نویسندگان | مهدی دهقان-مصطفی عباس زاده-اکبر محبی |
---|---|
نشریه | J COMPUT APPL MATH |
تاریخ انتشار | ۲۰۱۵-۳-۰۱ |
نوع نشریه | الکترونیکی |
نمایه نشریه | ISI |
چکیده مقاله
InthispaperanumericaltechniqueisproposedforsolvingthenonlineargeneralizedBen-jamin–Bona–Mahony–Burgers and regularized long-wave equations. Firstly, we obtain a timediscreteschemebyapproximatingtimederivativeviaafinitedifferenceformula,then weusetheinterpolatingelement-freeGalerkinapproachtoapproximatethespatialderiva-tives.Theelement-freeGalerkinmethodusesaweakformoftheconsideredequationthat issimilartothefiniteelementmethodwiththedifferencethatintheelement-freeGalerkin methodtestandtrialfunctionsaremovingleastsquaresapproximationshapefunctions. Also,intheelement-freeGalerkinmethod,wedonotuseanytriangular,quadrangularor othertypeofmeshes.Itisaglobalmethodwhilefiniteelementmethodisalocalone.The elementfreeGalerkinmethodisnotatrulymeshlessmethodandforintegrationemploys abackgroundmesh.Weprovethatthetimediscreteschemeisunconditionallystableand convergentintimevariableusingtheenergymethod.Weshowthatconvergenceorderof thetimediscreteschemeisO (τ).Sincetheshapefunctionsofmovingleastsquaresapprox-imationdonothaveKroneckerdeltaproperty,wecannotimplementtheessentialbound-arycondition,directly.Thus,theimprovedmovingleastsquaresshapefunctionsthathave thementionedpropertyareemployed.Anerrorestimateforthemethodproposedinthe currentpaperisobtained.Also,thetwo-dimensionalversionofbothequationsondifferent complexgeometriesissolved.Theaimofthispaperistoshowthatthemeshlessmethod basedontheweakformisalsosuitableforthetreatmentofthenonlinearpartialdiffer-entialequationsandtoobtainanerrorboundforthenewmethod.Numericalexamples confirmtheefficiencyoftheproposedscheme.