CV
QR


Mohammad Barati

Mohammad Barati

Assistant Professor

College: Faculty of Chemistry

Department: Chemistry

Degree: Ph.D

CV
QR
Mohammad Barati

Assistant Professor Mohammad Barati

College: Faculty of Chemistry - Department: Chemistry Degree: Ph.D |

Assistant Professor

Applied Chemistry, University of Kashan, Kashan, Iran, 2015-Now.

Fields of Research: Gaseous, liquid and solid fuels production from bio resources. Biodiesel production from algae and other oily biomasses in supercritical conditions. Water, methanol, hexane and acetone in supercritical conditions is used for biomass conversion to biofuels in our Lab. Nanocomposites for bio applications is my other field of research. Extraction of chemicals from medicinal herbs for using in controlled drug delivery systems, especially polymer nanocomposites.

Current research projects: Kinetic study of biodiesel production processes in supercritical environment and conversion studies of bio-aviation fuels production processes in supercritical environment.

 

PhD

Applied Chemistry, University of Tehran, Tehran-Iran, 2011-2015.

Field of Research: Catalytic renewable fuels production from biomass.

More specifically, in my PhD thesis, I have focused on the production of hydrogen gas from biomass feedstock using catalytic sub and supercritical water gasification.  Ni, Ru, Cu and K are the metals we are working on. Renewable liquid fuels production especially higher alcohols and ethers is our parallel aim in the thesis. With progressing the experimental steps of thesis, we could produce relatively significant amounts of higher alcohols from a catalytic subcritical methanol/water process as well as hydrogen production was successful.
 

 

Master of Science

Applied Chemistry, University of Tabriz, Tabriz-Iran, 2008-2011.

Field of Study: Anticorrosion behavior of electroactive polymer coatings on steel.

In MSc thesis we try to inhibit the steel electrochemical corrosion with polymer nanocomposite coatings. The polymer matrix contain polyaniline as an electroactive polymer and Zn metal nanoparticles was applied as additive.  The nanocomposite coatings exhibited good anticorrosion performance. The field included courses such as preparation of polymer nanocomposites and electrochemical tests as CV and electrochemical impedance spectroscopy.

 

Bachelor of Science

Applied Chemistry, University of Tabriz, Tabriz-Iran, 2008-2011.

نمایش بیشتر

Supercritical microalgae conversion to biofuel and value-added components (oxygenates, hydrocarbons, and aromatics): A catalyst characterization study

Authorsمریم عقیلی ناطق,محمد براتی ,مسعود همدانیان
JournalEnvironmental Progress & Sustainable Energy
Page number1
Volume number43
IFثبت نشده
Paper TypeFull Paper
Published At2024-12-11
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryIran, Islamic Republic Of
Journal IndexSCOPUS ,ISC ,JCR

Abstract

The study aimed to investigate the use of SrO/TiO2 nano-catalysts in the one-pot production of valuable products (such as fatty acid methyl esters, oxygenates, hydrocarbons, and aromatics) from Chlorella vulgaris microalgae through a supercritical process. The research focused on examining the impact of the factors, the SrO to TiO2 ratio, preparation method, and calcination temperature on the catalytic performance. Two calcination temperatures (600°C and 850°C), two Sr:Ti molar ratios (1 and 2), and two catalyst preparation methods (photochemical and impregnation) were considered. The catalysts were characterized using Scanning electron microscopy, transmission electron microscope, x-ray crystallography, and Brunauer-Emmett-Teller techniques. The evaluation of catalyst performance primarily focused on the production of value-added products, particularly fatty acid methyl esters (FAMEs). The results indicated that the catalyst prepared using the photochemical method with a Sr:Ti molar ratio of 2 and calcined at 850°C exhibited superior performance in terms of FAMEs and oxygenates production. It was demonstrated that the catalyst prepared using the photochemical method with higher Sr:Ti ratio had better performances in the production of biodiesel.