رزومه
QR


سعید دوست علی

سعید دوست علی

استادیار

دانشکده: دانشکده مهندسی برق و کامپیوتر

گروه: مهندسی نرم افزار

مقطع تحصیلی: دکترای تخصصی

رزومه
QR
سعید دوست علی

استادیار سعید دوست علی

دانشکده: دانشکده مهندسی برق و کامپیوتر - گروه: مهندسی نرم افزار مقطع تحصیلی: دکترای تخصصی |

- دانشجویان گرامی برای ارتباط با بنده می‌توانند در پیام‌رسان از شناسه "@sdoostali" استفاده کرده و یا از طریق رایانامه پیام ارسال نمایند.

- تلفن: 03155913478

نمایش بیشتر

Network Analysis for Organized Fraud Detection in Automobile Insurance With Graph Theory and Poisson Process

نویسندگانسعید دوست علی,محمد جواد نجفی آرانی,اسما حمزه
نشریهIEEE Transactions on Systems, Man, and Cybernetics: Systems
ضریب تاثیر (IF)8.6
نوع مقالهFull Paper
تاریخ انتشار2025-06-19
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهJCR ,SCOPUS

چکیده مقاله

Fraudulent claims in the automobile industry pose a significant threat to the financial stability of insurance companies and erode the trust between policyholders and insurers. Organized fraud, which involves intricate schemes and multiple parties, presents a substantial challenge in detection due to imbalanced datasets. While existing techniques such as over-sampling and under-sampling have been proposed to address this issue, they often lead to overfitting, loss of information, and reduced accuracy. However, assigning a suspicious label to each policyholder is more changeable, as it can identify potential risks and prevent fraudulent activities before they occur. In response to these challenges, we propose a novel heuristic approach called OrFGP that identifies suspiciously organized fraud groups within an accident network and provides credibility levels for accidents and associated individuals. We first demonstrate that car accidents follow a Poisson random process. We then combine this process with graph theory to introduce an accident network. In the network, our objective is to identify regular behavior between accidents, which, based on the stochastic nature of accidents, can indicate organized fraud. OrFGP uses probabilistic concepts in conjunction with local network connectivity metrics to evaluate the credibility of accidents and individuals. The results indicate that OrFGP outperforms state-of-the-art approaches, particularly in imbalanced datasets. In fact, OrFGP achieves an accuracy of 98% and improves the F1-score by at least 3%.