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With the growth of nanotechnology, many attempts have been made on the chemical and phy-
sical properties of nanostructures. Due to relation between physical properties and geometrical
structure, understanding of the geometrical structure is very important. Moreover, this can be
useful for finding unknown structures that have not been produced in laboratory yet. In the
present work, first we have investigated the structure of some nanostructures from the geo-
metrical point of view. Then an algorithm is proposed for discovering the number of carbon
atoms in various nanotubes and fullerenes. In the presented algorithm, a nanosheet in 2D space
is considered as a start point. Creating twelve nanocones in nanosheet makes it a nanostructure.
Different nanostructures are produced by relocation of nanocones. The result shows that the
number of carbon atoms in different nanostructures is a sequence that has infinite harmonies
and follows a simple formula. Each harmony is an arithmetic progression.
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INTRODUCTION

After discovering some important carbon nanostructures
such as carbon nanotubes and fullerenes1–6 many efforts
have been made on the mathematical properties of these
structures from geometrical point of view. The geome-
trical methods have been applied to predict, investigate
and clarify the new structures of carbon nanostructures.
For example by using the Euler’s formula Iijima predict-
ed the basic characters of fullerene, i.e., the existence of
twelve pentagons before the clarification of the C60

structure.3 More general morphology of these carbon na-
nostructures has been investigated.7–11 For example in the
work of Fujita et al.8 an arbitrary fullerene can be spe-
cified by proper distribution of twelve pentagons on a

honeycomb lattice. In another work7 based on the diffe-
rential geometry, it has been clarified that the topologi-
cal defects (pentagons and heptagons) in a hexagonal
graphitic network give rise to a non-zero curvature in the
three-dimensional structure formed by the network and
it has been shown that how the topological defects affect
the carbon nanostructure morphology. In the present work
first the structure of some nanostructures has been inve-
stigated from geometrical point of view, and then an al-
gorithm is proposed for discovering the number of car-
bon atoms in different nanotubes and fullerenes. In the
following sections we describe the details of the propos-
ed method and the algorithm of the computer program
and the calculated results are presented.
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METHOD DESCRIPTION

In each carbon nanostructure studied here, one carbon
atom has three chemical bound. Most of these nano-
structures have a cage-like structure with twelve penta-
gons surrounded by 5 hexagons. Here we consider a plane
connected structure. Consider many number of carbon
atoms located in an infinite two dimensional network.
Each carbon atom has 3 connected bounds in this net-
work. The result will be a sheet with infinite number of
regular hexagons. This plane is called nano-sheet. We are
going to build a fullerene by proper cutting and rotating
the nano-sheet.

For this purpose, as it can be seen from Figure 1, we
cut a 60° angle in the nanosheet. It’s important to con-
sider that the apex of this angle concise on the center of
the specified hexagon which we want to convert that to a
pentagon. After cutting two edges of the angle must be
concised. Consequently the nanosheet in 2D space changes
to a nano-cone in 3D space. As shown in Figure 2 in the
nanocone there is only one pentagon in the center surround-
ed by many hexagons. As it has been proved theoreti-
cally in the work of M. Hayashi7 by creating twelve na-
nocones in the nano-sheet, we have made a closed cage-
like structure (see Figure 3). Because of the symmetry of
this structure we choose one half of it for our further dis-

cussion. There are 6 pentagons in one half of cage-like
structure includes one at the center surrounded by five
other pentagons. Relative positions of these six pentagons
to each other can produce three different categories of
structures. The first one includes a series of structures in
which the neighbors of the central pentagon are located
along with the perpendicular bisectors of each edge of
the central pentagon. In the second series, the neighbors
of the central pentagon are located along with the apex
of it. In the third series, we don’t have the geometrical
properties of the two series mentioned above. In this work
we are going to predict the number of carbon atoms ex-
isting in the first two series introduced here.

THE FIRST SERIES

As shown in Figure 4 for generating the central penta-
gon in the center of nanosheet white triangular zone is
used. For generating other five pentagons, five neighbor
hexagons are selected and five other triangular zones are
used. These triangles are drawn with dark color in this
figure. Depending to the distance between of surround-
ing pentagons from the central, different sets are made.
Figure 4 shows the first set in which surrounded penta-
gons are immediate neighbors of the central pentagon. For
determination of the cutting edge of the structure we use
a specified hexagon namely half-cage cut-hexagon. It is
a hexagon that contains half number of carbon atoms par-
ticipate in a cage-like structure. By using the symmetry
of the structure the second half is exactly the same.
Through this way we have made a sequence of numbers
by enlarging the cut-hexagon.

Here we introduce a well known homologue series
of carbon nanostructures which have been named by fulle-
renes. Fullerenes are cage-like carbon nanostructures with
different number of carbon atoms. The smallest of these
structures is C20. C20 is a symmetric fullerene contains
twelve pentagons. C20 as well as other fullerenes can be
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Figure 1. Nanosheet with cutting triangular zone.

Figure 2. Nanocone.

Figure 3. A cage-like structure with twelve pentagons.



obtained from Figure 4 in the following manner. Smal-
lest half-cage cut-hexagon contains ten carbon atoms
which labeled as C20 in Figure 4. Therefore we can con-
clude that the number 20 is the first term of the sequence.
Enlarging the cut-hexagon generates the next members
of the sequence, i.e. C30, C40, C50, C60, C70 etc. This se-
quence of numbers can be expressed by the following
expression which is an arithmetic progression with 20 as
first term and 10 as common difference.

C(20 + 10N), N = 0, 1, 2, 3 … (1)

As the number N approaches to the very large num-
bers the corresponding structures form a new class of
carbon nanostructures which are named as (n,0) zig-zag
nanotubes12 which n is an integer multiplier of 5.

In the next step as illustrated in Figure 5 position of
five pentagons is considered a little far from central pen-
tagon. By doing this step a new set of nanostructures are
made with larger diameters. The only thing that changes
in these sequences is the distance of the central pentagon
from the others. Considering the above explanations C60

will be the smallest structure of the new sequence (see
Figure 5). It is worth while to mention the generated C60

in this sequence is not the well known buckminsterful-
lerene, C60 (Ref. 13) which is completely spherical. The

only spherical structure in this sequence is C80. C100, C120,
C140, C160, are the next structures of this sequence. Simi-
larly this new sequence is an arithmetic progression with
60 as first term and 20 as common difference can be ex-
pressed by the following expression:

C(60 + 20N), N = 0, 1, 2, 3 … (2)

In the similar manner (see Figures 6 and 7) additio-
nal sequences are made with the following expressions:

C(120 + 30N), N = 0, 1, 2, 3 … (3)

C(200 + 40N), N = 0, 1, 2, 3 … (4)

C(300 + 50N), N = 0, 1, 2, 3 … (5)

…

A GENERAL FORMULA FOR THE FIRST SERIES

First term of each sequence in the series include 20, 60,
120, 200, 300, is also an arithmetic progression except that
its common difference is a variable that can be calculated
by the following expression:

20 + J*20 with J = 1, 2, 3, 4 … (6)
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TABLE I. Predicted number of carbon atom for first series

20 60 120 200 300 420 560 720 900 1100 1320 1560 1820 2100 2400 2720 3060 3420 3800 4200

30 80 150 240 350 480 630 800 990 1200 1430 1680 1950 2240 2550 2880 3230 3600 3990 4400

40 100 180 280 400 540 700 880 1080 1300 1540 1800 2080 2380 2700 3040 3400 3780 4180 4600

50 120 210 320 450 600 770 960 1170 1400 1650 1920 2210 2520 2850 3200 3570 3960 4370 4800

60 140 240 360 500 660 840 1040 1260 1500 1760 2040 2340 2660 3000 3360 3740 4140 4560 5000

70 160 270 400 550 720 910 1120 1350 1600 1870 2160 2470 2800 3150 3520 3910 4320 4750 5200

80 180 300 440 600 780 980 1200 1440 1700 1980 2280 2600 2940 3300 3680 4080 4500 4940 5400

90 200 330 480 650 840 1050 1280 1530 1800 2090 2400 2730 3080 3450 3840 4250 4680 5130 5600

100 220 360 520 700 900 1120 1360 1620 1900 2200 2520 2860 3220 3600 4000 4420 4860 5320 5800

110 240 390 560 750 960 1190 1440 1710 2000 2310 2640 2990 3360 3750 4160 4590 5040 5510 6000

120 260 420 600 800 1020 1260 1520 1800 2100 2420 2760 3120 3500 3900 4320 4760 5220 5700 6200

130 280 450 640 850 1080 1330 1600 1890 2200 2530 2880 3250 3640 4050 4480 4930 5400 5890 6400

140 300 480 680 900 1140 1400 1680 1980 2300 2640 3000 3380 3780 4200 4640 5100 5580 6080 6600

150 320 510 720 950 1200 1470 1760 2070 2400 2750 3120 3510 3920 4350 4800 5270 5760 6270 6800

160 340 540 760 1000 1260 1540 1840 2160 2500 2860 3240 3640 4060 4500 4960 5440 5940 6460 7000

170 360 570 800 1050 1320 1610 1920 2250 2600 2970 3360 3770 4200 4650 5120 5610 6120 6650 7200

180 380 600 840 1100 1380 1680 2000 2340 2700 3080 3480 3900 4340 4800 5280 5780 6300 6840 7400

190 400 630 880 1150 1440 1750 2080 2430 2800 3190 3600 4030 4480 4950 5440 5950 6480 7030 7600

200 420 660 920 1200 1500 1820 2160 2520 2900 3300 3720 4160 4620 5100 5600 6120 6660 7220 7800

210 440 690 960 1250 1560 1890 2240 2610 3000 3410 3840 4290 4760 5250 5760 6290 6840 7410 8000



Therefore the first term of the sequences in the se-
ries can be obtained by the following manner:

20 + (20 + 1*20) = 60

60 + (20 + 2*20) = 120

120 + (20 + 3*20) = 200

200 + (20 + 4*20) = 300

300 + (20 + 5*20) = 420

420 + (20 + 6*20) = 560

Thus this series can be considered as a 2D sequence
that can be expressed by the following general formula:

10j(i + j) (7)
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Figure 4. 2D model for first sequence of first series.

Figure 5. 2D model for second sequence of first series.

Figure 6. 2D model for third sequence of first series.

Figure 7. 2D model for fourth sequence of first series.

Figure 8. 3D shape of some spherical Fullerene of series one.



Where i and j denote respective rows and columns
of Table I. This table shows the first 20×20 of this 2D
sequence.

One of the most important properties of this table is
that the numbers on its main diameter produce symme-
trical spherical fullerenes. These numbers are shaded in
table. Smaller fullerenes have more spherical shape which
shaded darker. Figure 8 shows some of these fullerene
shapes in 3D space. Figure 9 demonstrates 2D shapes of
some nanostructures.

THE SECOND SERIES

In this section other series of sequences are proposed.
Method is similar to the previous section. As it was
mentioned before here 5 surrounding pentagons are
placed along with the apex of the central pentagon. By
referring to Figures 10, 11 and 12 if a line is drawn from

the center of central pentagon to each its apex, passes from
the apex of the cut-triangle. By doing similar steps as pre-
sented before we can obtain the new series of sequences.
Common statement of these sequences is given below:

C(60 + 20N), N = 0, 1, 2, 3 … (8)

C(180 + 40N), N = 0, 1, 2, 3 … (9)

C(360 + 60N), N = 0, 1, 2, 3 … (10)

C(600 + 80N), N = 0, 1, 2, 3 … (11)

C(900 + 400N), N = 0, 1, 2, 3 … (12)

In these statements when N approaches to very large
number we will obtain some important carbon nanotubes
which are named as (n,n) arimchair nanotubes.12 Again
similar to series one n is an integer multiplier of 5.
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Figure 9. 2D shape for one half of various nanostructure of series one.



A GENERAL FORMULA FOR THE SECOND
SERIES

Similar to the previous section first term of each sequen-
ce is an arithmetic progression with the following vari-
able common difference:

60 + J*60 with J = 1, 2, 3, 4 … (13)

Thus this series can be considered as a 2D sequence
that can be expressed by the following general formula:

10j(2i + 3j + 1) (14)
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Figure 9. (continued)



Where i and j denote respective rows and columns
of Table II. This table shows the first 40×20 matrix of
this 2D sequence.

The first term of the first sequence in this series is
60 corresponding to C60 which is named Buckminster-
fullerene. This structure is a completely spherical carbon
nanostructure.
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TABLE II. Predcted number of carbon atom for second series

60 180 360 600 900 1260 1680 2160 2700 3300 3960 4680 5460 6300 7200 8160 9180 10260 11400 12600

80 220 420 680 1000 1380 1820 2320 2880 3500 4180 4920 5720 6580 7500 8480 9520 10620 11780 13000
240

100 260 480 760 1100 1500 1960 2480 3060 3700 4400 5160 5980 6860 7800 8800 9860 10980 12160 13400

120 300 540 840 1200 1620 2100 2640 3240 3900 4620 5400 6240 7140 8100 9120 10200 11340 12540 13800

140 340 600 920 1300 1740 2240 2800 3420 4100 4840 5640 6500 7420 8400 9440 10540 11700 12920 14200
960

160 380 660 1000 1400 1860 2380 2960 3600 4300 5060 5880 6760 7700 8700 9760 10880 12060 13300 14600

180 420 720 1080 1500 1980 2520 3120 3780 4500 5280 6120 7020 7980 9000 10080 11220 12420 13680 15000

200 460 780 1160 1600 2100 2660 3280 3960 4700 5500 6360 7280 8260 9300 10400 11560 12780 14060 15400
2160

220 500 840 1240 1700 2220 2800 3440 4140 4900 5720 6600 7540 8540 9600 10720 11900 13140 14440 15800

240 540 900 1320 1800 2340 2940 3600 4320 5100 5940 6840 7800 8820 9900 11040 12240 13500 14820 16200

260 580 960 1400 1900 2460 3080 3760 4500 5300 6160 7080 8060 9100 10200 11360 12580 13860 15200 16600
3840

280 620 1020 1480 2000 2580 3220 3920 4680 5500 6380 7320 8320 9380 10500 11680 12920 14220 15580 17000

300 660 1080 1560 2100 2700 3360 4080 4860 5700 6600 7560 8580 9660 10800 12000 13260 14580 15960 17400

320 700 1140 1640 2200 2820 3500 4240 5040 5900 6820 7800 8840 9940 11100 12320 13600 14940 16340 17800
6000

340 740 1200 1720 2300 2940 3640 4400 5220 6100 7040 8040 9100 10220 11400 12640 13940 15300 16720 18200

360 780 1260 1800 2400 3060 3780 4560 5400 6300 7260 8280 9360 10500 11700 12960 14280 15660 17100 18600

380 820 1320 1880 2500 3180 3920 4720 5580 6500 7480 8520 9620 10780 12000 13280 14620 16020 17480 19000
8640

400 860 1380 1960 2600 3300 4060 4880 5760 6700 7700 8760 9880 11060 12300 13600 14960 16380 17860 19400

420 900 1440 2040 2700 3420 4200 5040 5940 6900 7920 9000 10140 11340 12600 13920 15300 16740 18240 19800

440 940 1500 2120 2800 3540 4340 5200 6120 7100 8140 9240 10400 11620 12900 14240 15640 17100 18620 20200

Figure 10. 2D model for first sequence of second series. Figure 11. 2D model for second sequence of second series.



One point should be noticed is that in this spectrum
for all sequences one number can be inserted between with
the average value of two consequent numbers. Location

of these numbers in the table is left blank except sym-
metrical spherical fullerenes which are shaded in the table.
Similar to Table I smaller fullerenes are more spherical
and are shaded darker in Table II. Figure 13 shows some
of these fullerene shapes in 3D space. Figure 14 demon-
strates 2D shapes of some nanostructures.

CONCLUSION

In this work we classified nanostructures from geometri-
cal point of view and proposed a 2D topological model
for two big series of these regular structures. Each series
has a large number of sets. This approach provides the
facility to imagine connectivity structure of nanostructu-
res and determining the number of carbon atoms for all
members of these sets. The obtained numbers for each
set satisfy an arithmetic progression. Two program source
codes have been presented for generating two series of
sequences. The results can be useful for educational pur-
poses, prediction of new structures in laboratory which
have not been produced yet, finding coordination of all
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Figure 12. 2D model for third sequence of second series.

Figure 13. 3D shape of some spherical Fullerene of series two.

Figure 14. 2D shape for one half of various nanostructure of series two.
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Figure 14. (continued)



nodes in each nanostructure and drawing 3D shapes of
various nanostructures. More extensive works are need-
ed for generating the shape of some other nanostructures
with different geometrical properties. This will be the
subject of our further research work.
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Figure 14. (continued)



SA@ETAK

Predvi|anje broja ugljikovih atoma u raznim nanostrukturama kori{tenjem
geometrijskog pristupa

Hosein Sabaghian-Bidgoli, Gholamreza Vakili-Nezgaad i Mehdi Vahidipour

Rast nanotehnologija je doveo do mnogih istra`ivanja kemijskih i fizikalnih svojstava nanostruktura. Kako
su ova ovisna o geometriji, to su geometrijske studije vrlo va`ne. [tovi{e, one mogu biti tako|er od koristi u
pronala`enju novih struktura koje jo{ nisu dobivene u laboratoriju. U ovom radu prvo istra`ujemo neke nano-
strukture s geometrijskog stanovi{ta. Nakon toga predla`emo algoritam za odre|ivanje broja ugljikovih atoma u
raznim nanocjev~icama i fullerenima, gdje kre}emo od dvodimenzionalnog lista u koji zatim ugra|ujemo dva-
naest nanosto`aca. Kona~no se premje{tanjem nanoso`aca dobivaju razne nanostrukture. Pokazano je da broj
ugljikovih atoma u raznim nanostrukturama pokazuje pravilnosti koje se daju opisati jednostavnim formulama.
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