CV
QR


Hossein Ashrafi

Hossein Ashrafi

Assistant Professor

College: Faculty of Mechanical Engineering

Department: Mechanical Engineering - Solid Design

Degree: Ph.D

CV
QR
Hossein Ashrafi

Assistant Professor Hossein Ashrafi

College: Faculty of Mechanical Engineering - Department: Mechanical Engineering - Solid Design Degree: Ph.D |

  •  Position: Assistant Professor of Solid Mechanics and Applied Design
  •  Institution: Faculty of Mechanical Engineering, University of Kashan, Iran
  •  Researcher ID: P-8090-2014
  •  Scopus Author ID: 12793997500
  •  M.Sc. (Sept. 2005 – August 2008): Graduated from Shiraz University, with Overall GPA 17.67 out of 20.
  •  Ph.D. (Sept. 2010 – August 2014): Graduated from K.N. Toosi University, with Overall GPA 19.43 out of 20.
  • Address: No. 316, 3rd Floor, Faculty of Mech. Eng., University of Kashan, Ghotbravandi Blvd., Kashan, Iran
  • ​P.O. Box:  8731751167
  • Telephone:  (+98) 31 55913439
  • Fax:  (+98) 31 55913444
  • URL:  https://faculty.kashanu.ac.ir/hashrafi/en​

 

نمایش بیشتر

A New Mathematical Modeling of Contact Treatment between an Orthotropic Material and a Rigid Indenter

AuthorsH. Ashrafi , M. Mahzoon , M. Shariyat
JournalIranian Journal of Materials Science and Engineering
Page number 29-41
Volume number9
Paper TypeOriginal Research
Published At2012
Journal GradeISI
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of

Abstract

The boundary value problems involving contact are of the great importance in industries related to mechanical and materials engineering. These mixed problems are challenging since a priori unknown deformed surface of the material contacting a rigid indenter is to be determined as a part of the solution. Anisotropic solids represent an important class of engineering materials including crystals, woods, bones, thin solid films, polymer composites, etc. Contact analysis of an anisotropic media, however, is more difficult and is developed less completely in the literature. In this work, both analytical and computational studies of the contact treatment of a semi-infinite orthotropic material indented by a rigid spherical indenter have been considered in two different sections. This approach can be applied to determine the interfacial contact area and pressure distribution for three-dimensional orthotropic materials, and can then be used to calculate the resulting stress and strain fields of the media. Results presented herein can serve as benchmarks with which to compare solutions obtained by ANSYS commercial package.

Paper URL