| نویسندگان | مهدی دهقان-مصطفی عباس زاده-اکبر محبی |
| نشریه | J COMPUT APPL MATH |
| تاریخ انتشار | 2015-1-01 |
| نوع نشریه | الکترونیکی |
| نمایه نشریه | ISI |
چکیده مقاله
Inthispaperanumericaltechniquebasedonameshlessmethodisproposedforsolvingthe
timefractionalreaction–subdiffusionequation.Firstly,weobtainatimediscretescheme
basedonafinitedifferencescheme,thenweusethemeshlessGalerkinmethod,toapprox-
imate the spatial derivatives and obtain a full discrete scheme. In the proposed scheme,
some integrals appear over the boundary and the domain of problem which will be ap-
proximatedusingGauss–Legendrequadraturerule.Then,weprovethatthetimediscrete
schemeisunconditionallystableandconvergentusingtheenergymethod.Weshowcon-
vergence order of the time discrete scheme is O (τγ ). The aim of this paper is to obtain
an error estimate and to show convergence for the meshless Galerkin method based on
theradialbasisfunctions.Numericalexamplesconfirmtheefficiencyandaccuracyofthe
proposedscheme.