Torque Ripple Reduction of Non-Ideal Permanent Magnet Brushless Motor based on Selective Torque Harmonic Elimination Using One Cycle Control Strategy

AuthorsAbolfazl Halvaei Niasar, Yahya Abdollahi Asadabadi
JournalElectromechanical Energy Conversion Systems
Presented byدانشگاه کاشان
Page number28-37
Serial number1
Volume number1
Paper TypeFull Paper
Published At2021
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryIran, Islamic Republic Of

Abstract

Due to some inevitable restrictions during fabrication of permanent magnet brushless (PMBL) motors, some of them have neither sinusoidal nor trapezoidal back-EMF voltages, that we name them as non-ideal PMBL motors. Employing conventional control strategies of permanent magnet synchronous motors (PMSMs) and brushless DC motors (BLDCMs) leads to lower efficiency and performance and causes unwanted torque ripple, vibration and acoustic noises that in unfavourable for special applications. This paper investigates the torque response of non-ideal PMBL motor while is controlled with conventional control strategies and presents a novel torque ripple minimization method. Simulation results indicate the non-ideal PMBL motor by novel proposed method develops smoother torque and lower torque ripple rather than all mentioned control strategies.

Paper URL

tags: Electrical drive Non-ideal permanent magnet brushless motor One cycle control Torque ripple Selective torque harmonic elimination