Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron

AuthorsA Olad, M Barati, S Behboudi
JournalProgress in Organic Coatings
Paper TypeFull Paper
Published At2011
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryNetherlands

Abstract

Conducting polyaniline, zinc and epoxy resin solely have anticorrosive properties by different mechanisms on metallic substrates. In this work the triple hybrid of PANI/epoxy/Zn nanocomposite was prepared as a thin layer coating (70 ± 5 μm) on iron coupons and its anticorrosion performance was investigated in HCl (0.1 M) as corrosive solution. Epoxy resin and zinc nanoparticles were applied as additives in the PANI matrix to improve the mechanical properties of PANI coating and investigate their synergetic effects on the anticorrosion performance of PANI coating. At first PANI/Zn nanocomposite coatings with different Zn contents were prepared and the zinc content optimized so that the coating achieve the best anticorrosion performance. Accordingly the iron coupons coated by PANI/Zn coating having 4 wt% Zn content showed more noble open circuit potential and lower corrosion current values. Then epoxy resin was applied as additive to the optimized formulation of PANI/Zn coating in different weight percents (0–20 wt%) and the anticorrosion performance of the related PANI/epoxy/Zn triple hybrid nanocomposite coatings was evaluated. Results showed that the addition of epoxy resin causes to the decreasing of corrosion current of iron samples coated by PANI/epoxy/Zn nanocomposite. An optimum range of 3–7 wt% was obtained for the epoxy content in the composition of PANI/epoxy/Zn nanocomposite in which the coating exhibits the best anticorrosion performance. Iron metal coupon was elementally analyzed and the PANI/Zn and PANI/epoxy/Zn nanocomposites were characterized using Fourier Transform Infrared spectroscopy, X-ray diffraction patterns and Scanning Electron Microscopy techniques.

Paper URL