CV
QR


Hossein Ashrafi

Hossein Ashrafi

Assistant Professor

College: Faculty of Mechanical Engineering

Department: Mechanical Engineering - Solid Design

Degree: Ph.D

CV
QR
Hossein Ashrafi

Assistant Professor Hossein Ashrafi

College: Faculty of Mechanical Engineering - Department: Mechanical Engineering - Solid Design Degree: Ph.D |

  •  Position: Assistant Professor of Solid Mechanics and Applied Design
  •  Institution: Faculty of Mechanical Engineering, University of Kashan, Iran
  •  Researcher ID: P-8090-2014
  •  Scopus Author ID: 12793997500
  •  M.Sc. (Sept. 2005 – August 2008): Graduated from Shiraz University, with Overall GPA 17.67 out of 20.
  •  Ph.D. (Sept. 2010 – August 2014): Graduated from K.N. Toosi University, with Overall GPA 19.43 out of 20.
  • Address: No. 316, 3rd Floor, Faculty of Mech. Eng., University of Kashan, Ghotbravandi Blvd., Kashan, Iran
  • ​P.O. Box:  8731751167
  • Telephone:  (+98) 31 55913439
  • Fax:  (+98) 31 55913444
  • URL:  https://faculty.kashanu.ac.ir/hashrafi/en​

 

نمایش بیشتر

A Numerical Lagrangian Approach for Analysis of Contact Viscoelastic Problems

AuthorsH. Ashrafi, M. Shariyat
JournalComputational Mathematics and Modeling
Page number416–422
Volume number25
Paper TypeOriginal Research
Published At2014
Journal GradeISI
Journal TypeTypographic
Journal CountryRussian Federation

Abstract

The objective of this paper is to develop a finite-element formulation associated with an incremental adaptive procedure established for analysis of frictional contact problems in viscoelastic solids. A generalized Maxwell model has been used to model the viscoelastic constitutive equations in which bulk and shear relaxation functions are represented by the sum of a series of decaying exponential functions of time. A generalized finite-element approach, based on the principle of virtual work, has been developed using an incremental relaxation procedure. The application of the finite element method to contact viscoelastic problems is investigated. The contact treatment between bodies has been studied through an augmented Lagrangian approach. Finally, an example is presented to evaluate the computational solution procedure presented.

Paper URL