CV
QR


Mohammad Barati

Mohammad Barati

Assistant Professor

College: Faculty of Chemistry

Department: Chemistry

Degree: Ph.D

CV
QR
Mohammad Barati

Assistant Professor Mohammad Barati

College: Faculty of Chemistry - Department: Chemistry Degree: Ph.D |

Assistant Professor

Applied Chemistry, University of Kashan, Kashan, Iran, 2015-Now.

Fields of Research: Gaseous, liquid and solid fuels production from bio resources. Biodiesel production from algae and other oily biomasses in supercritical conditions. Water, methanol, hexane and acetone in supercritical conditions is used for biomass conversion to biofuels in our Lab. Nanocomposites for bio applications is my other field of research. Extraction of chemicals from medicinal herbs for using in controlled drug delivery systems, especially polymer nanocomposites.

Current research projects: Kinetic study of biodiesel production processes in supercritical environment and conversion studies of bio-aviation fuels production processes in supercritical environment.

 

PhD

Applied Chemistry, University of Tehran, Tehran-Iran, 2011-2015.

Field of Research: Catalytic renewable fuels production from biomass.

More specifically, in my PhD thesis, I have focused on the production of hydrogen gas from biomass feedstock using catalytic sub and supercritical water gasification.  Ni, Ru, Cu and K are the metals we are working on. Renewable liquid fuels production especially higher alcohols and ethers is our parallel aim in the thesis. With progressing the experimental steps of thesis, we could produce relatively significant amounts of higher alcohols from a catalytic subcritical methanol/water process as well as hydrogen production was successful.
 

 

Master of Science

Applied Chemistry, University of Tabriz, Tabriz-Iran, 2008-2011.

Field of Study: Anticorrosion behavior of electroactive polymer coatings on steel.

In MSc thesis we try to inhibit the steel electrochemical corrosion with polymer nanocomposite coatings. The polymer matrix contain polyaniline as an electroactive polymer and Zn metal nanoparticles was applied as additive.  The nanocomposite coatings exhibited good anticorrosion performance. The field included courses such as preparation of polymer nanocomposites and electrochemical tests as CV and electrochemical impedance spectroscopy.

 

Bachelor of Science

Applied Chemistry, University of Tabriz, Tabriz-Iran, 2008-2011.

نمایش بیشتر

Conversion of sugarcane bagasse to gaseous and liquid fuels in near-critical water media using K 2 O promoted Cu/γ-Al 2 O 3–MgO nanocatalysts

AuthorsTavasoli. A, Barati. M, Karimi. A
JournalBIOMASS BIOENERG
Paper TypeFull Paper
Published At2015-4-01
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryUnited Kingdom
Journal IndexISI ,SCOPUS

Abstract

Bagasse conversion to H2, CO and light gaseous hydrocarbons as gaseous fuels, and higher alcohols and ethers as liquid fuels and fuel additives were performed in a basic water medium with near-critical condition in presence of potassium promoted Cu/γ-Al2O3–MgO catalysts. The catalysts were extensively characterized using ICP, XRD, TPR, BET, CO chemisorption and TEM techniques. In order to investigate support stability at reaction condition, XRD test also was carried out for used catalysts. Maximum dispersion of 48% and minimum average particles sizes of 8.4 nm were obtained for Cu20–K7.5/γ-Al2O3–MgO catalyst. Copper and potassium effects on quality and quantity of gaseous and liquid products were investigated. The maximum amounts of H2 (10 mmol g−1 of bagasse) and total produced gases (41 mmol g−1 of bagasse) were obtained with unpromoted Cu20/γ-Al2O3–MgO catalyst. Addition of K increased the bagasse conversion to liquid fuels. Potassium made the process more selective for alcohols and ethers production. Maximum amount of alcohols and ethers (83.3 mmol g−1 of bagasse) was obtained for Cu20–K7.5/γ-Al2O3–MgO catalyst.

Paper URL