| نویسندگان | فرزانه هاشمی,جلال عسگری فرسنگی,سعید دریجانی |
| نشریه | Mathematics Interdisciplinary Research |
| شماره صفحات | 385 |
| شماره مجلد | 9 |
| ضریب تاثیر (IF) | ثبت نشده |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2024-08-16 |
| رتبه نشریه | علمی - پژوهشی |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | ISC |
چکیده مقاله
The purpose of this paper is to extend the mixture factor analyzers (MFA)
model to handle missing and heavy-tailed data. In this model, the distribution
of factors loading and errors arise from the multivariate normal
mean-variance mixture of the Birnbaum-Saunders (NMVBS) distribution.
By using the structures covariance matrix, we introduce parsimonious MFA
based on NMVBS distribution. An Expectation Maximization (EM)-type algorithm
is developed for parameter estimation. Simulations study and real
data sets represent the efficiency and performance of the proposed model.