نویسندگان | فرزانه هاشمی,جلال عسگری فرسنگی,سعید دریجانی |
---|---|
نشریه | Mathematics Interdisciplinary Research |
شماره صفحات | 385 |
شماره مجلد | 9 |
ضریب تاثیر (IF) | ثبت نشده |
نوع مقاله | Full Paper |
تاریخ انتشار | 2024-08-16 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | ISC |
چکیده مقاله
The purpose of this paper is to extend the mixture factor analyzers (MFA) model to handle missing and heavy-tailed data. In this model, the distribution of factors loading and errors arise from the multivariate normal mean-variance mixture of the Birnbaum-Saunders (NMVBS) distribution. By using the structures covariance matrix, we introduce parsimonious MFA based on NMVBS distribution. An Expectation Maximization (EM)-type algorithm is developed for parameter estimation. Simulations study and real data sets represent the efficiency and performance of the proposed model.
tags: Normal mean variance distribution, EM-type algorithm, factor analysis, heavy-tail, strongly leptokurtic.