 𝓈 at time 𝑡, 𝑟𝑡+1 represents the immediate 

reward obtained at time t+1. The maximum 𝒬-value of 

taking the optimal action 𝑎 in state 𝓈 at time t+1 is 

represented by max
𝒶

𝒬(𝓈𝑡+1, 𝒶𝑡+1). 𝒬(𝓈𝑡+1, 𝒶𝑡+1) 

denotes the 𝒬-value of taking the action 𝑎 in state 𝓈 at 

time t+1. The learning rate, 0 ⩽ 𝛼 ⩽ 1, defines the speed 

at which new information replaces old information and 

the discount factor, 0 ⩽ 𝛾 ⩽ 1, determines the 

significance of future rewards, which are used in the 

equations. The outcomes of the equations are stored in a 

policy table referred to as the 𝒬-table. In this table, the 

rows correspond to the available states, the columns 

represent the feasible actions, and the cells contain the 

expected total reward (30). 

 
3. 1. Framework of Reinforcement Learning         
The environment in our system is a WBAN, where the 

sensor node (agent) interacts with the environment 

through its actions. 

State space: The state space is partitioned into three 

different states, each associated with the activity of the 

individual wearing the device (Table 3). This table 

displays the amount of power that can be harvested based 

on the activity. In our work, it is assumed that the activity 

or state changes randomly every 30 minutes. 

Action space: According to Table 4 we establish a 

collection of actions with different periods between each 

measurement (Ps), sampled data (Nb), duration time of 

sampling (Ts), and transfer data time (Tt). The heart rate 

is determined based on the collected data bits over 5, 10, 

and 15-second intervals, which represent the Ts. Kwon et 

al. (31) demonstrated that sampling frequency Fs=250 Hz 

provides excellent results for the examination of heart 

rate variability. So, the rate of sending data bits is 

Rb=2Kbps. For instance, action 1 entails collecting 30 Kb 

of sampled data with a sampling duration of 15 seconds 

and measurements taken every minute. Each action 

possesses unique energy consumption levels due to its 

reliance on sampled data in wake-up mode and varying 

sleep times. Our agent selects an action from Table 4 

every 20 minutes.  

Reward: The first reward ℛ1 considers system 

throughput given by: 

ℛ1 =
𝒩𝑏

𝑃𝑠 ∗60
  (11) 

The second reward ℛ2 (Equation 12) considers the 

system energy. 𝐸𝑟(𝑡) is the residual energy in the node's 

battery at time t. 

ℛ2 =
𝐸𝑟(𝑡)

𝐸0
  (12) 

The third reward (Equation 13) is the combination of the 

two above rewards of system throughput and energy. 

ℛ3 = (𝛽) 
𝒩𝑏

𝒫𝓈∗60
+ (1 − 𝛽) 

𝐸𝑟(𝑡)

𝐸0
  (13) 

The primary aim of this system is to minimize energy 

consumption while simultaneously maximizing 

throughput, although these goals are conflicting with one 

another. The primary objective of the RL algorithm is to 

find the balance point that satisfies these constraints. For 

this purpose, the third reward function incorporates the 

parameter β to balance the throughput and battery 
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residual energy. Rewards and 𝒬-Table are updated every 

10 minutes.  

 

 

4. SIMULATION RESULTS 
 

In this section, the simulation results are examined. The 

first part focuses on comparing the rewards in 𝒬-learning 

and RA selection, while the second part compares the 𝒬-

learning algorithm with the SARSA algorithm reported 

by Ge et al. (23).  

The simulation of this system is conducted using 

MATLAB, with a total simulation time of 4500 minutes, 

equivalent to three full days. For the simulations, a single 

electrocardiogram (ECG) sensor with a battery capacity 

of 100 mAh has been considered. The 𝒬-Table is 

structured as a (3×5) matrix, where the columns represent 

the number of states, and the rows represent the number 

of actions. The parameters used in the simulations are 

described in Table 5.  

 

4. 1. The Comparison of Rewards in Q-learning 
with RA Selection         Algorithm 1 shows the steps of 

our 𝒬-learning method. In the RA selection, the 

environment, states, and actions remain the same as in 𝒬- 

 

 

 
Figure 2. Interaction between an agent and its environment 

 

 
TABLE 3. Kinetic motion harvested power for three different 

activities (32) 

Power harvested Activity 

2.4 µW 

180.3 µW 

678.3 µW 

Relaxing 

Running 

Walking 

 

 
TABLE 4. Set of actions with different periods between each 

measurement (Ps) and sampled data (Nb) at different sampling 

and transmission times 

Tt  (s) Ts (s) Nb (Kb) Ps (min) Action 

0.03 15 30 1 1  

0.02 10 20 1 2  

0.02 10 20 5 3 

0.02 10 20 20 4 

0.01 5 10 60 5 
 

TABLE 5. Simulation parameters 

Value Symbol 

3600 mAh 𝐸0 (21) 

0.1 𝛼 

0.9 𝛾 

0.7 β 

-16.6 𝑃0
𝑑𝐵(25) 

1.29 𝑛 (25) 
10 cm 𝑑0 (25) 
-0.72 𝜇 (25) 
2.67 𝜎 (25) 

1 mW 𝒫𝑐 (7)  
0.8 𝜂 (7)  

 

 
Algorithm 1: Q-learning algorithm 

1: Initialize  𝒬-table as 𝒬(𝓈𝑡 , 𝒶𝑡) = 0, with size (𝓈=3 ,𝒶=5) 

2: The agent observes the initial state 𝓈0 

3: for each time do 

4:       Calculate the 𝐸𝑟(𝑡) in the battery every minute 

5:       Choose an action 𝒶 every 20 minutes as follows: 

6:       if rand (0,1) > 𝜀 

7:           Select the action that has the maximum 𝒬-value in 

the 

              current state of 𝒬-table 

8:       else 

9:           Select an action randomly in the action space 

10:     end if 

11:     Choose randomly a state every 30 minutes  

12:     Get a reward 𝑟 every 10 minutes 

13:     Update the related 𝒬-value every 10 minutes as 

follows 
𝒬(𝓈𝑡, 𝒶𝑡) =  𝒬(𝓈𝑡, 𝒶𝑡) +  α[𝑟𝑡+1𝛾 max

𝒶
𝒬(𝓈𝑡+1, 𝒶𝑡+1) − 

            𝒬(𝓈𝑡, 𝒶𝑡)] 
14: end for 

 

 

learning. However, unlike 𝒬-learning, there are no 

rewards or updates to the 𝒬-Table. Actions are chosen 

randomly without any consideration of past experiences 

or rewards. 

In  Figure 3(a), (b), and (c) represent the actions taken 

under reward functions ℛ1 , ℛ3 , and ℛ2 , respectively, 

and illustrate how the agent selects actions over time. 

Initially (as indicated by the dashed line), the agent lacks 

any prior knowledge of its environment. Consequently, it 

adopts a strategy of selecting random actions to explore 

and gain a better understanding of the environment. After 

2000 minutes, the agent's behavior adapts more, and it 

learns to take actions that optimize the reward. The 

reward function ℛ1  determines the reward by 

considering both sleep time and system throughput. The 

highest possible reward is achieved when sleep time is 

minimized and throughput is maximized. 
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(a) 

(b) 

(c) 

(d) 

According to Figure 3(a), the agent selects the high-

consumption action (the first action) because it has Ps =1 

and the highest throughput. This action results in 

increased node consumption due to its high energy usage. 

The reward function ℛ2 calculates the reward based on 

the residual energy in the battery. This function produces 

the maximum reward value when the residual energy in 

the battery is high. According to (c), the agent selects the 

least energy-consuming action (the fifth action) because 

it has the highest sleep time (Ps = 60 minutes) and the 

lowest throughput. These actions contribute to preserving 

battery energy, which results in increased residual battery 

energy after 4500 minutes. The reward function ℛ3 

considers sleep time, system throughput, and battery 

residual energy to compute the reward. The highest 

reward value is achieved when both the battery residual 

energy and throughput are high. However, since we aim 

to balance the conflicting goals of throughput and energy 

consumption, the β parameter can be used to manage the 

node's behavior. In this case, the β parameter is set to a 

fixed value of 0.7 to achieve good management of the 

system. (b) indicates that the node selects actions 2 and 

5. In the RA scenario, actions are chosen randomly 

without any consideration of rewards. As a result, it can 

be observed in (d) that action selection does not progress 

in a way that achieves the intended purpose of the system. 

Figure 4 represents the system throughput under ℛ1, 

ℛ2, and ℛ3 reward functions compared to RA selection. 

As previously mentioned, the agent is trained to take 

actions that maximize the reward. When using the reward 

function ℛ1, the system throughput is nearly 7 times 

higher than when using the reward function ℛ2. Our goal 

is to manage system throughput so that it is neither too 

high nor too low. For this reason, the agent's behavior is 

more acceptable when using the reward function  ℛ3. The 

RA scenario shows the system throughput when actions 

are randomly selected. Compared to reward function ℛ3,  

 

 

 
Figure 3. The selected actions when the rewards are (a) ℛ1, 

(b) ℛ3, and (c) ℛ2 in terms of time compared to (d) RA 

selection 
 

 
Figure 4. System throughput when the rewards are ℛ1, ℛ2, 

and ℛ3 compared to RA selection 

 

 

it can be seen that 𝒬-learning leads to a 43% increase in 

system throughput. This demonstrates the superiority of 

the ε-greedy action selection method in 𝒬-learning over 

RA selection. 

Figure 5 represents the battery residual energy under 

ℛ1, ℛ2, and ℛ3 reward functions compared to RA 

selection. The figure shows that the reward function ℛ1 

depletes the battery energy quickly, while reward 

function ℛ2 minimizes energy consumption, resulting in 

a battery charge of over 75% at the end of the simulation. 

However, ℛ2's low throughput indicates that it may not 

be a desirable reward function. According to the figure, 

the reward function ℛ3 results in a battery charge of 

around 50% at the end of the simulation. The battery 

charge in the reward function ℛ3 is similar to that in the 

RA scenario, and there is no significant improvement. 

Based on the system throughput in Figure 4 and the 

battery residual energy in Figure 5, it can be concluded 

that the reward function ℛ1 has low battery residual 

energy and high throughput, in contrast, reward 

function ℛ2 has high battery residual energy and low 

throughput. However, neither of these reward functions 

aligns with our goal of managing both battery residual 

energy and throughput to be neither too high nor too low. 

According to the simulation results, the node exhibits 

more acceptable behavior with the reward function ℛ3.  

Figure 6 represents the sum of transmitted bits under 

ℛ1, ℛ2, and ℛ3 reward functions compared to RA 

selection. The figure shows that the sum of transferred 

bits in reward function ℛ1 is high, while it is low in 

reward function ℛ2. For example, at the 4500th minute, 

the total count of transferred bits in reward function ℛ1 

is 18 times higher than the total count of transmitted bits 

in reward function ℛ2. 

In contrast, ℛ3 achieves a more balanced total count 

of transferred bits compared to the RA scenario. For 

example, it is observed that about 134 * 102 Kb more bits 

are transmitted by ℛ3 in 4500 minutes. This result further 

demonstrates the superiority of 𝒬-learning with the ℛ3. 
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Figure 5. Battery residual energy when the rewards are 

ℛ1, ℛ2, and ℛ3 compared to RA selection 

 

 

 
Figure 6. Transferred bits when the rewards are ℛ1, ℛ2, ℛ3, 

and RA selection in terms of time 

 

 

4. 2. The Comparison between Q-learning and 
SARSA           We compared the SARSA method 

introduced by Ge et al. (23) with our method. Algorithm 

2 shows the steps of the SARSA method. Figures 7 and 

8 respectively show the system throughput and battery 

residual energy between 𝒬-learning and SARSA 

algorithms in ℛ3 with 1 iteration. Figure 7 compares the 

SARSA algorithm, an on-policy approach, with 𝒬-

learning, an off-policy approach. SARSA considers the 

current policy during learning, leading to a cautious 

exploration of actions and potentially lower output. On 

the other hand, 𝒬-learning explores a wider range of 

actions, potentially discovering more optimal policies 

and resulting in higher throughput. In Figure 8, SARSA's 

on-policy nature allows it to adapt to the current policy 

and make decisions based on the current state-action 

pairs. This adaptability can lead to more energy-efficient 

decisions by avoiding actions that consume excessive 

energy, resulting in lower energy consumption. 

In Figures 9 and 10, we can see that SARSA results 

with 60 iterations are better in both. As the iterations 

progress, both algorithms exhibit a gradual improvement 

in reward accumulation. However, SARSA consistently 

outperforms 𝒬-learning, showcasing its ability to make 

better policy decisions and optimize the reward over 

time. The graph demonstrates that SARSA achieves a 

higher cumulative reward compared to 𝒬-learning, 

indicating its effectiveness in maximizing the system's 

overall performance.  

Figures 11 and 12, demonstrate reward ℛ3 achieved 

by 𝒬-learning and SARSA during the time for 1 and 60 
 

 

Algorithm 2: SARSA algorithm 
1: Initialize  𝒬-table as 𝒬(𝓈𝑡 , 𝒶𝑡) = 0, with size (𝓈=3 ,𝒶=5) 

2: The agent observes the initial state 𝓈0 

3: for each time do 

4:       Calculate the 𝐸𝑟(𝑡) in the battery every minute 

5:       Choose the action 𝒶0 every 20 minutes from 

          𝒬-table with 𝜀-greedy policy 

6:       Get a reward 𝑟 every 10 minutes 

7:       Update the related 𝒬-value every 10 minutes as 

follows 
            𝒬(𝓈𝑡, 𝒶𝑡) =  𝒬(𝓈𝑡, 𝒶𝑡) +  α[𝑟𝑡+1𝛾𝒬(𝓈𝑡+1, 𝒶𝑡+1) −
 𝒬(𝓈𝑡, 𝒶𝑡)] 
8: end for 

 

 

 
Figure 7. System throughput between 𝒬-learning and 

SARSA algorithms in ℛ3 with 1 iteration 

 

 

 
Figure 8. Battery residual energy between 𝒬-learning and 

SARSA algorithms in ℛ3 with 1 iteration 
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Figure 9. System throughput between 𝒬-learning and 

SARSA algorithms in ℛ3 with 60 iterations 

 

 

iterations, respectively. According to Figure 11, 𝒬-

learning achieves higher rewards with fewer iterations 

and exhibits superior performance compared to SARSA. 

As depicted in Figure 12, clearly it indicates that SARSA 

surpasses 𝒬-learning, exhibiting an improvement rate of 

up to 6%. As the number of iterations increases, the 

 

 

 
Figure 10. System throughput between 𝒬-learning and 

SARSA algorithms in ℛ3 with 60 iterations 
 

 

 
Figure 11. Performance of SARSA and 𝒬-Learning with 1 

iteration 

 
Figure 12. Performance of SARSA and 𝒬-Learning with 60 

iterations 

 
 
degree of improvement also escalates. However, for 60 

iterations, SARSA consistently outperforms 𝒬-learning. 

It can be concluded that with an increase in training 

iterations, the disparity between SARSA and 𝒬-learning 

widens, leading to amplified reward gains. 

 

 
5. CONCLUSIONS 
 
In this paper, a one-tier WBAN including a sensor and a 

coordinator was presented. In this system model, the 

coordinator receives the data from the sensor located on 

the body and subsequently transmits RF energy to it. To 

meet the challenge of energy scarcity, the feasibility of 

harvesting energy from the human body was considered 

for the sensor. The goal of this work is to manage energy 

and throughput using 𝒬-learning. The results suggest that 

the reward function's design is a crucial aspect of the 

system's performance. This work tested three different 

reward functions in simulations to identify the best 

approach. The results indicate that a balancing parameter 

that adjusts the trade-off between throughput and energy 

consumption is the most effective solution. The ℛ1 and 

 ℛ2 reward functions did not permit effective 

management of throughput and energy consumption. 

However, the reward function ℛ3 enabled the node to 

adjust its behavior more effectively and perform better 

than the previous two rewards. In addition, ℛ3 compared 

in the 𝒬-learning and SARSA algorithms with 1 iteration 

and 60 iterations, and the results were analyzed. The 

results indicated that SARSA can achieve better 

performance in exchange for higher iteration costs. Our 

proposal for the future is to investigate energy and 

throughput management in WBAN by utilizing multiple 

sensors, and this can be examined through the use of 

multi-agent RL algorithms. Furthermore, deep 𝒬-

learning can be employed for scalability in a larger 

environment to handle large-scale Markov decision 

processes effectively. 
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Persian Abstract 

 چکیده 

پردازیم. رویکرد ما از روش خواب و با تمرکز بر حسگر ضربان قلب می (WBAN) سیم ناحیه بدندر یک شبکه بی   گذردهیهای مدیریت انرژی و  در این مقاله، به چالش 

روی و استراحت( به  های انسانی )دویدن، پیادهفعالیتو   (RF) کند، در حالی که از امواج فرکانس رادیوییبیداری برای به حداقل رساندن مصرف انرژی حسگر استفاده می 

.  شوداستفاده می   انرژی و اطلاعات  سیمانتقال بیبرای   (BLE5) 5  نسخه  فناوری بلوتوث کم انرژی  کند.انرژی باتری استفاده می تأمینبرای   (EH) عنوان منابع برداشت انرژی

  سازی از طریق شبیه  (RA)عمل   در مقایسه با انتخاب تصادفی  عمل،برای انتخاب  𝒬 -یادگیری  ازو انرژی باقیمانده باتری است. مزایای استفاده    گذردهیهدف ما ایجاد تعادل بین  

کند. می   بهتر عملمانده باتری  و انرژی باقی  گذردهیکننده، به طور موثر بین  ، با ترکیب یک پارامتر متعادل𝒬-یادگیری  در  دهد که تابع پاداشنتایج نشان می  است.نشان داده شده

با استفاده  را    SARSAو  𝒬 -یادگیریای  ه، ما عملکرد الگوریتمهمچنینبخشد.  درصد بهبود می  43سیستم را تا    گذردهی RA مقایسه بادر    ،ما𝒬 -یادگیریعلاوه بر این، روش  

  ها پیامدهای مهمی برای توسعهاین یافته .ارزیابی کنیم باتریمانده سیستم و انرژی باقی گذردهیها را در مدیریت های مربوطه آنتوانایی کنیم تا مقایسه می از همان تابع پاداش

WBANکندمدت و انتقال داده قابل اعتماد را فراهم میهای کارآمد در انرژی دارند که امکان عملیات طولانی. 
 


