Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

نویسندگانمحمدرضا بافنده -راضیه قره خانی-محمد حسین فتحی
نشریهMAT SCI ENG C-MATER
نوع مقالهFull Paper
تاریخ انتشار۲۰۱۶-۷-۰۱
رتبه نشریهISI
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهISI

چکیده مقاله

In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications.