CV
QR


Farshid Ahmadi

Farshid Ahmadi

Assistant Professor

College: Faculty of Mechanical Engineering

Department: Mechanical Engineering - Manufacturing and Production

Degree: Ph.D

CV
QR
Farshid Ahmadi

Assistant Professor Farshid Ahmadi

College: Faculty of Mechanical Engineering - Department: Mechanical Engineering - Manufacturing and Production Degree: Ph.D |

Dr. Farshid Ahmadi is a Faculty Member in the Department of Mechanical Engineering, University of Kashan. He is also an Engineering and Research Consultant. Dr. Ahmadi's research is multi-disciplinary and revolves around Metal forming, Ultrasonic assisted manufacturing, FEM,  Bio-Mechanics and Nano structured materials. 

He received his PhD in Mechanical Engineering from Isfahan University  of Technology (with the highest honor), as the first Ph.D. graduate of the department .

He has received numerous academic award, including 3th person among 7850 people in Mechanical Engineering Master Degree entering Exam award and Fellowship of National Elite Foundation. 

نمایش بیشتر

Ultrasonic bone cutting: Experimental investigation and statistical analyses of cutting forces

Authorsمهدی رضایی,محمود فرزین,محمد رضا نیرومند,فرشید احمدی
JournalSCI IRAN
Paper TypeFull Paper
Published At2021-01-13
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryIran, Islamic Republic Of
Journal IndexSCOPUS ,ISC ,JCR

Abstract

Low cutting forces can significantly reduce damage risk on sensitive tissues adjacent to the bone. Applying an ultrasound tool in bone cutting is an interest among surgeons due to its better control in an incision, low cutting force, and reduced postoperative complications. In this study, by applying a full factorial design of experiments, the effects of changes in cutting tool geometry, ultrasonic power, bone-cutting direction, and tool speed on the cutting forces of cortical bone are assessed simultaneously. The analyses of variance and regression are run on experimental data, and the influence of each factor and interactions of the elements on the cutting forces are discussed. The adjusted coefficient of determination (R2adj.) of the statistical models is 91.49% and 91.15% in the main cutting force and cutting resistant force, respectively. Both the blade geometry and ultrasonic power, together with their interactions, are the most influential factors in cutting forces with 82.2% and 86.6% contribution therein, respectively. Creating teeth in the cutting edge improves the cutting process and reduces the cutting force by about 40%. The ultrasonic-powered toothed edge blade with a 1 mm pitch, low vertical velocity, and high longitudinal speed is recommended for high efficiency and low cutting force.