تشخیص آفات محصولات کشاورزی مبتنی بر ترکیب شبکه¬های عصبی کانولوشنی و بازگشتی

Authorsزهره بابائی ساری,محمدرضا ذوقی
Conference Titleکنفرانس بین المللی پژوهشها و فناوریهای نوین در مهندسی برق
Holding Date of Conference۲۰۲۳-۰۳-۰۱ - ۲۰۲۳-۰۳-۰۱
Event Place1 - تهران
Presented byدانشگاه علم و فرهنگ
PresentationSPEECH
Conference LevelInternational Conferences

Abstract

فناوری پردازش تصویر در شناسایی آفات به منظور کنترل خسارات محصولات کشاورزی، از اهمیت ویژه ای برخوردار می¬باشد. در سال¬های اخیر استفاده از یادگیری عمیق برای کمک به کشاورزان در شناسایی وطبقه بندی آفات توسعه یافته است. در این پژوهش برای شناسایی آفات محصولات گوجه فرنگی از یک فرآیند چند مرحله¬ای بهره گرفته شده است. در مرحله¬ی نخست عملیات پیش-پردازش بمنظور بهبود داده¬ها صورت می¬گیرد. در گام دوم از شبکه¬های یادگیری عمیق برای استخراج الگو از تصاویر بهره گرفته شده است. شبکه¬ی استفاده شده، ترکیبی از شبکه کانولوشنی و بازگشتی است. بعد از عملیات استخراج الگو جهت طبقه¬بندی آفات از ماشین بردار پشتیبان بهره گرفته شده است. برای ارزیابی روش پیشنهادی از مجموعه داده¬ی استاندارد tomato Pest استفاده گردیده است. بر اساس معیارهای دقت، صحت، فراخوان و معیار F ، نتایج به ترتیب برابر با 98 ، 98، 96 و 95 درصد بدست آمده است.

Paper URL

tags: پردازش تصویر، شبکه های کانولوشنی، شبکه بازگشتی، محصولات کشاورزی، یادگیری عمیق