Sustainable full-cell NCM||Graphite system with superior stability: The hybrid impact of sulfone-containing and flame-retardant additives on interface formation and cyclability

نویسندگانفرشته عباسی,محمد رضا منصور نیا,فرشاد بوربور اژدری,ابوالفضل فتح اللهی زنوز
نشریهMaterials Today Sustainability
شماره صفحات101004
شماره مجلد28
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار2024-10-02
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهSCOPUS ,JCR

چکیده مقاله

S-containing additives improve the performance, lifetime, and sustainability of lithium-ion batteries (LIBs) through the stabilization of electrode-electrolyte interfaces, modification of electrolyte properties, and facilitating the efficient resource utilization and rapid Li+ migration. Non-etheless, fire safety, extended shelf life, and capacity maintenance are critical concerns for commercial LIBs. Herein, a S-containing film-forming additive, including 4,4-diaminodiphenylsolfon (DADP) by incorporating flame retardancy of dimethyl methyl phosphonate (DMMP) was considered toward taking the barriers of above-mentioned challenges. Based on the calculation, the additives decompose sequentially to produce a distinct SEI via a narrower energy gap under both cathodic and anodic conditions. The NCM532||Graphite with DADP/DMMP showed the enhanced preservation and stability of structure, defined by XRD, Rietveld refinement pattern, SEM, and FT-IR. While the DMMP decreased the fire risk and lowered the capacity due to side reactions, the DADP improved the capacity loss, where the retention rate was 94.91%, 92.01%, 81.29%, and 76.22% within 100, 200, 300, and 400 cycles, respectively. The additive also maintained a capacity of 1123.115 mAhg−1 for 650 cycles, demonstrating excellent cyclability. Therefore, DADP/DMMP facilitate the formation of stable SEI layer, reduce fire risk, improve cycle stability, and offer an achievable path to develop the safe and long-lasting commercial batteries.

tags: Flame retardant High cycles Heterocycle additive LIB-SEI layer