CV
QR


Mohammad Nazififard

Mohammad Nazififard

Assistant Professor

College: Faculty of Mechanical Engineering

Department: Mechanical Engineering - Heat and Fluid

Degree: Ph.D

CV
QR
Mohammad Nazififard

Assistant Professor Mohammad Nazififard

College: Faculty of Mechanical Engineering - Department: Mechanical Engineering - Heat and Fluid Degree: Ph.D |

Currently my primary focus is on renewable and clean energy systems. With over a decade of experience in the energy industry, I have led research and development efforts in sustainable energy production, energy management, and conservation systems.

At the University of Kashan, I am actively involved in teaching and conducting research, while also establishing close collaborations with the R&D divisions of major international companies. Together, we are advancing technologies in renewable and clean energy for Iran and similar regions. Through these partnerships, I have made significant contributions to the development and implementation of innovative solutions in our country's energy sector.

I strongly believe in taking a holistic approach to address energy challenges. This includes reducing consumption through efficiency improvements and promoting sustainable renewable energy production. By staying up-to-date with the latest advancements in renewable and smart energy systems, I strive to combine theoretical knowledge with practical applications to contribute to the transition towards a more sustainable and efficient energy future.

Areas of Expertise:
- Renewable Energy Systems
- Sustainable Energy Production
- Energy Management
- Smart Energy Systems
- Research and Development in Energy Systems Engineering

My affiliation

Department of Energy Systems Engineering, School of Mechanical Engineering, University of Kashan, Iran.

نمایش بیشتر

Effect of bend curvature ratio on flow pattern at a mixing tee after a 90 degree bend

AuthorsMohammadreza Nematollahi, Mohammad Nazififard, Maziar Asmani, Hidetoshi Hashizume
JournalInternational Journal of Engineering (IJE)
Paper TypeOriginal Research
Published At2009-7-15
Journal GradeISI
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of

Abstract

Many nuclear power plants report high cycle thermal fatigue in their cooling system, caused by temperature fluctuation in a non-isothermal mixing area. One of these areas is the T-junction, in which fluids of various temperatures and velocities blend. The objective of this research is to classify turbulent jet mechanics in order to examine the flow-field structure under various operating conditions. Furthermore, this research discovers the optimum operating conditions of the mixing tee in this piping system. An experimental model, including the T-junction with a 90 degree bend upstream, is operated to analyze this mixing phenomenon based on the real operation design of the Phenix Reactor. The temperature and velocity data show that a 90 degree bend has a strong effect on the fluid mixing mechanism and the momentum ratio between the main velocity and the branch velocity of the T-junction, which could be an important parameter for the classification of the fluid mixing mechanism. By comparing their mean velocity distributions, velocity fluctuations and time-series data, the behavior of the branch jet is categorized into four types of turbulent jets; sorted from the highest to the lowest momentum ratios, the jets are categorized as follows: the wall jet, the re-attached jet, the turn jet, and the impinging jet. Ultimately, the momentum ration of the turn jet was selected as the optimum