رزومه
QR


فرشاد بوربور اژدری

فرشاد بوربور اژدری

استادیار

دانشکده: دانشکده شیمی

گروه: شیمی فیزیک

مقطع تحصیلی: دکترای تخصصی

سال تولد: ۱۳۶۸

رزومه
QR
فرشاد بوربور اژدری

استادیار فرشاد بوربور اژدری

دانشکده: دانشکده شیمی - گروه: شیمی فیزیک مقطع تحصیلی: دکترای تخصصی | سال تولد: ۱۳۶۸ |

 

  • Our research group's research activities focus on developing Carbon-based Materials, Nano Materials, Ionic Liquids, Conductive Polymers, Metal-Organic Frameworks (MOFs), Mxene (2D materials), and their use in various applications such as batteries, supercapacitors, and similar activities.
  • All the students interested in working with our group on developing Li-ion Batteries, Li-air Batteries (LIBs), Li-CO2 Batteries, and Lithium-Sulfur (Li-S Batteries) do your research we sincerely welcome.

 

  • فعالیت های پژوهشی گروه تحقیقاتی ما، به صورت متمرکز، بر روی توسعه مواد کربنی (Carbon-based Materials)، نانومواد (Nano Materials)، مایعات یونی (Ionic Liquids)، پلیمرهای هادی (Conductive Polymers)، مواد آلی-چارچوب فلزی (Metal Organic Frameworks)، مواد دو بعدی Mxene و به کار گیری آنها در کاربردهای مختلف از جمله باتری ها (Batteries)، ابرخازن ها (Supercapacitors) و فعالیت های مشابه است.

 

  • از همه دانشجویانی که تمایل دارند که با گروه ما بر روی توسعه باتری های لیتویم-یون (Li-ion Batteries)، لیتویم-هوا (Li-air Batteries)، لیتیوم-کربن دی اکسید (Li-CO2 Batteries) و لیتیوم-سولفور (Li-S Batteries) تحقیق و پژوهش کنند، صمیمانه استقبال می کنیم. 

 

 

 

My affiliation

Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

نمایش بیشتر

Advanced strategies to boost sustainable high-rate Ni-rich cathodes toward durable LIBs

نویسندگانپرناز اصغری,فرشاد بوربور اژدری,فرشته عباسی,ساسان رستمی,علی اصغر صادقی قزوینی,علی مولایی اقدم
نشریهProgress in Materials Science
شماره صفحات101574
شماره مجلد156
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار2025-09-15
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهJCR ,SCOPUS

چکیده مقاله

The rapid rise in demand for high-performance lithium-ion batteries (LIBs) highlights the importance of high-rate nickel-rich cathode materials as a key step toward next-generation LIBs, offering high discharge capacity, increased energy density, stable operating voltage, and cost-effectiveness. However, issues such as cation mixing, side reactions, microcrack formation, and thermal instability limit their rate capability and long-term durability. This review provides a detailed assessment of these challenges. It outlines strategies to overcome them, including surface coating, doping, core–shell structures, full-concentration gradients, and particle or additive engineering. Surface coatings improve surface stability and ion transport, while doping methods, including pillar and gradient doping, reduce cation mixing and strengthen structural stability. Core–shell and full-concentration gradients designs relieve mechanical stress and suppress phase transitions, and advanced particle engineering reduces microcrack formation. Computational tools such as density functional theory and machine learning, together with in-situ characterization, provide valuable insights into degradation mechanisms, enabling more precise material optimization. Importantly, combined and modified approaches that integrate multiple strategies show the greatest potential to address these challenges while maintaining sustainability and scalability. This work clarifies operational mechanisms, aiding researchers in developing advanced high-rate Ni-rich cathode LIBs for future energy storage.