| نویسندگان | مهدی دهقان-مصطفی عباس زاده-اکبر محبی |
| نشریه | J COMPUT APPL MATH |
| تاریخ انتشار | 2015-3-01 |
| نوع نشریه | الکترونیکی |
| نمایه نشریه | ISI |
چکیده مقاله
InthispaperanumericaltechniqueisproposedforsolvingthenonlineargeneralizedBen-jamin–Bona–Mahony–Burgers and regularized long-wave equations. Firstly, we obtain a
timediscreteschemebyapproximatingtimederivativeviaafinitedifferenceformula,then
weusetheinterpolatingelement-freeGalerkinapproachtoapproximatethespatialderiva-tives.Theelement-freeGalerkinmethodusesaweakformoftheconsideredequationthat
issimilartothefiniteelementmethodwiththedifferencethatintheelement-freeGalerkin
methodtestandtrialfunctionsaremovingleastsquaresapproximationshapefunctions.
Also,intheelement-freeGalerkinmethod,wedonotuseanytriangular,quadrangularor
othertypeofmeshes.Itisaglobalmethodwhilefiniteelementmethodisalocalone.The
elementfreeGalerkinmethodisnotatrulymeshlessmethodandforintegrationemploys
abackgroundmesh.Weprovethatthetimediscreteschemeisunconditionallystableand
convergentintimevariableusingtheenergymethod.Weshowthatconvergenceorderof
thetimediscreteschemeisO (τ).Sincetheshapefunctionsofmovingleastsquaresapprox-imationdonothaveKroneckerdeltaproperty,wecannotimplementtheessentialbound-arycondition,directly.Thus,theimprovedmovingleastsquaresshapefunctionsthathave
thementionedpropertyareemployed.Anerrorestimateforthemethodproposedinthe
currentpaperisobtained.Also,thetwo-dimensionalversionofbothequationsondifferent
complexgeometriesissolved.Theaimofthispaperistoshowthatthemeshlessmethod
basedontheweakformisalsosuitableforthetreatmentofthenonlinearpartialdiffer-entialequationsandtoobtainanerrorboundforthenewmethod.Numericalexamples
confirmtheefficiencyoftheproposedscheme.