| Authors | رضا کهکشانی |
| Journal | Journal of Integer Sequences |
| Page number | 1 |
| Volume number | 16 |
| Paper Type | Full Paper |
| Published At | 2013-07-30 |
| Journal Grade | Scientific - research |
| Journal Type | Electronic |
| Journal Country | Iran, Islamic Republic Of |
| Journal Index | SCOPUS |
Abstract
In this paper, we generalize the Catalan number $C_n$ to the $(m, n)$th Catalan number $C(m, n)$ using a combinatorial description, as follows: the number of paths in $\mathbb{R}^m$ from the origin to the point $(n,\cdots,n,(m-1)n) with $m$ kinds of moves such that the path never rises above the hyperplane $x_m=x_1+\cdots+x_{m-1}$.