رزومه
QR


فرشاد بوربور اژدری

فرشاد بوربور اژدری

استادیار

دانشکده: دانشکده شیمی

گروه: شیمی فیزیک

مقطع تحصیلی: دکترای تخصصی

سال تولد: ۱۳۶۸

رزومه
QR
فرشاد بوربور اژدری

استادیار فرشاد بوربور اژدری

دانشکده: دانشکده شیمی - گروه: شیمی فیزیک مقطع تحصیلی: دکترای تخصصی | سال تولد: ۱۳۶۸ |

 

  • Our research group's research activities focus on developing Carbon-based Materials, Nano Materials, Ionic Liquids, Conductive Polymers, Metal-Organic Frameworks (MOFs), Mxene (2D materials), and their use in various applications such as batteries, supercapacitors, and similar activities.
  • All the students interested in working with our group on developing Li-ion Batteries, Li-air Batteries (LIBs), Li-CO2 Batteries, and Lithium-Sulfur (Li-S Batteries) do your research we sincerely welcome.

 

  • فعالیت های پژوهشی گروه تحقیقاتی ما، به صورت متمرکز، بر روی توسعه مواد کربنی (Carbon-based Materials)، نانومواد (Nano Materials)، مایعات یونی (Ionic Liquids)، پلیمرهای هادی (Conductive Polymers)، مواد آلی-چارچوب فلزی (Metal Organic Frameworks)، مواد دو بعدی Mxene و به کار گیری آنها در کاربردهای مختلف از جمله باتری ها (Batteries)، ابرخازن ها (Supercapacitors) و فعالیت های مشابه است.

 

  • از همه دانشجویانی که تمایل دارند که با گروه ما بر روی توسعه باتری های لیتویم-یون (Li-ion Batteries)، لیتویم-هوا (Li-air Batteries)، لیتیوم-کربن دی اکسید (Li-CO2 Batteries) و لیتیوم-سولفور (Li-S Batteries) تحقیق و پژوهش کنند، صمیمانه استقبال می کنیم. 

 

 

 

My affiliation

Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

نمایش بیشتر

Unlocking the Recycling Strategies: A Review on challenges, Potential, and approaches

نویسندگانFarshad Boorboor Ajdari* , Ali Hassan -nejad, Fereshteh Abbasi, Mohadeseh Jafari , Parnaz Asghari
نشریهAutomotive Science and Engineering (ASE)
شماره صفحات4496
شماره مجلد14
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار2024-09-04
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهISC

چکیده مقاله

Today, the utilization of lithium -ion batteries (LIBs) has significantly increased as an energy storage technology. In recent years, the high demand for lithium for LIB has resulted in a significant increase in the consumption of lithium -containing materials. It is anticipated that the reduction of lithium due to the limited reserves of lithium will be one of the considerable challenges in the future. The lithium -ion battery industry's primary component is lithium, extracted from natural minerals and saline water. However, the extraction of lithium from natural minerals and saline water is a complex process requiring significant energy. Conversely, the number of batteries approaching the end of their lifespan is unavoidably increasing alarmingly. To address the obstacles that the lithium battery supply chain encounters, it is imperative that a variety of recycling technologies and methodologies be further developed. This article concentrates on technologies that can recycle lithium compounds from LIB through distinct processes and procedures. These stages are further divided into two pre - treatment phases and a lithium extraction stage. The lithium extraction stage is divided into three primary methods: pyrometallurgy, hydrometallurgy, and Direct. This review article quantitatively compares and analyzes each recycling method's processes, advantages, disadvantages, efficiency, price, environmental contamination, and degree of commercialization. This review can offer a suitable perspective to enhance this path.