Authors | محمد رضا مصلحی,حسین ابراهیم پور کومله,سلمان گلی,رضا تاجی |
---|---|
Journal | Majlesi Journal of Electrical Engineering |
Page number | 105 |
Volume number | 15 |
IF | ثبت نشده |
Paper Type | Full Paper |
Published At | 2021-09-01 |
Journal Grade | Scientific - research |
Journal Type | Electronic |
Journal Country | Iran, Islamic Republic Of |
Journal Index | SCOPUS ,ISC |
Abstract
In recent years, exponential growth of communication devices in Internet of Things (IoT) has become an emerging technology which facilitates heterogeneous devices to connect with each other in heterogeneous networks. This communication requires different level of Quality-of-Service (QoS) and policies depending on the device type and location. To provide a specific level of QoS, we can utilize emerging new technological concepts in IoT infrastructure, software-defined network (SDN) and, machine learning algorithms. We use deep reinforcement learning in the process of resource management and allocation in control plane. We present an algorithm that aims to optimize resource allocation. Simulation results show that the proposed algorithm improved network performances in terms of QoS parameters, including delay and throughput compared to Random and Round Robin methods. Compared to similar methods the performance of the proposed method is also as good as the fuzzy and predictive methods.
tags: Internet of Things, Software-Defined Networking (SDN), Deep Reinforcement Learning, QoS