نویسندگان | علی ایرانمنش,جلال عسگری فرسنگی,کینکار داس |
---|---|
نشریه | J INEQUAL APPL |
شماره صفحات | 120 |
شماره مجلد | 2016 |
ضریب تاثیر (IF) | 0.603 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2016-05-11 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | ISI |
چکیده مقاله
Let G be a simple graph with n vertices and (0,1)(0,1)-adjacency matrix A. As usual, S(G)=J−2A−IS(G)=J−2A−I denotes the Seidel matrix of the graph G. Suppose θ1,θ2,…,θnθ1,θ2,…,θn and λ1,λ2,…,λnλ1,λ2,…,λn are the eigenvalues of the adjacency matrix and the Seidel matrix of G, respectively. The Estrada index of the graph G is defined as ∑ni=1eθi∑i=1neθi. We define and investigate the Seidel-Estrada index, SEE=SEE(G)=∑ni=1eλiSEE=SEE(G)=∑i=1neλi. In this paper the basic properties of the Seidel-Estrada index are investigated. Moreover, some lower and upper bounds for the Seidel-Estrada index in terms of the number of vertices are obtained. In addition, some relations between SEESEE and the Seidel energy Es(G)Es(G) are presented.
tags: eigenvalue Seidel matrix Seidel-Estrada index